
A Pedagogical Framework for Modeling and Simulating

Intelligent Agents and Control Systems

Dan Tappan

College of Engineering, Idaho State University
921 S. 8th Ave., Stop 8060
Pocatello, ID 83209-8060

tappdan@isu.edu

Abstract

Classroom assignments are an effective way for students
to investigate many important (and fun) aspects of
artificial intelligence. However, for any project of
reasonable breadth and depth, especially involving
multiple agents and graphics, most of the programming
goes into tedious, error-prone administrative tasks.
Moreover, time constraints usually preclude an extensible
and reusable design, so this overhead repeats itself
throughout the semester. This pedagogy-oriented
modeling-and-simulation framework provides all the
necessary support capabilities to get students up to speed
quickly on playing with a variety of AI content. It
contains extensive, highly configurable, yet user-friendly,
engineering, physics, and communication models for
arbitrary components within a definable task
environment. These components are managed
automatically in a stochastic simulation that allows
students to define, test, and evaluate their performance
over a wide range of controlled experiments.

Introduction and Background

Student assignments and experiments in artificial
intelligence can be fun, exciting, and educational. Most
programming tasks, however, involve a disproportionate
amount of mundane, administrative code that distracts
students from the AI focus. This pedagogy-oriented
application programming interface (API) provides a
straightforward framework of highly extensible
components and functionality to investigate many concepts
and strategies in AI and intelligent control systems
(Russell and Norvig 2003, Bourg and Seemann 2004). It
also helps foster an understanding of proper methodology
in the design, implementation, testing, and evaluation of
formal experiments.

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 This system is a lightweight version derived from a full-
scale, accredited simulator developed for the Department
of Defense to evaluate components for the U.S. Army's
Future Combat Systems program (Tappan and Engle 2005,
Engle 2005). Another derivative has also been used
successfully in AI for interpreting spatial relations in
natural language processing (Tappan 2004). For
portability, the system is written entirely in Java, with Java
3D as the display engine.

Modeling

Within this framework, modeling refers to defining what
the entities to study are and what they can do. The
simulation counterpart then puts them into operational
contexts for formal evaluation.

Environment

The environment is a three-dimensional world of arbitrary
scale. As fancy graphics are not the focus, the working
area is normally depicted as the tabletop in Figure 1. The
viewer may interactively move to any vantage point
throughout a simulation, as well as click on entities to
query them about their underlying details. The terrain
model currently supports only this flat surface, but vertical
relief may eventually be incorporated. The default physics
model provides basic, global support for naive kinematics
like velocity, acceleration, and gravity (Bourg 2002).
Students can configure it in various ways or substitute their
own plug-and-play models.

79

north

south

w
es

t east

x

y
z

Figure 1: The World

Components

Components are hierarchical building blocks. Static
components passively occupy space. They typically serve
as immobile obstacles to navigation or visibility. Dynamic
components interact with the world by generating and/or
responding to events. A component is physically a three-
dimensional box, with height, width, and depth properties,
that may recursively connect to any number of
subcomponents through one of two interconnection
models:

• The 6-DOF model in Figure 2 provides six degrees of
freedom (DOF): x, y, z coordinates for position, and
yaw, pitch, and roll angles for the three attitude axes. It
is the preferred model for most components because it
provides the most flexibility to move and face
anywhere.

x

y

z

pitch

roll

yaw

Figure 2: 6-DOF Model

• The 5-DOF model in Figure 3 provides the same
position representation, but it uses azimuth and elevation
angles for only two attitude axes. It is useful for
aimable components like sights and gun barrels.

x

y

z

elevation

azimuth

Figure 3: 5-DOF Model

The format for specifying and reporting any degree of
freedom supports two interconvertable systems:

• Absolute angles reference the context-free, fixed
coordinate system of the world. For example, north is
always 0° yaw or azimuth.

• Relative angles reference the context-sensitive, variable
coordinate system of each component (and/or its
supercomponents). For example, 0° yaw or azimuth is
in front of a component, whereas +45° is to its front-
right. Similarly, if the supercomponent is pitched +10°
(up), and the component is pitched -10° (down), the
resulting pitch of the component is 0°.

The interconnections, once initially defined by the
students, are managed automatically. For example,
updating the position and/or attitude of the base entity, say
the hull of a tank, correspondingly updates its turret, which
subsequently updates the gun barrel. The underlying
mathematical model uses quaternions, which are an
interesting modeling topic in their own right. This code is
fully commented and available for student inspection.
 Either model supports optional constraints to limit the
minimum and maximum range of each degree of freedom.
For example, the gun may have ±10° travel in pitch, and 0°
in azimuth. Thus, in order to change the azimuth of the
gun, the turret, on which it is mounted, must be updated.
The physics model manages the optional velocity and
acceleration constraints.
 One of the most useful applications of composite,
articulated components is for sensors, which receive
information about the environment. The basic form
consists of two parts:

• A field of view (FOV) in Figure 4 is a pyramidal
frustum, defined by height and width angular limits, that
projects relative to a definable origin on the component.
Anything within the frustum is considered to be in view
of the sensor. Additional constraints like obstacles to
line of sight and degradation of acuity over distance are
handled separately.

• A field of regard (FOR) specifies the limits over which
the FOV can move, if it is configured as a moving
sensor. Together, the FOV and FOR support scanning.

80

A real-world example is using binoculars to locate a
target: the FOV is narrow, and it must be updated
across the FOR, typically through restricted neck
movement.

line of sig
ht

component

Figure 4: Field of View Frustum

This built-in physics and engineering functionality frees
students to focus on the AI aspects of their projects. For
example, one course assignment used two or more sensors
as eyes, in combination with rudimentary trigonometry, to
emulate stereoscopic vision for range-finding. The
students discovered the law of diminishing returns for
more than two sensors. Similarly, they investigated
different arrangements of two sensors to model the pros
and cons of how various animals view the world. This
approach could be extended to other aspects of nature-
inspired computing (Mira and Álvarez 2007).
 Updating can be configured to occur on demand or
automatically (e.g., initially clockwise at 10° per second
until the limit is reached, then the reverse, repeated a
configurable number of times, including indefinitely).
This feature eliminates the need for students to manage the
extensive complexities of initiating, terminating,
synchronizing, and timing simultaneous actions in their
own code.
 Sensor configurations can also automatically account for
simple, real-world, physical limitations. For example,
acuity may degrade as a configurable function of distance,
thereby making far-away objects in field of view harder to
see than closer ones. This information couples with
probability-based support functions to produce false
positives (seeing something that is not there) and negatives
(not seeing something that is there). Such rich capabilities
support powerful analyses of system performance and
reliability.

Agents

The primary role of components is to acquire raw
information about the environment. They may also
execute student-supplied code to preprocess it; e.g.,
sorting objects by distance and filtering some out.
However, they are generally “dumb” engineering devices,
in that they do not make high-level decisions based on
their localized, contextually weak information. Agents
play this global role as a hierarchical collection of

intercommunicating components. It is here that students
normally investigate the AI aspects of their designs.
 This command-and-control framework is based heavily
on established design patterns in object-oriented
programming (Gamma et al. 1995). Effective engineering
control systems (intelligent or otherwise) usually reflect a
purposeful, well-structured design. In software
engineering, however, students (and many professionals)
tend to build haphazard contraptions that bear little
resemblance to the real-world counterparts they are
modeling. This system is designed to foster design-related
self-discipline. In particular, its agent framework natively
supports the following design patterns for students to
augment:

Structural patterns define what entities are:

• The Composite pattern, as described earlier, supports
hierarchical structures of components.

• The Flyweight pattern supports multiagent simulations
of many entities and/or of entities with complex, shared
hierarchical structures. It reduces memory use and
simulation overhead, thereby improving simulation
speed.

• The Facade and Decorator patterns allow baseline
entities to play similar, reusable roles with minimal
additional code or modification. For example, a car and
truck are basically subtypes of a common vehicle that is
qualified as passenger-carrying and cargo-carrying,
respectively. In all other respects, they may be the
same.

Creational patterns define how to build and configure the
structure of entities:

• The Prototype, Factory, and Builder patterns provide an
object-oriented production mechanism within the
simulation. For example, a student might specify for a
traffic simulation that there are any number of cars and
trucks with certain, unique properties. Setting up a
simulation should not require substantial coding because
these patterns do the lower-level assembly work.

Behavioral patterns define what entities can do:

• The Strategy pattern supports the reusable, plug-and-
play philosophy of components. It seamlessly allows
students to swap different implementations under
investigation to observe their comparative performance.

• The Chain of Responsibility pattern supports disciplined
engineering considerations in the interconnection of
components. At the heart is delegating tasks to the
proper components, and then enforcing an established
chain of command for information transfer up and down
the hierarchy. It reduces the opportunity for spaghetti
code and hacks, and it makes such inferior solutions
apparent.

81

• The Visitor pattern serves as the transmission medium
within the chain of command. It can be modeled with
real-world communication considerations, such as
bandwidth, speed, latency, noise, errors, ambiguity, and
so on.

• The Command and Interpreter patterns serve as the
intercommunication content model to allow events and
decisions to propagate appropriately among entities.
For example, one course assignment had a centralized
traffic controller instructing agents to avoid collisions
through different classes of English-based commands:
absolute (“turn to 0 degrees”), quantitative relative
(“turn left by 90 degrees”), and qualitative relative
(“keep turning left until I say stop”).

• The Observer and Mediator patterns serve as the
intercommunication delivery model to pass commands
between entities. They support variations on one-to-one
and one-to-many transmissions of arbitrary, student-
defined content.

• The State pattern provides a straightforward decision-
making framework for implementing finite-state
processes with minimal code. Students can focus on the
content and meaning of the processes, instead of on their
implementation.

Simulation

A stochastic, discrete-event simulator manages all entities
and serves as a test-and-evaluation framework. Students
first design, assemble, and configure their components and
agents, and then they place them into an operating context
of the environment. The intent is to run controlled
experiments to measure performance according to students'
criteria. This process consists of two parts:

• A control simulation establishes baseline performance;
e.g., tracking and intercepting a target in a predator-prey
simulation.

• A test simulation augments the baseline by changing
one—and only one—aspect of it; e.g., increasing the
magnification of the predator's eye sensors, or replacing
them with a different model. Any measured
performance differences between the baseline and test
simulations can therefore be directly attributed to this
perturbation of the model. In other words, it establishes
a cause-and-effect relationship.

 In both parts, a general-purpose logger records standard
details (like time, positions, attitudes, and events), as well
as those specified by the student. The logs export as plain
text files.
 A major strength of stochastic simulation lies in its
probability-based non-determinism. A single run is
therefore meaningless from an analytical standpoint: the

results could be representative of reality, or they could be
purely coincidental, and there is no way to assess any
confidence in either outcome. The simulation framework
allows students to run an arbitrary number of independent
iterations (often thousands) with the same initial conditions
so that the probabilities unfold naturally over their
inherent, yet hidden, independent and dependent
distributions. The law of large numbers can tease out
many emergent properties. The logger keeps track of the
individual and aggregate results.

Analysis

Analysis is an external process involving the premise of
the experiments, their results, and the students' qualitative
and quantitative reasoning abilities to process the data,
draw conclusions, and report their findings. Consistent
with the overall philosophy of this work, students are freed
from most of the mundane, tedious overhead that distracts
them from the focus. The analysis work, however, is
entirely their own, and is done with external tools like
spreadsheets and statistics packages. This dovetails well
with the scientific method of running experiments to prove
(or disprove) and explain hypotheses. While it is certainly
possible that students can randomly generate and test (in
other words, hack) until something acceptable emerges,
with sufficient pedagogical emphasis from the instructor
on experimental discipline and rigor, students should learn
firsthand the value of well-defined AI experiments.

Discussion and Future Work

In spring 2007, an earlier proof-of-concept form of this
system was successfully fielded in an upper-division
undergraduate AI course. The encouraging results, as well
as student feedback, contributed to its continual
development and improvement. It is expected to play the
core computational role in the next offering of this course.
Once stable, it will be made available in the public domain
for academic use.

References

Bourg, D. 2002. Physics for Game Developers. O'Reilly,
Sebastopol: CA.
Bourg, D. and Seemann, G. 2004. AI for Game
Developers. O'Reilly, Sebastopol: CA.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Indianapolis: IN.
Engle, J. 2005. AMSAA's SURVIVE Model plays key
role. RDECOM Magazine, August.

82

Mira, J., and Álvarez, J. (eds.) 2007. Nature-Inspired
Problem-Solving Methods in Knowledge Engineering.
Second International Work-Conference on the Interplay
Between Natural and Artificial Computation. La Manga
del Mar Menor, Spain.
Russell, S. and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Pearson, Upper Saddle River: NJ.
Tappan, D. 2004. Knowledge-Based Spatial Reasoning
for Automated Scene Generation from Text Descriptions.
Ph.D. diss. Dept. of Computer Science, New Mexico State
University, Las Cruces, NM.
Tappan, D. and Engle, J. 2005. The AMSAA SURVIVE
Model. In Proceedings of U.S. Army 16th Annual Ground
Vehicle Survivability Symposium, Monterrey, CA.

83

