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Abstract

This paper studies active perception in an urban sce-
nario, focusing on the cooperation between a set of
surveillance cameras and mobile robots. The fixed
cameras provide a global but incomplete and possi-
bly inaccurate view of the environment, which can be
enhanced by a robot’s local sensors. Active percep-
tion means that the robot considers the effects of its
actions on its sensory capabilities. In particular, it
tries to improve its sensors’ performance, for instance
by pointing a pan-and-tilt camera. In this paper, we
present a decision-theoretic approach to cooperative ac-
tive perception, by formalizing the problem as a Par-
tially Observable Markov Decision Process (POMDP).
POMDPs provide an elegant way to model the interac-
tion of an active sensor with its environment. The goal
of this paper is to provide first steps towards an inte-
grated decision-theoretic approach of cooperative active
perception.

Introduction
Robots are leaving the research labs and operating more of-
ten in human-inhabited environments, such as urban pedes-
trian areas. The scenario we consider in our work is a group
of robots assisting humans in a car-free area (Sanfeliu and
Andrade-Cetto 2006). The primary task of the robots is to
identify persons in need of assistance, and subsequently help
them, for instance by guiding to a desired location. Addi-
tional tasks could involve transportation of goods as well as
performing monitoring and security duties. The pedestrian
area in which the robots operate is equipped with surveil-
lance cameras providing the robot with more information.
Implementing such a system requires addressing many sci-
entific and technological challenges such as cooperative lo-
calization and navigation, map building, human-robot inter-
action, and wireless networking, to name but a few (Sanfe-
liu and Andrade-Cetto 2006). In this paper, we focus on one
particular problem, namelycooperative active perception.

In our context, cooperative perception refers to the fusion
of sensory information between the fixed surveillance cam-
eras and each robot, with as goal maximizing the amount
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and quality of perceptual information available to the sys-
tem. This information can be used by a robot to choose its
actions, as well as providing a global picture for monitor-
ing the system. In general, incorporating information from
spatially distributed sensors will raise the level of situational
awareness.

Active perception means that an agent considers the ef-
fects of its actions on its sensors, and in particular it tries
to improve their performance. This can mean selecting sen-
sory actions, for instance pointing a pan-and-tilt camera or
choosing to execute an expensive vision algorithm; or to in-
fluence a robot’s path planning, e.g., given two routes to get
to a desired location, take the more informative one. Perfor-
mance can be measured by trading off the costs of executing
actions with how much we improve the quality of the infor-
mation available to the system, and should be derived from
the system’s task. Combining the two concepts, coopera-
tive active perception is the problem of active perception in-
volving multiple sensors and multiple cooperating decision
makers.

In this paper, we present a decision-theoretic approach
to cooperative active perception. In particular, we pro-
pose to use Partially Observable Markov Decision Processes
(POMDPs) (Kaelbling, Littman, and Cassandra 1998) as a
framework for active cooperative perception. POMDPs pro-
vide an elegant way to model the interaction of an active
sensor with its environment. Based on prior knowledge of
the sensor’s model and the environment dynamics, we can
compute policies that tell the active sensor how to act, based
on the observations it receives. As we are essentially dealing
with multiple decision makers, it could also be beneficial to
consider modeling (a subset of) sensors as a decentralized
POMDP (Dec-POMDP) (Bernstein et al. 2002).

In a cooperative perception framework, an important task
encoded by the (Dec-)POMDP could be to reduce the un-
certainty in its view of the environment as much as possi-
ble. Entropy can be used as a suitable measure for uncer-
tainty. However, using a POMDP solution, we can tackle
more elaborate scenarios, for instance in which we priori-
tize the tracking of certain objects. In particular, POMDPs
inherently trade off task completion and information gath-
ering. Sensory actions might also include other sensors, as
we can reason explicitly about communicating with other
sensors. For instance, a fixed sensor could ask a mobile sen-
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sor to examine a certain location. Regardless of whether we
consider a Dec-POMDP or single-agent POMDPs, we will
need to tackle two issues: modeling and solving. In this pa-
per we address these issues, to provide first steps towards an
integrated decision-theoretic approach of cooperative active
perception.

The rest of this paper is organized as follows. First we will
start by providing an overview of related literature, consider-
ing real-world applications of POMDPs as well as decision-
theoretic approaches to active perception. Next we formally
introduce the POMDP model, and describe how it can be
applied to an active perception task. We continue by detail-
ing the application scenario we are considering, followed by
some preliminary experiments. Finally, we discuss our work
and avenues of future research.

Related work
We can identify two bodies of literature directly related to
our study. First are applications of planning under uncer-
tainty methodology to real-world systems. Second, we will
discuss decision-theoretic approaches to active perception.

Techniques for single-agent decision-theoretic planning
under uncertainty such as POMDPs are being applied more
and more to robotics (Vlassis, Gordon, and Pineau 2006).
Over the years, there have been numerous examples demon-
strating how POMDPs can be used for robot localization
and navigation, see for example work by Simmons and
Koenig; Roy, Gordon, and Thrun (1995; 2005). Emery-
Montemerlo et al. (2005) demonstrated the viability of ap-
proximate Dec-POMDP techniques for controlling a small
group of robots. A relevant body of work exists on sys-
tems interacting with humans driven by POMDP-based con-
trollers. Fern et al. (2007) propose a POMDP model for
providing assistance to users, in which the goal of the user
is a hidden variable which needs to be inferred. Boger et
al. (2005) apply POMDPs in a real-world task for assisting
people with dementia, in which users receive verbal assis-
tance while washing their hands. POMDP models have also
been applied to high-level control of a robotic assistant de-
signed to interact with elderly people (Pineau et al. 2003;
Roy, Gordon, and Thrun 2003).

There have also been applications of decision-theoretic
techniques to active sensing, which is highly related to the
problem we are tackling. Although not explicitly mod-
eled as POMDPs, methods for active robot localization us-
ing information gain have been proposed, see e.g., (Stone
et al. 2006). Darrell and Pentland (1996) propose a vi-
sual gesture recognition system, in which a POMDP con-
troller steers the focus of the camera to regions in the image
which are most likely to improve recognition performance.
Along similar lines, Vogel and Murphy (2007) locate ob-
jects in large images of office environments, while exploit-
ing spatial relationships between the objects. Guo (2003)
describes a POMDP framework for active sensing in which
the actions are using a particular sensor (with an associated
cost) or, when enough information has been gathered, out-
putting a particular classification label. Ji and Carin (2007)
consider a similar setting, but couple it with the training of

HMM classifiers. Also related to our scenario are decision-
theoretic approaches to multi-modal sensor scheduling (Ji,
Parr, and Carin 2007). In a multiagent setting, Varakantham
et al. (2007) consider a distributed sensor network in which
each sensor has to choose its gaze direction, in order to track
targets.

POMDPs for active perception
We will discuss POMDP models and solution methods,
briefly introducing some general background but focusing
on their application to active perception.

Models
We will briefly introduce the POMDP model, a more elabo-
rate description is provided by Kaelbling, Littman, and Cas-
sandra (1998), for instance. A POMDP models the inter-
action of an agent with a stochastic and partially observable
environment, and it provides a rich mathematical framework
for acting optimally in such environments.

A POMDP assumes that at any time step the environment
is in a states ∈ S, the agent takes an actiona ∈ A and
receives a rewardr(s, a) from the environment as a result of
this action, while the environment switches to a new states′

according to a known stochastic transition modelp(s′|s, a).
The agent’s task is defined by the reward it receives at each
time step and its goal is to maximize its long-term reward.
After transitioning to a new state, the agent perceives an ob-
servationo ∈ O, that may be conditional on its action, which
provides information about the states′ through a known
stochastic observation modelp(o|s′, a).

Given the transition and observation model the POMDP
can be transformed to a belief-state MDP: the agent summa-
rizes all information about its past using a belief vectorb(s).
The beliefb is a probability distribution overS, which forms
a Markovian signal for the planning task. The initial state of
the system is drawn from the initial beliefb0, which is typi-
cally part of a POMDP’s problem definition. Every time the
agent takes an actiona and observeso, its belief is updated
by Bayes’ rule; for the discrete case:

bo
a(s′) =

p(o|s′, a)

p(o|a, b)

∑

s∈S

p(s′|s, a)b(s), (1)

wherep(o|a, b) =
∑

s′∈S p(o|s′, a)
∑

s∈S p(s′|s, a)b(s) is
a normalizing constant. For the general case, the sums be-
come integrals and we will need to choose a model repre-
sentation from a family of functions for which integration is
defined. A suitable representation can be to represent mod-
els as (mixtures of) Gaussians, for which POMDP solution
techniques have been developed (Porta et al. 2006). The
choice of belief representation is rather orthogonal to the
POMDP techniques used in this paper, and we consider the
discrete case for simplicity.

When multiple independent decision makers are present
in the environment, the problem can be modeled as a de-
centralized POMDP (Dec-POMDP) (Bernstein et al. 2002;
Seuken and Zilberstein 2008; Oliehoek, Spaan, and Vlas-
sis 2008). We will return to this point in the discussion,
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assuming for the moment that only one decision maker ex-
ists, namely a robot. Note that the robot could take into
account actions that involve other entities, for instance in-
struct a surveillance camera to run a particular vision algo-
rithm. Another requirement for treating (parts of) the system
is a POMDP is fast and reliable communication, as cameras
and robots need to share local observations. Cameras are
expected to do local processing, and sharing the resulting
observations will require only low bandwidth.

Beliefs for active perception

In general, a belief update scheme is the backbone of many
robot localization techniques, in which case the state is the
robot’s location (and heading). In our case however, the state
will also be used to describe location of persons or events in
the environment, as well as some of their properties. From
each sensor we will need to extract a probabilistic sensor
model to be plugged in the observation model. Further-
more, we need to construct the transition model based on
the robot’s available actions. Both models can either be de-
fined by hand, or can be obtained using machine learning
techniques, see for instance work by Stone et al. (2006).

From the perspective of active perception, as the belief
is a probability distribution over the state space, it is natu-
ral to define the quality of information based on it. We can
use the belief to define a measurement of the expected in-
formation gain when executing an action. For instance, a
common technique is to compare the entropy of a beliefbt

at time stept with the entropy of future beliefs, for instance
att+1. If the entropy of a future beliefbt+1 is lower thanbt,
the robot has less uncertainty regarding the true state of the
environment. Assuming that the observation models are cor-
rect (unbiased etc), this would mean we gained information.
Given the models, we can predict the set of beliefs{bt+1}
we could have att + 1, conditional on the robot’s actiona.
Eachbt+1 has a probability of occurrence which is equal to
the probabilityp(o|a, bt) of receiving the observationo that
generated it.

If we adjust the POMDP model to allow for reward mod-
els that define rewards based on beliefs instead of states, i.e.,
r(b, a), we can define a reward model based on the belief
entropy. A natural interpretation would be to give higher
reward to low-entropy beliefs. This way the robot can be
guided to choose actions that lower the entropy of its belief,
traded off by the cost of executing an action. However, a re-
ward model defined over beliefs does significantly raise the
complexity of planning, as the value function will no longer
be piecewise linear and convex. Such a compact represen-
tation is being exploited by many optimal and approximate
POMDP solvers.

Solution methods

In POMDP literature, a plan is called a policyπ(b) and maps
beliefs to actions. A policyπ can be characterized by a
value functionV π which is defined as the expected future
discounted rewardV π(b) the agent can gather by following

π starting from beliefb:

V π(b) = Eπ

[

h
∑

t=0

γtr(bt, π(bt))
∣

∣

∣
b0 = b

]

, (2)

wherer(bt, π(bt)) =
∑

s∈S r(s, π(bt))bt(s) following the
POMDP model as defined before,h is the planning horizon,
andγ is a discount rate,0 ≤ γ ≤ 1.

As solving POMDPs optimally is very hard, we will
have to consider approximate algorithms. Recent years
have seen much progress in approximate POMDP solving
which we can leverage, see for instance (Hauskrecht 2000;
Spaan and Vlassis 2005) and references therein. Further-
more, when a policy has been computed off-line, executing it
on-line does not require much computational requirements.
On the other hand, such policies are computed for a particu-
lar POMDP model, while in our case we are dealing with a
very dynamic environment. In this case, it might not be fea-
sible to construct one POMDP model that serves for all sit-
uations, but a better solution might be to construct POMDP
models on-the-fly. Such a model would for instance only
consider sensors physically close to the robot.

Solving POMDP models approximately off-line can be
implemented by computing a value function over the be-
lief space, which defines a policy. Executing such a policy
is computationally cheap, but computing the value function
can be expensive (depending on the solution method and
the level of approximation used). On the other hand, on-
line POMDP methods such as (Ross and Chaib-draa 2007;
Satia and Lave 1973) construct the POMDP’s belief tree and
do an on-line search (e.g., branch and bound) for the best ac-
tion to execute, given the robot’s current belief. In this case
the off-line cost might be low, but every time we need to
choose an action we have to search the belief tree. Hence,
an interesting research issue is whether to employ off-line or
on-line methods, or a combination of both.

Application scenario
We will now detail the types of cooperative active percep-
tion scenarios we are are addressing. Figure 1 shows a map
of a part of a university campus, to be used in the URUS
project (Sanfeliu and Andrade-Cetto 2006). The project’s
focus is on designing a network of robots that interact with
humans in urban areas, and whose tasks include providing
assistance, transportation of goods, and surveillance. All
sensors and robots are connected using a wired or wireless
network. The environment is car-free, and will be equipped
with surveillance cameras, potential locations of which are
indicated by arrow heads in Figure 1. Several types of robots
with different sensor suites will be employed, but as we are
dealing with the problem on a high level, we will not go
into details. Such a scenario provides many opportunities
and challenges for POMDP-based active perception, as we
discuss next.

We will focus on the assistance and surveillance tasks of
the robots. More specific, assistance means guiding a hu-
man to a desired location, as indicated by the subject.1 The

1How exactly the human subject interacts with the robot, for in-
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Figure 1: Map of the application scenario, a part of the UPC
campus, Barcelona, Spain. Arrow heads indicate potential
camera locations. There are 6 buildings grouped around a
central square with several trees. Because of the many ob-
stacles (buildings, trees, etc), full high-resolution coverage
by surveillance cameras is hard to achieve.

surveillance task can be formulated as verifying the exis-
tence of certain events of interest. Events can include peo-
ple waving, emergencies, persons lying on the floor, fires,
and can have different priorities. The surveillance cameras
will run a set of event detection algorithms, but will have
a limited view and accuracy. In particular, the environment
might contain blind spots that are not observed by any fixed
camera. Furthermore, other areas might be observed by a
camera, but not with sufficient resolution for accurate event
detection. One of the fixed (camera) sensors might notice a
possible event, and the robot could decide to investigate. Or,
the robot could instruct the camera to run a computationally
expensive detection algorithm to improve perception.

When a robot is navigating through the environment,
while executing a certain task such as guiding a human sub-
ject, it could influence its trajectory to improve perception.
The goal could be to improve the accuracy of its localiza-
tion, for instance by guiding it along paths in which its sen-
sors are likely to perform well. Also, a robot’s path could
be influenced to improve the perception of certain features
of the environment, for instance blind spots not covered by

stance using a touch screen or a voice interface, is beyond the scope
of this paper. Note that such human-robot interaction problems
have also been tackled in a POMDP framework (Pineau et al. 2003;
Roy, Gordon, and Thrun 2003).

A B

C
D

Figure 2: A sensor network with 4 sensors and 4 possible
robot locations: A, B, C, and D. The dashed lines indicate
each sensor’s field of view, and the graph connecting the four
locations indicates the robot’s movement options.

fixed cameras. An important issue here will be to trade off
accomplishing the robot’s task (reaching a certain location)
with the expected information gain.

Preliminary experiments
We performed some preliminary experiments in a simpli-
fied scenario, which considers the event detection problem
modeled on a high level. We assume a setup consisting of a
network ofn sensors and a single robot. Each sensor has
a non-overlapping field of view (FOV) and the robot can
move from one sensor’s FOV to another one. Graphs can be
used to represent topological maps with potentially stochas-
tic transitions. A graph illustrating the possible transitions
for the case ofn = 4 sensors is depicted in Figure 2. In
the more general case, we would expect the robot to navi-
gate much larger graphs, in which not all nodes lie inside a
camera’s FOV.

Each sensor is considered to be a camera running an ad-
vanced feature-detection algorithm. A sensor can detect per-
sons and fires in its FOV, but only with a limited accuracy.
If someone is present, the sensor will detect him with prob-
ability pp = 0.5, and flames are detected with probability
pf = 0.8. We are interested in detecting whether in any of
the FOVs a person or a fire is present. The robot receives the
combined observation vector of the sensor network, based
on which it selects its next action. The robot’s task is to re-
port whether fires or persons are present at a certain location.
Basically, this assumes that when a robot is at a location, it
can detect events with full certainty. Reporting fires has a
higher priority, and consequently correctly reporting a fire
receives a higher reward (r= 100) than reporting a per-
son (r = 10). However, reporting an event which is not
present is penalized, as resources are wasted. Finally, the
prior probability of a firepF = 0.01 starting at a location
is much lower than the probability of a person being present
(pP = 0.2).

We created a POMDP model for this task which has 324
states, as forn = 4, n · 3n = 324. There are three states
and observations per sensor: nothing, person, or fire present.
The problem has 6 actions (go to A, B, C, or D, and report
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person or fire), and3n = 81 observations. Note that the
robot can only move along the graph (i.e., executing “go to
A” from location C has no effect). Solving such a model
exactly is infeasible, and we performed some preliminary
experiments with two approximate off-line methods. In par-
ticular, we applied the well-knownQMDP method (Littman,
Cassandra, and Kaelbling 1995), as well as PERSEUS(Spaan
and Vlassis 2005), a point-based POMDP method. Both
techniques compute policies that successfully report persons
where they appear. However, when a fire appears, they
switch to that location, and report it, as reporting fires has
a higher priority. The PERSEUSsolution achieves a slightly
higher payoff however (57.74 vs.57.36, γ = 0.95, h = 10),
as is to be expected, as it computes better approximations
thanQMDP, albeit at a higher computational cost. Note that
in a more complicated scenario, in particular in which the
robot’s sensors are modeled, we would expectQMDP to per-
form much worse, as it will not take actions for the purpose
of gaining information.

An advantage of point-based methods is that we can influ-
ence their run time by varying the size of the belief set (we
used1000 beliefs in this experiment). As discussed before,
on-line POMDP solution techniques could be beneficial, as
it is likely that a robot will need to create a POMDP model
on the fly. In this case, there might not be enough time to
run more expensive off-line methods. Furthermore, on-line
techniques in general roll out (a part of) the belief tree given
the robot’s belief, which can be beneficial if we want to rea-
son directly about minimizing belief entropy, instead of only
maximizing expected reward.

Discussion and future work
We discussed first steps toward a decision-theoretic ap-
proach to cooperative active perception, in which robots and
sensors cooperate in an urban scenario. We identified rele-
vant issues, both in modeling the problem as well as regard-
ing solution techniques. An advantage of taking a decision-
theoretic approaches using POMDPs is the natural integra-
tion of measuring task performance and situational aware-
ness. By considering a robot as a mobile sensor, we also
need to take into account the delay in receiving information
regarding a possible event, since a robot needs to move to its
location. POMDPs allow for modeling such decisions in an
integrated way.

Furthermore, many approaches to active sensing in litera-
ture focus on minimizing uncertainty per se, without consid-
ering other objectives the robot might have. In particular, in
some cases certain state features might be irrelevant, given
the task definition. For example, if a camera detects a poten-
tial fire, we would like the robot to check out that location
with high priority. Potential human users asking the robot to
guide them would have a lower priority. The POMDP model
allows the designer of the system to trade off information
gathering with other priorities in a principled manner.

The focus in this paper was on a single decision maker,
but essentially we are dealing with multiple decision mak-
ers. Dec-POMDPs form a general framework for represent-
ing cooperative planning under uncertainty problems. How-
ever, as solving a Dec-POMDP in the most general setting

Figure 3: Map of the 6th floor of ISR, Lisbon, Portugal.
Shown are the camera locations and their potential field of
view (which is adjustable).

is intractable, a large research focus is on identifying and
solving restricted but relevant scenarios. Very relevant for
our application is that we can exploit the fact that in many
domains interaction between agents is a local phenomenon
(Oliehoek et al. 2008; Spaan and Melo 2008). Communi-
cation can simplify the problem, and an active area is how
to successfully incorporate the robot’s communication capa-
bilities in Dec-POMDP framework, see for example (Roth,
Simmons, and Veloso 2007). Furthermore, issues with unre-
liable communication have to be considered, as the wireless
communication between robots and sensors might fail.

In future work, we will examine the tradeoff between off-
line and on-line methods, extending the state of the art if
necessary. On-line methods have the benefit of only plan-
ning for actually encountered beliefs, which can be benefi-
cial if we define POMDP models on the fly, in which case
planning for all or a sampled set of beliefs might be wasteful.
On-line methods appear more amendable to reward models
based on belief entropy, as they in general do not employ
any state-based backup scheme as many off-line methods do,
but just search the tree of beliefs, and backup values in tree
nodes. However, reward models based on beliefs instead of
states preclude the use of piecewise linear and convex value
functions, which haven proven very useful for approximate
off-line algorithms.

From an experimental point of view, we intend to further
develop our simulated experiments, by considering far more
complicated scenarios, for instance modeling the robot’s
sensory capabilities better. In general, designing or learn-
ing observation models will be challenging. With respect to
real-world experiments, we plan to start by exploring a more
controlled indoor environment. The three floors of our insti-
tution are being equipped with 16 surveillance cameras each
to be used for research purposes. One floor with camera lo-
cations is depicted in Figure 3. An indoor experiment will be
very valuable to validate and further develop our approach,
before moving to a more challenging outdoor environment.
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