
Point-Based Value Iteration Algorithms for Multi-Core Machines

Guy Shani, Microsoft Research
guyshani@microsoft.com

Abstract

Recent scaling up of POMDP solvers towards realistic appli-
cations is largely due to point-based methods which quickly
provide approximate solutions for medium-sized problems.
New multi-core machines offer an opportunity to scale up to
much larger domains. These machines support parallel exe-
cution and can speed up existing algorithms considerably.
In this paper we suggest several ways in which point-based al-
gorithms can be adapted to parallel computing. We overview
the challenges and opportunities and present experimental ev-
idence to the usability of our suggestions. Our results show
that the opportunity lies mainly in parallelizing at the algo-
rithmic level, not at the point-based backup level.

Introduction
Many interesting problems can be modeled as partially ob-
servable Markov decision problems (POMDPs). Due to the
difficulty in computing an optimal policy, research has fo-
cused on approximate methods for solving POMDPs.

Policy generation via the computation of a (near) optimal
value function is a standard approach for solving POMDPs.
Point-based methods are currently provide the most effec-
tive approximations of the optimal value function. In point-
based algorithms, a value function is computed over a finite
set of reachable belief points, hoping that the value function
would generalize well to the entire belief space. Such algo-
rithms have shown the ability to scale up to medium-sized
domains, supplying policies with good quality.

In the past few years it seems that the ability to speed up
the clock rates of processors is nearing its boundary. The
processor industry is now moving in a different direction
in order to enhance the performance of processors — plac-
ing multiple processors (cores) on a single chip (Sutter &
Larus 2005). Thus, new machines provide multi-threading
programming abilities to enhance the performance of appli-
cations. It is now not uncommon to use machines with8
or 16 cores, but in the near future systems are expected to
have dozens, if not hundreds of cores. While multi-core
algorithms rarely achieve even a linear speedup, it is still
our hope that through using large amounts of cores we can
scale up to POMDP domains which are currently beyond our
reach.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In view of this promising technology we review point-
based methods, suggesting adaptation of existing methods
to multi-core architectures. We suggest modifications of ex-
isting algorithms as well as combinations of several algo-
rithms. These modifications pose several challenges and dif-
ficulties that must be dealt with.

We provide some preliminary partially evaluation of the
various modifications suggested here. It is important to note
that even if current scaling up due to multi-thread implemen-
tations is limited because of the relatively small number of
cores on a single machine, our suggested enhancements will
be much more pronounced in the future, when machines will
have an order of magnitude more cores. In fact, we cannot
even execute a combination of all of our suggestions on our
current machine. We are hence unable to demonstrate the
full capability of the methods we propose here. We there-
fore consider the empirical evaluation provided here as no
more than an evidence that our ideas have the potential to
provide substantial speed up for point-based solvers.

Nevertheless, our empirical results show that there is little
to gain by parallelizing the low level point-based backups.
However, parallelizing algorithms such as PBVI and PVI
has shown much potential for scaling up. We also demon-
strate how the combination of various algorithms can help
us to leverage the advantages of the different approaches,
resulting in a rapid learning of good quality policies, supe-
rior to those learned by any single algorithm. Finally, we
suggest a new way to prune dominated vectors by running
simulations on a dedicated thread.

Background and Related Work
MDPs, POMDPs and the belief-space MDP
Markov Decision Processes (MDPs) model autonomous
agents, acting in a stochastic environment. An MDP is a
tuple〈S, A, tr, R〉 where:S is the set of all possible world
states,A is a set of actions the agent can execute,tr(s, a, s′)
defines the probability of transitioning from states to state
s′ using actiona, andR(s, a) defines a reward the agent re-
ceives for executing actiona in states. An MDP models an
agent that can directly observe the environment state.

A Partially Observable Markov Decision Process
(POMDP) is designed to model agents that do not have di-
rect access to the current state, but rather observe it through
noisy sensors. A POMDP is a tuple〈S, A, tr, R, Ω, O, b0〉

43

where S, A, tr, R compose an MDP, known as the un-
derlying MDP. This MDP models the behavior of the
environment. Ω is a set of available observations — the
possible output of the sensors.O(a, s, o) is the probability
of observingo after executinga and reaching states,
modeling the sensor noise.

As the agent is unaware of its true world state, it must
maintain abelief over its current state — a vectorb of prob-
abilities such thatb(s) is the probability that the agent is at
states. Such a vector is known as a belief state orbelief
point. b0 defines the initial belief state.

Given a POMDP it is possible to define the belief-space
MDP — an MDP over the belief states of the POMDP. The
transition from belief stateb to belief stateb′ using action
a is deterministic given an observationo and defines theτ
transition function. We denoteb′ = τ(b, a, o) where:

b
′(s′) =

O(a, s′, o)
∑

s
b(s)tr(s, a, s′)

pr(o|b, a)
(1)

Value Functions for POMDPs
An agent that uses an MDP or POMDP attempts to optimize
some function of its reward stream, such as the discounted
reward

∑
i γiri. The discount factor0 < γ < 1 models the

higher value of present rewards compared to future rewards.
A solution to an MDP or POMDP is usually a stationary

policy π — a mapping from states (MDP) or belief states
(POMDP) to actions. Policies can be computed through a
value function that assigns a value to each state.

The value functionV for the belief-space MDP can be
represented as a finite collection of|S|-dimensional vectors
known asα vectors. Thus,V is both piecewise linear and
convex (Smallwood & Sondik 1973). A policy over the be-
lief space can be defined by associating an actiona with each
vectorα, such thatα · b =

∑
s α(s)b(s) represents the value

of takinga in belief stateb and following the policy after-
wards. It is therefore standard practice to compute a value
function — a setV of α vectors, inducing a policyπV by
πV (b) = argmaxa:αa∈V αa · b

We can compute the value function over the belief-space
MDP iteratively by applying the Bellman equation:

Vn+1(b) = max
a

[b · ra + γ
∑

o

pr(o|a, b)Vn(τ (b, a, o))] (2)

wherera(s) = R(s, a) is a vector representation of the
reward function. Indeed, the above equation can be written
in terms of vectors (Smallwood & Sondik 1973; Cassandra,
Littman, & Zhang 1997), updating a value function defined
as a set of vectors over the entire belief space. Unfortunately,
such an update is not tractable for even very small domains.

Point Based Value Iteration
A possible approximation is to compute an optimal value
function over a finite subsetB of the belief space. We hope
that the computed value function will generalize well for
other belief states not included inB. Point-based algorithms
choose a subsetB of the belief points that is reachable from
the initial belief state through different methods, and com-
pute a value function only over the belief points inB.

The value function can be updated for a single belief point
b only, generating anα-vector that maximizes the value
of b. The computation of the next value ofb — Vn+1(b)
out of the currentVn (Equation 2) is known as abackup
step. The backup step can be implemented efficiently
(Zhang & Zhang 2001; Pineau, Gordon, & Thrun 2003;
Spaan & Vlassis 2005) by:

backup(b) = argmaxgb
a:a∈A b · gb

a (3)

g
b
a = ra + γ

∑

o

argmaxgα
a,o:α∈V b · gα

a,o (4)

g
α
a,o(s) =

∑

s′

O(a, s
′
, o)tr(s, a, s

′)αi(s′) (5)

We now briefly review the methods we attempt to improve
in this paper. For a better introduction to these algorithms,
we refer the reader to the original papers.

PBVI: The Point Based Value Iteration (PBVI) algorithm
(Pineau, Gordon, & Thrun 2003), begins withB = {b0},
and at each iteration repeatedly updates the value function
using all the points in the currentB:

V
′ = {αb : b ∈ B, αb = backup(b)} (6)

After the value function has converged the belief points set
is expanded with all the most distant immediate successors
of the previous set:

Succ(b)← {b′|∃a,∃o b
′ = τ (b, a, o)} (7)

B
′ ← B ∪ {b∗i : bi ∈ B, b

∗

i = argmaxb′∈Succ(bi)dist(B, b
′)}(8)

Perseus: Spaan and Vlassis (2005) suggest to explore the
world using a random walk from the initial belief stateb0.
The points that were observed during the random walk com-
pose the setB of belief points. The Perseus algorithm then
iterates over these points in a random order. During each
iteration backups are executed over points whose value has
not yet improved in the current iteration.

PVI: The Bellman error is the improvement that will be
gained from an update to belief stateb:

e(b) = maxa[ra · b+γ
∑

o

pr(o|b, a)V (τ (b, a, o))]−V (b) (9)

In the context of MDPs, updating states by order of decreas-
ing Bellman error can speed up the convergence of value it-
eration. The Prioritized Value Iteration (PVI - Shani et al.
(2006)) is an adaptation of this technique to POMDPs.

Like Perseus, PVI receives as input a predefined set of be-
lief pointsB and computes an optimal value function over
these points. PVI always execute a backup over the belief
point with the maximal Bellman error. As opposed to the
MDP case, after each vector was added to the value func-
tion, the Bellman error must be updated for all belief points
in B. While PVI computes a small number of backups com-
pared to other point based algorithms, the full update of the
Bellman error is time consuming and reduces the efficiency
of the algorithm considerably.

HSVI: The Heuristic Search Value Iteration (HSVI) is a
point based and trial based algorithm. HSVI (Smith & Sim-
mons 2005) maintains both an upper bound (V̄) and lower

44

bound (V
¯
) over the value function. It traverses the belief

space following the upper bound heuristic, selecting suc-
cessor belief points where the gap̄V (b) − V

¯
(b) should be

reduced. It then executes updates over the observed belief
points on the explored path in reverse order. Smith and Sim-
mons show that within a finite number of updates, all reach-
able belief points will be finished. A belief state is finished
once the gap between the bounds has been sufficiently re-
duced.

FSVI: Forward Search Value Iteration (FSVI) simulates
an interaction of the agent with the environment, maintain-
ing both the POMDP belief stateb and the underlying MDP
states — the true state of the environment within the simu-
lation (Shani, Brafman, & Shimony 2007). While at policy
execution time the agent is unaware ofs, in simulation we
may uses to guide exploration.

FSVI uses the MDP state to decide which action to apply
next based on the optimal value function for the underlying
MDP, thus providing a path in belief space from the initial
belief stateb0 to the goal (or towards rewards). The trial is
ended when the state of the underlying MDP is a goal state,
or after the number of steps exceeds a predefined threshold.

Parallelizing Point-Based Algorithms
When suggesting parallel implementations there are a num-
ber of important issues that must be considered:

Algorithm semantics — a parallel execution may cause
an algorithm to behave differently than if it was executed
over a single thread. When the semantics change it is possi-
ble that algorithm features, such as convergence guarantees,
no longer hold. It is therefore important to explicitly identify
changes that do not maintain the algorithm semantics.

Synchronized vs. A-Synchronized — in a synchronized
setting threads must synchronize their computation process
advancements. As such, in many cases some threads must
wait for the results of other threads. A-synchronized appli-
cations allow each thread to advance on its own, thus avoid-
ing wasted wait time. However, this is usually achieved by
somewhat changing the semantics of the algorithm.

Synchronized access — even though threads may not be
synchronized, access to shared memory may still need to be
synchronized, in order to avoid the corruption of the data
sets. Synchronized access may be implemented by locks,
yet this may cause considerable slowdown.

Multi-thread overhead — when using multiple threads
there is an overhead in starting and stopping the threads.
This overhead can be reduced by using design patterns such
as a Thread Pool (e.g. (Gomaa & Menascé 2000)). Still, in
many cases it is inefficient to split too short computations
into multiple threads and a careful balancing is required be-
tween the number of threads and the length of the computa-
tion task assigned to each thread.

Synchronized Distributed Computations

Point-Based Backups: The best scenario in parallel com-
putation is when computations can be executed in parallel
without affecting the result of the process. The most sim-
ple example of this scenario are operations such asΣ or

max where the various components can be computed inde-
pendently, and only afterwards the aggregated result is pro-
cessed. The aggregation operator requires that all values will
be present and therefore requires that all threads terminate.
Thus, a synchronization step is needed in all these operations
in order not to change the semantics of the algorithm.

The point-based backup (Equations 3 to 5) offers such an
opportunity. These equations contain bothΣ andmax oper-
ations that can be parallelized. In the most extreme case we
could use|A||O||V ||S| threads to compute the vector entries
of all thegα

a,o components. However, as too short tasks are
not desirable, our less extreme approach uses|A| threads,
where each thread is computing a singlegb

a component.
When HSVI computes the next belief state in the traver-

sal, and when PBVI expands the belief space, the computa-
tion of all the successors of a belief state is required. In this
case, it is possible to apply parallel computing to compute
each successor belief state in a different thread.

PBVI: Moving to a higher level of concurrency, we will
now look at how PBVI can be parallelized. The two main
procedures of PBVI — expanding the belief subspaceB
(Equation 8) and improving the value function (Equation 6)
can both be executed in parallel. It is possible to run the
backup process over each belief state independently of the
other belief states. Here, the arbitrary order of backup com-
putations becomes highly useful. We cannot guarantee the
order of computations of the various threads, but PBVI does
not impose any order.

The belief expansion step of PBVI is extremely time con-
suming, due to the need to compute distances between many
pairs of points. It is possible to compute for each belief state
in B its most distant successor regardless of the successors
of other points. Also, belief expansion does not depend on
the value function. This gives us another opportunity for
parallelizing; We can compute the expansion of the belief
space at the same time as the value function update.

These changes require some synchronization steps in or-
der not to modify the semantics of PBVI. After each belief
space expansion we must run the value function update until
convergence. After splitting the belief point backups to dif-
ferent threads, we need to wait for all threads to finish before
starting another value function update.

PVI: A second algorithm that offers an opportunity for
straight forward concurrency is PVI. In PVI much of the
computation difficulty comes from the need to update all the
Bellman errors after each newα-vector was added. Shani et
al. (2006) suggest to resolve this by updating the Bellman
error only over a sample of the points. However, by splitting
the error updates into several threads, an exact computation
can be done rapidly. Again, there is a need to wait until
all threads have terminated, find the point with the maximal
error, and execute a backup. Then, a new Bellman error up-
date can be started. Therefore, this version is once again
synchronized.

Combining Point-Based Algorithms
Up until now we have discussed how specific point-based
algorithms can be enhanced by using a multi-core archi-
tecture. We can also run several different algorithms over

45

the same domain in parallel. Assuming that different algo-
rithms have different strengths, the combined result of all
algorithms might be better than a single algorithm.

For example, Shani et al. (2007) explain how their FSVI
algorithm cannot tackle information gathering tasks. How-
ever, in many interesting domains, FSVI rapidly computes
high quality policies. It is likely that by combining FSVI
with other algorithms, such as HSVI that are guaranteed to
find an optimal policy, will result in an algorithm that is both
fast and provably optimal.

We suggest that the algorithms will share the same value
function. This approach is superior to executing all algo-
rithms using different value functions and then joining the
value functions together, as goodα vectors discovered by
one algorithm can be used by all others.

However, such an approach will modify the semantics of
the algorithms. For example, it is possible that while PVI
updates the Bellman error, new vectors will be inserted mak-
ing the Bellman error inaccurate again. As a result, PVI is no
longer guaranteed to always execute the best local backup.

Pruning Dominated Vectors
A problem that may rise when having multiple algorithms
addingα vectors to the value function is that the size of
the value function may grow too much. Pruning vectors is
not easy. While only the vectors that are part of the up-
per envelope are important, discovering which vectors are
dominated is difficult. In the Incremental Pruning algorithm
(Cassandra, Littman, & Zhang 1997) linear programs are
used to find a witness belief state for which anα vector is
optimal, thus proving that the vector is a part of the upper
envelope. However, linear programs degrade performance
considerably.

We offer a simpler approach to finding witnesses forα
vectors. It is possible to run simulations of executions of the
current value function over the environment. Through the
simulation we record for eachα vector the number of times
it was used. After the simulation is over, we can prune out
vectors that were never used, since no belief state within the
simulation proved to be a witness for thisα vector.

The simulations must execute a reasonable number of
trials before pruning out vectors, so that different possible
traversals through the belief space following the current pol-
icy will be selected. Given a sufficient number of iterations
the probability that an important vector will be removed is
low, but even if such an event has occurred, the vector can
be recomputed again. Simulations also offer us another op-
portunity for parallelizing, since trials are independent and
can be carried out by different threads. Thus, a large number
of trials can be rapidly done, enhancing the probability that
all important vectors were observed.

This method also ensures that we consider only reachable
witnesses, and might therefore prune out vectors for which
the linear program might have found an unreachable wit-
ness. While normally running these simulations will cause
a point-based algorithm to slow down considerably, running
this procedure in a different thread can be beneficial.

After the simulations are done we need to filter out vec-
tors that were dominated from the value function. As

the value function is shared between different threads, we
should make this filtering carefully. We suggest the follow-
ing method — our value function has aread pointer and a
write pointer. Usually both point to the same vector set. New
vectors are always written using the write pointers and algo-
rithms use the read pointer to find optimal vectors. Once
the simulations are done, the pruning thread initializes the
write pointer to a new empty set. Now, the thread writes to
this new set all vectors that were observed during the simu-
lations. If other algorithms attempt to add new vectors, they
also do so into this new set, through the write pointer. Once
all vectors have been added, the read pointer is also changed
to point to the new set. This way we do not have to block
algorithms that are trying to read or write vectors during the
filter process, but it is possible that some requests will not
get the best possible vectors.

Empirical Evaluations
We ran several sets of tests in order to provide evidences to
the various multi-threaded enhancements we suggest. Our
tests were run on relatively small domains than the ones cur-
rently used in literature, so that we can run multiple execu-
tions rapidly. The limited scope of this paper also does not
allow us to evaluate all the suggested modifications, and we
leave additional evaluations to future work.

To implement our approach we used the Thread Pool de-
sign pattern (see, e.g. (Gomaa & Menascé 2000)), to re-
duce the cost of creating threads. Each thread executes tasks
taken from a task queue. Threads can write more tasks to the
queue and wait for the tasks to finish. All our experiments
were done on an dual quad-core machine (8 processors) with
2.66GHz processors. We use Java and the JVM is limited to
1.5GB of RAM.

Results
Point-Based Backups: We begin by evaluating the advan-
tages of parallelizing the backup process itself. We assign to
each thread the computation of a singlegb

a operation (Equa-
tion 4), requiring|A| threads only at a time. Farther splitting
the tasks so that eachgα

a,o (Equation 5) is computed on a
different thread reduced the performance.

We experimented over four domains — Hallway, Hall-
way2 (Littman, Cassandra, & Kaelbling 1995), TagAvoid
(Pineau, Gordon, & Thrun 2003) and RockSample (Smith
& Simmons 2005). We compare PBVI using different num-
bers of threads. PBVI was executed for10 of iterations and
we measure the average time (milliseconds) of backup ex-
ecutions. We executed each experiment5 times and report
in Table 1 the average result. Standard deviations were ex-
tremely small — less than0.01. The number of backups
that were used changes between domains but is always more
than5000 during each execution.

The results for TagAvoid are rather surprising — splitting
the backup process into tasks has helped very little. How-
ever this because the agent location is completely observ-
able. Thus, the number of successors of a belief state is
very small. This greatly reduces the computation time of the
backup process and therefore makes any farther splitting of
the operation useless.

46

Threads 1 2 4 8
Hallway 34 31 27 14
Hallway2 190 154 93 74
TagAvoid 33 38 32 20
RockSample5,7 108 59 33 17

Table 1: Comparing multi thread execution time (millisec-
onds) of the backup operation.

PBVI PVI
Domain S M S M
Hallway 195 76 416 66
Hallway2 592 324 693 110
TagAvoid 447 83 135 26
RockSample5,7 672 162 2069 307

Table 2: Comparing single (S) and multi (M) thread execu-
tion time (seconds) of PBVI and PVI.

The results are most pronounced for the RockSample do-
main. This is both because this is the largest domain, and
hence, backups take relatively long to complete. Also, this
domain has the largest amount of actions, and therefore all
threads can be used simultaneously. In fact, in this domain
it appears that adding more threads beyond the8 we used
would have resulted in increased performance.

PBVI: The PBVI algorithm can be parallelized by split-
ting the belief states into threads both when computing
point-based backups and when expanding the belief space.
We ran PBVI for10 of iterations over the4 domains, and
report average time over5 executions. Table 2 (middle col-
umn) compares single (S) and multi (M) thread execution
time (seconds) for the various domains.

As expected, computing the value function update and
the belief set expansion over different points in parallel is
useful. In the first few iterations the advantage of multiple
threads is less noticeable, due to the small number of op-
erations in each set. As the algorithm advances the effect
of having multiple threads becomes more pronounced, since
much more work can be done in each thread independently.

PVI: In PVI the computation of the Bellman error can
be divided into different threads for different belief points.
PVI was executed over a belief set of1000 points for150
iterations. Table 2 (right column) compares single (S) and
multi (M) thread execution time (seconds) for the various
domains.

The results here are encouraging. PVI speedup is more
noticeable than PBVI. This is mainly because in PVI we are
computing a value function over1000 points, while PBVI
during most of the iterations had much less points. There-
fore, the number of points assigned to a thread is much larger
for PVI. This demonstrates again the need to properly bal-
ance the amount of work a thread is executing, and not to
split the computation too much.

Vector Pruning: We ran the PBVI, PVI, HSVI and FSVI
with and without pruning, stopping the execution every5
seconds, computing ADR (average discounted reward) over
10, 000 trials and outputting the number of vector in the cur-
rent value function (|V |). The pruning thread executed500

trials, pruned unobserved vectors and started over. Figures
1 and 2 present our results. We show here the ADR and
the |V | ratio with and without pruning. The ratio is com-
puted by taking the value without pruning and dividing by
the equivalent value with pruning. In the ADR case a ratio
below1 means that pruning improves the quality of the value
function. In theV case a higher ratio means that more vec-
tors were pruned. Pruning might improve the value function
since pruning vectors results in faster backup operations.
Therefore, an algorithm manages to execute more iterations
in the given time frame and therefore creates a better policy
within the given time frame.

1

1.05

1.1

A
D

R
 R

at
io

FSVI

HSVI

0.9

0.95

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

A
D

R
 R

at
io

Time (seconds)

HSVI

PBVI

PVI

1.5

2

2.5

3

3.5

4

|V
|

R
at

io

FSVI

HSVI

0

0.5

1

1.5

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

|V
|

R
at

io

Time (seconds)

HSVI

PBVI

PVI

Figure 1: Vector pruning over the Hallway domain.

Over the Hallway domain, vector pruning reduces the
value function in most cases to half its original size. This
means that for about half of the vectors the pruning method
could not find a reachable witness belief point. When look-
ing at the ADR ratio in the Hallway domain we see that the
resulting policy quality is very similar. The method that dis-
plays the largest deviation is HSVI which was slow to con-
verge and therefore its value function still fluctuated within
the checked time frame.

The results are even more encouraging over the Tag Avoid
domain. In this domain pruning not only considerably re-
duces the number of vectors, but also provides substantial
improvement in ADR. This is because when pruning was
used, backup operations become faster and therefore the al-
gorithm has executed more iterations within the time frame.

Combining Algorithms Table 3 shows the results of com-
bining various algorithms together on several benchmarks.
We stopped the algorithms every2 seconds and computed
the ADR using1000 trials using the current policy.

47

1

1.05

1.1

A
D

R
 R

at
io

FSVI

HSVI

0.9

0.95

5 10 15 20 25 30 35 40 45 50

A
D

R
 R

at
io

Time (seconds)

HSVI

PBVI

PVI

3

4

5

6

7

|V
|

R
at

io

FSVI

HSVI

0

1

2

3

5 10 15 20 25 30 35 40 45 50

|V
|

R
at

io

Time (seconds)

HSVI

PBVI

PVI

Figure 2: Vector pruning over the Tag Avoid domain.

Since our machine has only8 cores, we could not exploit
the advantages that were presented in the previous experi-
ments, such as using using multiple threads to compute a
backup. Therefore, given an unlimited amount of cores, the
results would have been much more impressive. We also run
a single thread dedicated to pruning dominated algorithms.

When multiple algorithms are executed together we ex-
pect two benefits: the convergence should be faster and
the policy should be superior. To evaluate the convergence
speed we choose a fixed ADR (reported in previous pa-
pers) and report the time it took to reach it. To evaluate the
best policy, we are also presenting the best ADR that was
achieved and the time needed to achieve it.

The results here are interesting. It is clear that in all do-
mains an algorithm can be improved by combining it with
another algorithm. However, not every combination of al-
gorithms is superior. This is partially because the more al-
gorithms you execute in parallel the more interaction and
synchronization effort is needed.

Conclusions
This paper discusses various opportunities for point-based
value iteration algorithms for solving POMDPs, in view of
the expected increase in the number of processors on a sin-
gle computer. We have explained how the basic operations
of a point-based algorithm, such as the point-based backup
can be implemented using threads. We also explained how
algorithms such as PBVI and PVI can be enhanced in a multi
thread system without changing the algorithm semantics.

We show how to combine different algorithms together
producing a hybrid algorithm that converges faster. The con-
current execution also allows us to use a new vector pruning

TagAvoid RockSample5,7
Methods Time Max Time Time Max Time

to -6.5 ADR Time to 22 ADR Time
PBVI (P) - -6.7 36 - 18.0 40
PVI (V) 22 -6.1 38 - 18.6 10
HSVI (H) 18 -6.3 40 16 24.2 32
FSVI (F) 22 -6.1 38 12 24.1 36
P;V 14 -5.9 40 18 23.3 40
P;H 16 -6.1 40 14 23.3 26
P;F 16 -6.1 38 8 22.5 32
V;H 12 -6.1 40 6 23.4 14
V;F 16 -6.0 40 4 22.7 8
H;F 20 -6.1 40 4 23.7 30
P;V;H 14 -6.1 40 20 23.8 28
P;V;F 18 -5.8 40 12 24.2 40
P;H;F 18 -6.0 40 20 23.4 26
V;H;F 8 -5.7 30 8 23.8 14
P;V;H;F 26 -6.0 40 10 22.9 22

Table 3: Evaluating combinations of algorithms. For each
domain and algorithm we report the time (seconds) it took
to reach a predefined ADR, the best ADR achieved by the
method, and the time it took to reach the best ADR.

technique, that prunes vectors that do not have a reachable
belief witness, and are therefore never used in practice.

We provide experiments over several benchmarks as a
proof of concept to our various modifications, and discuss
some potential extensions of our research.

References
Cassandra, A. R.; Littman, M. L.; and Zhang, N. 1997. Incremen-
tal pruning: A simple, fast, exact method for partially observable
markov decision processes. InUAI’97, 54–61.

Gomaa, H., and Menascé, D. A. 2000. Design and performance
modeling of component interconnection patterns for distributed
software architectures. InWOSP ’00: Proceedings of the 2nd
international workshop on Software and performance.

Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995.
Learning policies for partially observable environments: Scaling
up. In ICML’95.

Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. InIJCAI.

Shani, G.; Brafman, R.; and Shimony, S. 2006. Prioritizing point-
based pomdp solvers. InECML.

Shani, G.; Brafman, R.; and Shimony, S. 2007. Forward search
value iteration for pomdps. InIJCAI-07.

Smallwood, R., and Sondik, E. 1973. The optimal control of
partially observable processes over a finite horizon.OR 21.

Smith, T., and Simmons, R. 2005. Point-based pomdp algorithms:
Improved analysis and implementation. InUAI 2005.

Spaan, M. T. J., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs.JAIR 24:195–220.

Sutter, H., and Larus, J. 2005. Software and the concurrency
revolution.Queue 3(7).

Zhang, N., and Zhang, W. 2001. Speeding up the convergence of
value iteration in partially observable markov decision processes.
JAIR 14:29–51.

48

