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Abstract

One of the major limitations with many off-the-shelf, inex-
pensive robotics platforms is the lack of a simple way to lo-
calize the robot. This is an even bigger issue for educational
purposes because the cost of a complete solution is usually
an important concern. Many great educational projects utiliz-
ing a robot become infeasible because of this limitation. This
paper attempts to bridge that gap by presenting a method for
performing localization in an unknown environment using a
single, fixed-position, external camera. The camera’s position
does not need to be configured; instead, the localization algo-
rithm will treat image coordinates as features in a topological
map. Furthermore, the work is done with an iRobot Roomba
vacuum cleaner along with a web-cam to keep overall costs
affordable. The low cost of the solution combined with the
lack of a complicated configuration requirement helps make
the Roomba more useful and accessible to robotics and ar-
tificial intelligence education. Results validate the approach
and show a significant improvement over relying solely on
odometry.

Introduction
This paper addresses the problem of localization on small,
inexpensive robotic platforms while keeping the solution
costs low and the setup simplistic. The goal of this work
is to make low-cost robotics more accessible for educational
uses by adding localization capabilities to an otherwise ca-
pable robotics platform. The target is to achieve decimeter
level accuracy in position using an iRobot Roomba vacuum
cleaner robot in an indoor environment. Other researchers
have looked at the Roomba as an educational platform
(Dickinson et al. 2007; Tribelhorn and Dodds 2007). Other
researchers have also looked at the low-cost localization
problem using only odometry (OKane 2006), contact sen-
sors (Erickson, O’Kane, and LaValle 2007; Tribelhorn and
Dodds 2007), fuducials (Dickinson et al. 2007), on-board
cameras (Mecklenburg 2005), and other methods (Barry
2004). This research approaches the problem in a new way
by merging two concepts. The first concept is determining
the relationship between image coordinates from an exter-
nal fixed camera and a robot’s world coordinates (Rawlin-
son, Chakravarty, and Jarvis 2004). The second concept is
using topological maps for localization (Blanco et al. 2006;
Kouzoubov and Austin 2004).

Figure 1: The iRobot Roomba platform with the Sparkfun
RooTooth attached

The problem of having a robot know where it is in the en-
vironment is not isolated to small robotic platforms. Some
researchers have tackled the localization challenge by using
Global Positioning Systems (GPS), LIDAR Range Finders,
arrays of sonar or infrared sensors (Elfes 1987), odometry
through wheel encoders (Borenstein and Feng 1996; OKane
2006), contact sensors (Erickson, O’Kane, and LaValle
2007), cameras (Posner, Schroeter, and Newman 2007;
Stronger and Stone 2007), and geometric beacons (Leonard
and Durrant-Whyte 1991). Each of these approaches can be
applied with and without a known map of the environment,
but in either case, they have limitations. A GPS requires
a fix to a satellite, which is a difficulty in indoor environ-
ments. LIDAR Range Finders are expensive, heavy, and
require significant computational power to process. Sonar
and Infrared Sensors are relatively short-range and prone to
noisy readings that need to be filtered. Odometry tends to
drift over time due to slipping and skidding, something that
cannot be entirely prevented. Contact sensors require di-
rect interaction with the environment which may affect the
world. Cameras require a significant amount of computa-
tional power and have limited usefulness. Geometric bea-
cons require augmenting the environment.

iRobot’s Roomba is a small, low-cost robotic platform
that has the potential for many educational uses (Dickinson
et al. 2007). Out of the box, the Roomba has two Drive Mo-
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tors in a Differential-Drive platform, Vacuum Motors, Brush
Motor, Speaker, Wheel Encoders, Bump Sensors, IR Wall
Sensors, IR Receiver, Cliff Sensors, Dirt-Detection Sensor,
LEDs, Buttons, and several other Battery and Current sen-
sors, all for under 150 US Dollars. Add a bluetooth dongle
(Sparkfun RooTooth) for 100 US Dollars, and all the actua-
tors and sensors become accessible via a bluetooth-equipped
computer. As is, it is a very capable and inexpensive robotic-
platform for education (Tribelhorn and Dodds 2007). How-
ever, one lacking feature is the ability to accurately know
where it is. Many educational projects rely on the ability
to first know where the robot is located in the environment.
Even a relatively simple challenge of ”making the robot go
to the doorway and beep” requires knowledge about where
the robot is, where the doorway is, and when the robot has
reached the doorway. Or a simpler task of ”moving for-
ward 1 meter” is just as difficult without a way to localize
the robot. A solution to the problem is necessary to make
robotics more useful for teaching engineering and artificial
intelligence concepts to younger audiences.

Approach
The research looks at a low-cost and simple approach to
localization in a 2D indoor environment. A fixed-position
camera is used that is external to the robot. The camera is
attached to a computer that has access to the Roomba via
Bluetooth. Through the Bluetooth connection, the computer
is able to direct the Roomba and get the sensor readings
back. The camera is directed at the area that the Roomba
will travel, but the camera’s specific location is arbitrary. A
Topological map is built by fusing together the odometry
readings and the image data.

A Topological map is a graph where the vertices are in-
teresting features in the environment and the edges are the
transitions between the features. In the research, the coordi-
nates in the image frame are treated as features and the ac-
tion taken between those coordinates as directed edges. An
example of the difference between an Odometry map and
a Topological map is provided in Fig 2. In the example, the
two maps are equivalent until step 4. The shaded Vertices all
represent the same actual position. Due to odometry drift,
the Odometry-based map contains two distinct Vertices. On
the other hand, the Topological map is able to determine that
the Roomba has returned to an already discovered point of
interest. Because the Topological map was able to close the
loop, the final step is more accurate to the actual position.

The Topological mapping algorithm works by (a) record-
ing the Roomba’s start position in the image frame, (b) mak-
ing an action, (c) recording the distance and heading trav-
eled, (d) recording the Roomba’s end position in the image
frame, and (e) adding an edge to a Topological map where
the features are the image frame positions. The localiza-
tion algorithm involves (a) searching through the Topolog-
ical map to find a path between the initial position and the
current position and (b) calculating the current position by
simulating the actions to travel that path. The approach is
explained in more detail in this section.

One benefit of this approach is that an a priori environ-
ment map is not necessary, because a map is built online as
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Figure 2: An example showing the difference between an
Odometry based map and a Topological Map. In the Odom-
etry based map, the Edges represent the actions taken by the
Roomba. In the Topological map, the Edges represent the
transition between two points of interest.

the Roomba is exploring the environment. Another benefit is
that the camera’s precise position, angle, and focal length do
not need to be calibrated. While this method does require
slight augmentation of the environment (adding a camera
somewhere in the environment), it is very simple to setup,
it is very inexpensive, and it does not require any modifica-
tion to the Roomba platform itself.

Assumptions
For simplicity, this work assumes that all motions consist of
a rotation around the COR (center of rotation) followed by
a forward translation. Doing so simplifies the models and
the transition graph. Since the robot is a differential drive
platform, this restriction does not limit where the robot can
travel. The work is also based on the assumption that over
short distances, the Roomba’s odometry through reading the
wheel encoders is fairly accurate (Tribelhorn and Dodds
2007). While not always true, in practice this seems to be
a reasonable assumption. The work assumes that a camera
can be placed such that the camera’s field of view covers
the environment that they robot will be traveling in. For this
paper, it is also assumed that the robot will be visible by
the camera after completing each action. This limitation can
easily be addressed in future work. Finally, the Roomba’s
initial position must be known. The position determined by
the localization algorithm is relative to this initial pose. An
alternative to this limitation is discussed as Future Work.
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Odometry Mapping
The Roomba’s distance and angle since the sensors were last
queried can be accessed through the Roomba Serial Com-
mand Interface (SCI) (iRobot 2006). The distance is com-
puted by averaging the encoder values on each wheel and
converting the value to millimeters. The angle is computed
by taking the difference of the encoder values of each wheel,
dividing by 2, and converting the value to radians. Since the
actions are limited to rotations followed by forward transla-
tions, the Roomba simply needs to be commanded to rotate
until the desired angle is reached and then commanded to
move forward until the desired distance is reached. This
approach does not address the problem of drift, where the
Roomba can veer to one way or another while translating,
but that limitation can easily be addressed (Discussed as Fu-
ture Work). Because the Roomba is driven until the encoder
values match the commanded actions, the commanded ac-
tions and the odometry are equivalent. The Roomba’s head-
ing is an accumulation of the angles the Roomba is com-
manded to travel.

Vision Tracking
The purpose of the camera is to track the position of the
Roomba in the image frame. To do so, the tracking al-
gorithm simply looks for some color blob present on the
Roomba but not present in the environment. For example,
in the test environment, a piece of blue painter’s tape was
used. The tracking algorithm is first calibrated to look for
that color by the user. The user will select one or more re-
gions in a sample image by clicking on the Roomba shown
in a GUI. During operation, the tracking algorithm scans
through each image pulled from the camera and identifies
the regions with an average color close to one of the regions
that the user selected. The coordinates of all matching re-
gions are averaged to a single point identifying where the
Roomba is in the image frame. While there are other more
accurate and quicker algorithms for color tracking, this ap-
proach was simplistic.

Topological Mapping
A majority of the work lies in treating the image positions
as points of interest in a Topological map. The biggest chal-
lenge traditionally with building an on-line topological map
is the ’closing the loop’ problem (Beevers and Huang 2005).
In other words, it is the problem of trying to determine if
two features encountered are the same, which means that
the robot has traveled a cycle, or if they are actually distinct
features. This specific approach gets around that problem
because it essentially has an external observer (the camera)
telling the robot if it has visited a unique location or not.
There are two parts to the topological mapping algorithm:
building the map as the robot explores the environment and
using the map to determine where the robot is.

Building the Topological Map The robot will make an
action. This is limited to a rotation in place followed by a
forward translation. The action, along with the image co-
ordinates of the Roomba prior to the move and the image

Algorithm 1 Add Action to Topological map
Require: M is a Topological map, A is the action that was

last executed, and prevImagePos is the previous image
coordinate
currImageP ⇐ getImageCoordinate()
S ⇐ getV ertex(M, prevImagePos)
T ⇐ getV ertex(M, currImagePos)
if S = NULL then

S ⇐ createV ertex(prevImagePos)
end if
if T = NULL then

T ⇐ createV ertex(currImagePos)
end if
E ⇐ getEdge(M,S, T )
if E = NULL then

E ⇐ createEdge(S, T, A)
addEdge(M,E)

else
n⇐ getNumReadings(E)
d⇐ (getDistance(E) ∗ n + getDistance(A))
d⇐ d/(n + 1)
setDistance(E, d)
setNumReadings(E,n + 1)

end if
return M

coordinates of the Roomba after the move will be used to
create an edge in the Topological Map. The directed edge
is created with the end vertex being the image coordinates,
the edge distance being the magnitude of the robot’s transla-
tion, and the heading being the heading the robot was facing
while traveling. After the edge is added, a process called
Edge Unification (described in the following paragraph) will
be run to reduce equivalent map edges. Once Edge Unifica-
tion is complete, the entire process is repeated for a new
action and will continue as long as there are more actions to
execute. This algorithm is shown in Algorithm 1.

Edge Unification is a method of collapsing two edges be-
tween the same set of vertices. Two vertices are considered
the same if the coordinates are separated by a tolerance. This
tolerance is used to prevent a requirement of ’pixel-perfect’
tracking. Since all actions are straight line translations, there
is only one correct transition between any two adjacent ver-
tices. Therefore, the distances of any two edges between
the same set of vertices are averaged. The heading is a lit-
tle more complicated. The heading could be averaged like
the distances, but the heading is a function of all the previ-
ous headings on the route to that point. So, the heading will
worsen over time as the odometry drifts. This problem could
be addressed by tracking heading via the vision, but at the
moment it has not been resolved. So, as a result, all headings
are time-stamped when the edge is created and the heading
of the unified edge is the older heading of the two edges.

Localizing Using the Map Determining where a robot is
located, given the generated Topological Map, is based on
the assumption that over short distances the odometry is
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Algorithm 2 Localizing Using the Topological Map
Require: M is a Topological map and sourceImageP is

the initial image coordinate
currImageP ⇐ getImageCoordinate()
S ⇐ getV ertex(M, sourceImageP )
T ⇐ getV ertex(M, currImageP )
P ⇐ getShortestPath(M, S, T )
x = 0
y = 0
for all E where E is an edge in P do

d = getDistance(E)
h = getHeading(E)
x = x + d ∗ cos(h)
y = y + d ∗ sin(h)

end for
return createPosition(x, y)

fairly accurate and it worsens as the robot travels further.
Using this assumption, the localization algorithm will first
find the closest vertex in the map to the current coordinates
of the Roomba in the image frame and then find the shortest
path between the initial start vertex and this current vertex.
The Roomba’s position will be calculated by simulating the
actions represented by the edges in this shortest path. Simu-
lating the actions starts with the initial position, determines
the position after the first action given the action’s distance
and heading, and repeats the process until the final action in
the path has been used. The result is the estimated current
location of the Roomba. This is shown in Algorithm 2.

Results
Experimental Setup
All the code is written in Java using the RoombaComm Java
API. The RoombaComm API is a Java library that accesses
the Roomba Serial Command Interface (SCI) through the
on-board 7-pin serial port (Kurt 2006). The RooTooth Blue-
tooth dongle acts as the communication channel between the
computer running the Java code with the WebCam and the
Roomba’s 7-pin serial port. Doing so requires no physi-
cal modification to the Roomba itself. The Roomba used
is iRobot’s Scheduler Roomba vacuum cleaner. The cam-
era used is an Apple iSight (Fig. 3), but any webcam would
work just as well. The code is run on an Apple 1.25 GHz
Powerbook G4.

Figure 3: Apple iSight Webcam used to track the Roomba

Figure 4: (top-left) Commanded path for Experiment 1
(top-right) Actual path for Experiment 1 (middle-left) Com-
manded path for Experiment 2 (middle-right) Actual path
for Experiment 2 (bottom-left) Commanded path for Exper-
iment 3 (bottom-right) Actual path for Experiment 3

In the tests, the Roomba is given commands to drive
around a 1.5 meter by 1.5 meter area which is observed by
the fixed iSight camera placed about 1.5 meters high, angled
toward the test area. The Roomba is given a series of actions,
which consist of a rotation followed by a forward transla-
tion. After each action, the actual position of the Roomba,
the commanded position of the Roomba, and the position
reported by the Topological Camera Localization approach
are recorded.

Experiments
Three experiments were run. They are described here and
the results are presented. The commanded path and actual
path for each experiment are shown in Fig. 4.

1. Square Path: The Roomba makes several circuits of a
square path. The Roomba is given a total of 39 actions
totaling 12.765 meters of travel.

2. Cloverleaf Path: The Roomba makes two passes around
a cloverleaf path, changing directions after the first pass.
The Roomba is given a total of 50 actions totaling 10.885
meters of travel.

3. Random Path: The Roomba is given a semi-random path
which includes visiting some positions multiple times.
The Roomba is given a total of 84 actions totaling 27.489
meters of travel.

Experimental Results
The error between (a) the actual position and the com-
manded position and (b) the actual position and the topolog-
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Figure 5: Experiment 1 positional error of commanded posi-
tion vs. topological camera localization position. The error
is computed by taking the straight-line distance between the
actual position and the position for each case.

Figure 6: Experiment 2 positional error of commanded posi-
tion vs. topological camera localization position. The error
is computed by taking the straight-line distance between the
actual position and the position for each case.

Figure 7: Experiment 3 positional error of commanded posi-
tion vs. topological camera localization position. The error
is computed by taking the straight-line distance between the
actual position and the position for each case.

Table 1: Median positional errors for each experiment

Experiment Commanded Camera Improve-
Position Localization ment

Position
1: Square 0.204 meters 0.102 meters 50.0%

2: Cloverleaf 0.076 meters 0.064 meters 15.8%
3: Random 0.176 meters 0.062 meters 64.8%

Table 2: Final positional errors for each experiment

Experiment Commanded Camera Improve-
Position Localization ment

Position
1: Square 0.261 meters 0.055 meters 78.9%

2: Cloverleaf 0.138 meters 0.111 meters 19.6%
3: Random 0.148 meters 0.044 meters 70.3%

ical camera localization for each experiment are calculated
and presented in Fig. 5, Fig. 6, and Fig. 7. The median
errors and the path final position errors are shown in Table 1
and Table 2 respectively.

Conclusions and Future Work
At most of the points in the test data, the topological camera
localization performed better than relying on odometry only.
On average, the camera localization shows significant im-
provement. Furthermore, if the Roomba continued to move
in the same environment, the commanded position error is
expected to worsen since the odometry will continue to drift
without any method of correction. This trend is already ap-
pearing in Fig. 5, Fig. 6, and Fig. 7. On the other hand,
if the Roomba travels in the same area, the camera localiza-
tion is actually expected to improve with more actions. This
is due to the fact that the topological map will become more
densely filled with positions that the Roomba has visited be-
fore. However, the camera localization is not perfect. There
is still significant error and noisy readings will throw off the
position considerably (for example, see the spike in Fig. 5).
Also, the method requires the actual path to contain cycles.
If there are no cycles, the topological camera localization
will perform no better than just using pure odometry. For-
tunately this was just the first step to validate the approach.
There are many ways to improve the algorithm.

• Vision Tracking: The method to track the robot is simplis-
tic and can be greatly improved both in accuracy as well
as speed.

• Filter out bad data: Currently all data is represented in
the topological map and no data is filtered out. Doing so
should eliminate the occasional poor performance of the
localization.

• Tracking Heading: Tracking heading via vision in addi-
tion to position will greatly improve the estimated head-
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ing between the vertices in the topological map.
• Correct for Odometry drift while translating: The odom-

etry model does not account for angle drift while translat-
ing. This can be addressed by monitoring the angle while
traveling forward and adjusting the rotational velocity to
compensate.

• Use additional paths through the Topological Map: Cur-
rently only the shortest path from the start position to the
current position of the Roomba is used. If the shortest
path was derived from flawed data, any longer paths that
might be more correct are ignored. One idea is to find
all paths between the start position and the current posi-
tion, find the final position along each path, and average
the final positions weighted by the inverse of the distance.
When this method was tried using the sample data, it actu-
ally worsened the results, but given a longer test run, this
may help. Exploring this and other similar approaches
remains an open issue.

• Multiple Cameras: Having multiple cameras in the en-
vironment should help by tracking the Roomba indepen-
dently and then combining the results. While this starts to
increase the cost and complexity of the solution, in some
situations (for example, large, obscured areas with no sin-
gle, all-encompassing vantage point) this may be highly
beneficial.

• An A Priori Map: The current algorithm requires a known
initial position but no other knowledge about the environ-
ment. Instead, the algorithm can be adapted to use an A
Priori Map of several real-world coordinates mapped to
image coordinates. This could be useful if the environ-
ment is known beforehand, but the robot’s position is not.

• Collapse the Map: After a long runtime, the topological
map will become densely populated, which will increase
the algorithm’s computational time. One solution is to
collapse the map after the map reaches a certain density
into a series of known points. This essentially creates an
A Priori Map (see the above item) and restarts using that
map.

• Support more universal motion: The current actions are
limited to rotation in place followed by a straight-line
translation. The platform is capable of more complete
motion. The algorithm could be adapted to support what-
ever ranges of motion the Roomba can perform.

Finally, the ultimate goal for future work is to continue
expanding the capabilities for educational use while keeping
the total cost low. The plan is to include this work as part of
a toolkit available for pre-college robotics educational pro-
grams. The work will continue to evolve as educator feed-
back is received based on use in active curriculums.
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