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Abstract

Practical problems in artificial intelligence often involve both
large state and/or action spaces where only partial informa-
tion is available to the agent. In high-dimensional cases,
function approximation methods, such as neural networks,
are often used to overcome limitations of traditional tabu-
lar schemes. In the context of reinforcement learning, the
actor-critic architecture has received much attention in recent
years, in which an actor network maps states to actions and
a critic produces value function approximation given a state-
action pair. This framework involves training two separate
networks, thus requiring the critic network to effectively con-
verge before the actor is able to produce a suitable policy, re-
sulting in duplication of effort in modeling the environment.
This paper presents a novel approach for consolidating the
actor and critic networks into a single network that provides
the functionality offered by the two separate networks. We
demonstrate the proposed architecture on a partially observ-
able maze learning problem.

Introduction
Reinforcement learning (RL), as a machine learning disci-
pline (Sutton & Barto 1998), has received significant atten-
tion from both academia and industry in recent years. What
sets RL apart from other machine learning methods is that
it aims to solve the credit assignment problem, in which
an agent is charged with evaluating the long-term impact
of each action taken. In doing so, an agent which interacts
with an environment attempts to maximize a value function,
based only on inputs representing the environment’s state
and a nonspecific reward signal. The agent constructs an
estimated value function that expresses the expected return
from taking a specific action at a given state.

Temporal difference (TD) learning is a central idea in
reinforcement learning, and is primarily applied to model-
free learning problems. As a framework, TD draws from
both dynamic programming (DP) and Monte Carlo methods.
Similar to DP, TD learning bootstraps in that it updates value
estimates based on other value estimates, as such not having
to complete an episode before updating its value function
representation. Like Monte Carlo methods, TD is heuris-
tic in that it uses experience, obtained by following a given
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policy (i.e. mapping of states to actions), to predict subse-
quent value estimates. In that end, the method is essentially
updating one guess based on another (Sutton & Barto 1998).

Practical problems in RL, as well as other AI disciplines,
are characterized by having high-dimensional state and/or
action spaces. Traditional tabular methods for representing
state-action pairs suffer from what is commonly known as
the curse of dimensionality, since the state space grows ex-
ponentially with linear increase in the number of state vari-
ables. A common approach to scaling RL systems is to em-
ploy function approximation methods, such as neural net-
works, for value function estimation and policy derivation.
Function approximation techniques overcome the curse of
dimensionality by constructing a parametrized representa-
tion of the state space. Assuming an underlying Markov
Decision Process (MDP), a feedfoward neural network con-
sisting of weighted inputs that feed to one or more hidden
layers of neurons, can be used for value function approxi-
mation. The latter is produced by the output of the network,
which is commonly a linear combination of the outputs of
the hidden layers. In the more general case of Neurody-
namic Programming (NDP), neural networks are used at the
core of the TD learning process to approximate the value
function, the policy to be followed by an agent, or both.

In many of these problem, only partial information re-
garding the state is available to the agent. In these instances,
it can be assumed that the underlying system is a normal
MDP where the true state information is unavailable. The
agent utilizes observations of the environment to form its
own state estimation. These Partially Observable MDPs
(POMDPs) require an agent to infer the true state of the envi-
ronment when provided with a series of non-unique obser-
vations. With respect to neural networks, this requires the
use of recurrent elements to provide the system with mem-
ory. These memory neurons are used to provide context to
new observations and are combined with the input observa-
tion to yield state inference. Even simple problems, when
posed as a POMDPs, suffer from the fore mentioned curse
of dimensionality.

A particular TD learning architecture that has received at-
tention in recent years due to its inherent scalability prop-
erties, is the actor-critic model. The latter consists of two
neural networks. The first, called a critic, is responsible for
approximating the value function (i.e. mapping state-action
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pairs to a value estimate), thus providing a critique signal
for the agent. The second (actor) network is charged with
constructing a policy. Both networks receive observations at
their inputs and, therefore, both have to be capable of accu-
rately modeling the environment with which the agent inter-
acts. This is an obvious replication of functionality between
the two networks, suggesting that a more compact represen-
tation is merited. Before the actor is able to converge to an
optimal policy, the critic must first converge its model of the
environment to provide an accurate value function estima-
tion (Si, Yang, & Liu 2004).

Reinforcement learning has had great success in diverse
application domains. A helicopter controller has been de-
signed using direct neural dynamic programming (DNDP)
in (Enns & Si 2003). First simulating the environment using
an analytical model and then applying the controller to the
real world, this application demonstrated that reinforcement
learning methods can be applied to complex control situa-
tions and yield positive results. Another example of NDP
application has been discussed in (Marbach, Mihatsch, &
Tsitsiklis Feb 2000), where call admission control (CAC)
and associated routing policies were successfully solved us-
ing NDP, despite the complexity of the problem involved.

Recent work has attempted to address the issue of the
apparent redundancy in the actor-critic model. A model
free actor-critic network has been presented to approximate
both the critic signal and action probabilities (Mizutani &
Dreyfus 2004). This approach has been applied to low-
dimensional stochastic dynamic programming path finding
problems. The model is a departure from temporal differ-
ence learning methods in that action probabilities are calcu-
lated instead of a direct policy. Although a step in the right
direction, the scheme as a whole does not appear to scale
toward high-dimensional state-action spaces.

This paper presents a Consolidated Actor-Critic Model
(CACM) to combine the actor and critic modules into a sin-
gle network. The CACM estimates the value function and
concurrently generates a policy, making it fundamentally
different from existing model-free solution methods. Such
consolidation of functionality offers improved performance
with respect to the traditional actor-critic model, as only one
network need model the environment and internal represen-
tation is shared. The CACM takes a series of observations
and an action to be taken on the inputs and approximates the
value function as well as produces a subsequent action.

The paper is structured as follows. First, an outline of
the traditional actor-critic framework is presented. This
is followed by the introduction of the consolidated actor-
critic model, its derivation and relationship to the traditional
method. Simulation results are provided as means of demon-
strating the key attributes of the CACM in a partially observ-
able environment. Finally, the conclusions are drawn.

The Actor-Critic Model
TD learning methods in reinforcement learning, such as Q-
Learning and SARSA, which employ tables to represent the
state or state-action values are practical for low-dimensional,
fully observable problems. They rapidly lose merit as new

state variables are introduced, as each state variable in-
creases the state space exponentially, increasing the amount
of system memory and processing power required. Further,
the introduction of uncertainty to the environment, where the
agent is unable to directly measure the state, but instead has
to form state estimations based only on a set of observations
make tabular methods impractical. The actor-critic model,
depicted in Figure 1, comprises of two neural networks. In
the general case, the agent is assumed to have no a-priori
knowledge of the environment. Both the actor and critic
networks must form their own internal representation of the
environment based on interactions and the reward received
at each step. As in other reinforcement learning methods,
the actor-critic model attempts to maximize the discounted
expected return, R(t), given by

R(t) = r(t+ 1) + γr(t+ 2) + ...

=
∞∑

k=1

γk−1r(t+ k), (1)

where r(t) denotes the reward received from the environ-
ment at time t and γ is the discount rate. The critic network
is responsible for approximating this value, represented as
J(t). The critic network aims to minimize the overall error
defined as

Ec(t) =
1
2
e2c(t), (2)

where ec(t) is the standard Bellman error (Si, Yang, & Liu
2004),

ec(t) = [r(t) + αJ(t)]− J(t− 1). (3)

The weight update rule for the critic network is gradient
based. Let wc be the set of weights in the critic network, the
value of wc at time t+ 1 is

wc(t+ 1) = wc(t) + ∆wc(t). (4)

The weights are updated as

∆wc(t) = lc(t)
[
−∂Ec(t)
∂wc(t)

]
, (5)

∂Ec(t)
∂wc(t)

=
∂Ec(t)
∂J(t)

∂J(t)
∂wc(t)

. (6)

Similarly, the goal of the actor network is to minimize the
term

Ea(t) =
1
2
e2a(t), (7)

ea(t) = J(t)−R∗.

where R∗ denotes the optimal return. Once again, weight
updates are based on gradient-descent techniques and, thus,
we have

wa(t+ 1) = wa(t) + ∆wa(t),

∆wa(t) = la(t)
[
−∂Ea(t)
∂wa(t)

]
,

∂Ea(t)
∂wa(t)

=
∂Ea(t)
∂J(t)

∂J(t)
∂wa(t)

, (8)
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Figure 1: A diagram of an actor-critic model

where la(t) is the learning parameter or step size of the actor
network update rule. An online learning algorithm can now
be derived from the previous equations. Starting with the
critic network output, we have

J(t) =
Nhc∑
i=1

w
(2)
ci (t)pi(t), (9)

where Nhc is the number of hidden nodes for the critic net-
work, and pi(t) is the output of node i given as

pi(t) =
1− e−qi(t)

1 + e−qi(t)
, i = 1, ..., Nhc, (10)

qi(t) =
n∑

j=1

w
(1)
cij (t)xj(t), i = 1, ..., Nhc,

where qi(t) is the input to hidden node i at time t. Applying
the chain rule to (6) and substituting into (5) yields

∆w(2)
ci = lc(t) [ec(t)pi(t)] (11)

for the output layer to the hidden layer nodes. Another ex-
pansion of (6) gives us

∂Ec(t)
∂wc(t)

=
∂Ec(t)
∂J(t)

∂J(t)
∂wc(t)

,

=
∂Ec(t)
∂J(t)

∂J(t)
∂pi(t)

∂pi(t)
∂qi(t)

∂qi(t)
∂w

(1)
cij (t)

= ec(t)w(2)
ci (t)

[
1
2

(1− p2
i (t))

]
xj(t). (12)

The actor network update rule is calculated similarly, as
follows

ai(t) =
1− e−vi(t)

1 + e−vi(t)
, i = 1, ..., Nha,

vi(t) =
n∑

j=1

w
(1)
aij(t)g(t), i = 1, ..., Nha,

gi(t) =
1− e−hi(t)

1 + e−hi(t)
, i = 1, ..., Nha,

hi(t) =
n∑

j=1

w
(1)
aij(t)xj(t), i = 1, ..., Nha, (13)

where v is the input to the actor node, gi and hi are the output
and input of the hidden nodes of the actor network respec-
tively, and at(t) is the action output. Back-propagating from
the output to the hidden layer yields

∆w(2)
a (t) = la(t)

[
−∂Ea(t)

∂w
(2)
ai (t)

]
,

∂Ea(t)

∂w
(2)
ai (t)

=
∂Ec(t)
∂J(t)

∂J(t)

∂w
(2)
ai (t)

,

=
∂Ea(t)
∂J(t)

∂J(t)
∂ai(t)

∂ai(t)
∂vi(t)

∂vi(t)

∂w
(2)
ai (t)

= ea(t)
Nhc∑
i=1

[
w

(2)
ci (t)

1
2

(1− p2
i (t))w(1)

ci,n+1(t)
]
·[

1
2

(1− u2(t))
]
gi(t). (14)

From the hidden layer to the input,

∆w(1)
aij

(t) = la(t)

[
−∂Ea(t)

∂w
(1)
aij (t)

]
,

∂Ea(t)

∂w
(1)
aij (t)

=
∂Ea(t)
∂J(t)

∂J(t)
∂ai(t)

∂ai(t)
∂vi(t)

∂vi(t)
∂gi(t)

∂gi(t)
∂hi(t)

∂hi(t)

∂w
(1)
aij (t)

= ea(t)
Nhc∑
i=1

[
w

(2)
ci (t)

1
2

(1− p2
i (t))w(1)

ci,n+1(t)
]
·[

1
2

(1− u2(t))
]
w(2)

ai
(t) ·[

1
2

(1− g2
i (t))

]
xj(t). (15)

It should be noted that the outputs of the actor network are
nonlinear, unlike the linear outputs of the critic network.
Recurrent elements of the networks can be treated as ad-
ditional inputs to the network whose values are the hidden
layer activations from the previous iteration. With this in
mind, this same learning algorithm can be applied to recur-
rent networks.
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Figure 2: A Consolidated Actor-Critic Model.

The Consolidated Actor-Critic Model
The training of both networks in the traditional actor-critic
model results in duplicated effort between the actor and
critic, since both have to form internal models of the en-
vironment, independently. Combining the networks into a
single network would offer the potential to remove such
redundancy. Previous attempts to achieve such consolida-
tion were limited to a probabilistic reflection of how an ac-
tion should be modified in future time (Mizutani & Dreyfus
2004). However, such a scheme does not scale to large ac-
tion sets, due to the exponential growth in the probabilistic
term that would result. Here we proposes a generic, unified
framework for true integration between the actor and critic
networks in the context of temporal difference learning with
function approximation. The consolidated actor-critic net-
work (CACM) produces both state-action value estimates as
well as actions. Moreover, the architecture offers improved
convergence properties and more efficient utilization of re-
sources.

Figure 2 illustrates the CACM architecture. The network
takes a state st and an action at as inputs at time t, and pro-
duces a state-action value estimate Jt and action at+1 to be
taken at the next time step. The latter is applied to the en-
vironment and fed back to the network at the subsequent
time step. The temporal difference error signal is defined
by the standard Bellman error, in an identical way to that
followed by the regular actor-critic model (3). Additionally,
the action error is identical to that given in (7) for the ac-
tor network. The weight update algorithm for the CACM is
gradient-based given by

E(t) = Ec(t) +
∂Ea(t)
∂a(t)

w(t+ 1) = w(t) + ∆w(t)

∆w(t) = l(t)
[
−∂E(t)
∂w(t)

]
(16)

where l(t) > 0 is the learning rate of the network at time
t. The output J(t) of the CACM is given by (9) .The action

output, a(t+ 1) is of the form

a(t+ 1) =
n∑

j=1

w
(2)
ai (t)yi(t) (17)

wherewai represents the weights between the ith node in the
hidden layer and the actor output node. Finally, we obtain
yi(t) in a similar way to that expressed in (10).

To derive the back-propagation through the network ex-
pression, we first focus on the action error, which is a linear
combination of the hidden layer outputs. Applying the chain
rule here yields

∂Ea(t)
∂a(t)

=
Nh∑
i=1

∂Ea(t)
∂yi(t)

∂yi(t)
∂xi(t)

∂xi(t)
∂a(t)

(18)

The weights in the network are updated according to

∆w(2)
ia (t) = l(t)

[
−∂Ea(t)
∂a(t)

∂a(t)

∂w
(2)
ia (t)

]
(19)

for the hidden layer to the actor nodes, where

∂Ea(t)
∂a(t)

∂a(t)

∂w
(2)
ia (t)

=
Nh∑
i=1

∂Ea(t)
∂yi(t)

∂yi(t)
∂xi(t)

∂xi(t)
∂a(t)

∂a(t)

∂w
(2)
ia (t)

=
Nh∑
i=1

∂Ea(t)
∂J(t)

∂J(t)
∂yi(t)

∂yi(t)
∂xi(t)

×∂xi(t)
∂a(t)

∂a(t)

∂w
(2)
ia (t)

= ea(t)(
Nh∑
i=1

w
(2)
ci (t)[

1
2

(1− y2
i (t))]

×w(1)(t)yi(t)) (20)

and w
(1)
ia (t) denoting the weight between the action node

and the ith hidden node. Moreover, from the hidden layer to
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Figure 3: Average Duration vs. Number of Episodes

the critic node, we have

∆w(2)
c (t) = l(t)[

−∂Ec(t)

∂w
(2)
ic (t)

], (21)

where

∂Ec(t)

∂w
(2)
ic (t)

=
∂Ec(t)
∂J(t)

∂J(t)

∂w
(2)
ic (t)

= ec(t)yi(t). (22)

Finally, for the inputs to the hidden layer, we express the
weight update as

∆w(1)
ij (t) = l(t)[

−∂E(t)

∂w
(1)
ij (t)

] (23)

where
∂E(t)

∂w
(1)
ij

=
∂Ec(t)

∂w
(1)
ij

+
∂Ea(t)
∂a(t)

∂a(t)

∂w
(1)
ij

= [ec(t)w(2)
ic (t)

+ea(t)

(
Nh∑
i=1

w
(2)
ci (t)

[
1
2

(1− y2
i (t))

]
w

(1)
ia (t)

)

×w(2)
ia (t)][

1
2

(1− y2
i (t))]uj(t) (24)

It is noted that the temporal difference nature of the ac-
tion correction formulation resembles the one employed in
the value estimation portion of TD learning. That is, in-
formation obtained at time t + 1 is used to define the error
correcting signals pertaining to time t.

Simulation Results
The CACM was simulated using a 15x15 cell maze problem
where the objective is to reach the goal state in the minimum
number of steps. The agent is randomly relocated within

Figure 4: 15x15 Maze Used for Simulation

the maze after a successful completion. If the duration of
any episode is more than 1000 time steps, it is ended and
the agent is randomly relocated in the maze to start a new
episode. The duration for each episode is recorded as a run-
ning average calculated as

Davg(n) = 0.95Davg(n− 1) + 0.05Draw(n), (25)

where Davg(n) is the running average for episode n and
Draw(n) is the duration of episode n, with Davg(0) = 0.

The CACM was configured with 50 hidden neurons, all of
which feedback for recurrency. The input to the network is a
51 feature vector consisting of 49 values for the observation,
and two values for the action. Here, the observation consists
of a subset of the maze that extends three cells in every di-
rection from the cell currently occupied by the agent. There
are four actions permitted at each moment: forward, back-
ward, left and right. These are encoded in a two bit binary
vector.

Since the network relies on recurrent connections to form
the internal state estimations, training of any of the outputs
did not occur for the first 6 steps of an episode. This boot-
strapping of the memory neurons permits accurate forma-
tion of estimated state early in the episode . When addi-
tional memory is needed, extra layers can be added to this
model, though extra delay will be needed at the beginning
of each run to form complete context. Training was done
using stochastic meta-descent with an initial learning rate of
0.005. Action selection was ε-greedy where

ε(t) = 0.0413 +
log (t+ 1)
22.9361

. (26)

and t is the current time step within an episode, reflecting de-
creasing exploration with increased proficiency of the agent.
The reinforcement signal r is +5 for transition into a goal
state, -3 for an action that results in no state transition (i.e.
moving into a wall), and 0 for all others.

Figure 3 depicts the average episode duration. The initial
duration is large, with a hard limit set at 1000 steps due to

41



the duration timeout. Spikes in duration toward the begin-
ning can be attributed to the random relocation. Before the
CACM is able to converge on the model on which to base
the policy, multiple random placements in well known areas
will result in the ”valleys”, and in less well known areas a
significant spike. The system was able to identify the op-
timal policy in approximately 2000 completions, which is
roughly 500,000 time steps into the simulation.

Mazes with dead ends take longer to converge. This is at-
tributed to the random walk method being used in the code.
The random walk will have a very small probability of get-
ting out of dead ends at any one moment and can hold the
agent in a single part of the maze for long periods of time.
During this time, the agent is not able to receive multiple
observations and is unable to form an accurate state estima-
tion for the area. This leaves room for improvements to the
exploration algorithm as future work.

Conclusions
This paper presents a novel and resource-efficient frame-
work for addressing POMDPs in the context of temporal
difference learning with function approximation. A Con-
solidated Actor-Critic Model was introduced in which a sin-
gle recurrent neural network functionally replaces two inde-
pendent networks, as commonly used in neuro-dynamic pro-
gramming. This has been demonstrated through a partially
observable maze navigation problem. Future effort will fo-
cus on scaling the proposed methodology to address more
complex settings, such as robotics applications. Moreover,
different methods of balancing exploration and exploitation
in the CACM context will be studied.
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