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Abstract 

Classroom assignments are an effective way for students 
to investigate many important (and fun) aspects of 
artificial intelligence.  However, for any project of 
reasonable breadth and depth, especially involving 
multiple agents and graphics, most of the programming 
goes into tedious, error-prone administrative tasks.  
Moreover, time constraints usually preclude an extensible 
and reusable design, so this overhead repeats itself 
throughout the semester.  This pedagogy-oriented 
modeling-and-simulation framework provides all the 
necessary support capabilities to get students up to speed 
quickly on playing with a variety of AI content.  It 
contains extensive, highly configurable, yet user-friendly, 
engineering, physics, and communication models for 
arbitrary components within a definable task 
environment.  These components are managed 
automatically in a stochastic simulation that allows 
students to define, test, and evaluate their performance 
over a wide range of controlled experiments. 

Introduction and Background
 
  

Student assignments and experiments in artificial 
intelligence can be fun, exciting, and educational.  Most 
programming tasks, however, involve a disproportionate 
amount of mundane, administrative code that distracts 
students from the AI focus.  This pedagogy-oriented 
application programming interface (API) provides a 
straightforward framework of highly extensible 
components and functionality to investigate many concepts 
and strategies in AI and intelligent control systems 
(Russell and Norvig 2003, Bourg and Seemann 2004).  It 
also helps foster an understanding of proper methodology 
in the design, implementation, testing, and evaluation of 
formal experiments. 
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 This system is a lightweight version derived from a full-
scale, accredited simulator developed for the Department 
of Defense to evaluate components for the U.S. Army's 
Future Combat Systems program (Tappan and Engle 2005, 
Engle 2005).  Another derivative has also been used 
successfully in AI for interpreting spatial relations in 
natural language processing (Tappan 2004).  For 
portability, the system is written entirely in Java, with Java 
3D as the display engine. 

Modeling 

Within this framework, modeling refers to defining what 
the entities to study are and what they can do.  The 
simulation counterpart then puts them into operational 
contexts for formal evaluation. 

Environment 

The environment is a three-dimensional world of arbitrary 
scale.  As fancy graphics are not the focus, the working 
area is normally depicted as the tabletop in Figure 1.  The 
viewer may interactively move to any vantage point 
throughout a simulation, as well as click on entities to 
query them about their underlying details.  The terrain 
model currently supports only this flat surface, but vertical 
relief may eventually be incorporated.  The default physics 
model provides basic, global support for naive kinematics 
like velocity, acceleration, and gravity (Bourg 2002).  
Students can configure it in various ways or substitute their 
own plug-and-play models. 
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Figure 1:  The World 

Components 

Components are hierarchical building blocks.  Static 
components passively occupy space.  They typically serve 
as immobile obstacles to navigation or visibility.  Dynamic 
components interact with the world by generating and/or 
responding to events.  A component is physically a three-
dimensional box, with height, width, and depth properties, 
that may recursively connect to any number of 
subcomponents through one of two interconnection 
models: 

• The 6-DOF model in Figure 2 provides six degrees of 
freedom (DOF):  x, y, z coordinates for position, and 
yaw, pitch, and roll angles for the three attitude axes.  It 
is the preferred model for most components because it 
provides the most flexibility to move and face 
anywhere. 
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Figure 2:  6-DOF Model 

• The 5-DOF model in Figure 3 provides the same 
position representation, but it uses azimuth and elevation 
angles for only two attitude axes.  It is useful for 
aimable components like sights and gun barrels. 
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Figure 3:  5-DOF Model 

The format for specifying and reporting any degree of 
freedom supports two interconvertable systems: 

• Absolute angles reference the context-free, fixed 
coordinate system of the world.  For example, north is 
always 0° yaw or azimuth. 

• Relative angles reference the context-sensitive, variable 
coordinate system of each component (and/or its 
supercomponents).  For example, 0° yaw or azimuth is 
in front of a component, whereas +45° is to its front-
right.  Similarly, if the supercomponent is pitched +10° 
(up), and the component is pitched -10° (down), the 
resulting pitch of the component is 0°. 

The interconnections, once initially defined by the 
students, are managed automatically.  For example, 
updating the position and/or attitude of the base entity, say 
the hull of a tank, correspondingly updates its turret, which 
subsequently updates the gun barrel.  The underlying 
mathematical model uses quaternions, which are an 
interesting modeling topic in their own right.  This code is 
fully commented and available for student inspection. 
 Either model supports optional constraints to limit the 
minimum and maximum range of each degree of freedom.  
For example, the gun may have ±10° travel in pitch, and 0° 
in azimuth.  Thus, in order to change the azimuth of the 
gun, the turret, on which it is mounted, must be updated.  
The physics model manages the optional velocity and 
acceleration constraints. 
 One of the most useful applications of composite, 
articulated components is for sensors, which receive 
information about the environment.  The basic form 
consists of two parts: 

• A field of view (FOV) in Figure 4 is a pyramidal 
frustum, defined by height and width angular limits, that 
projects relative to a definable origin on the component.  
Anything within the frustum is considered to be in view 
of the sensor.  Additional constraints like obstacles to 
line of sight and degradation of acuity over distance are 
handled separately. 

• A field of regard (FOR) specifies the limits over which 
the FOV can move, if it is configured as a moving 
sensor.  Together, the FOV and FOR support scanning. 
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A real-world example is using binoculars to locate a 
target:  the FOV is narrow, and it must be updated 
across the FOR, typically through restricted neck 
movement. 
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Figure 4:  Field of View Frustum 

This built-in physics and engineering functionality frees 
students to focus on the AI aspects of their projects.  For 
example, one course assignment used two or more sensors 
as eyes, in combination with rudimentary trigonometry, to 
emulate stereoscopic vision for range-finding.  The 
students discovered the law of diminishing returns for 
more than two sensors.  Similarly, they investigated 
different arrangements of two sensors to model the pros 
and cons of how various animals view the world.  This 
approach could be extended to other aspects of nature-
inspired computing (Mira and Álvarez 2007). 
 Updating can be configured to occur on demand or 
automatically (e.g., initially clockwise at 10° per second 
until the limit is reached, then the reverse, repeated a 
configurable number of times, including indefinitely).  
This feature eliminates the need for students to manage the 
extensive complexities of initiating, terminating, 
synchronizing, and timing simultaneous actions in their 
own code. 
 Sensor configurations can also automatically account for 
simple, real-world, physical limitations.  For example, 
acuity may degrade as a configurable function of distance, 
thereby making far-away objects in field of view harder to 
see than closer ones.  This information couples with 
probability-based support functions to produce false 
positives (seeing something that is not there) and negatives 
(not seeing something that is there).  Such rich capabilities 
support powerful analyses of system performance and 
reliability. 

Agents 

The primary role of components is to acquire raw 
information about the environment.  They may also 
execute student-supplied code to preprocess it; e.g.,  
sorting objects by distance and filtering some out.  
However, they are generally “dumb” engineering devices, 
in that they do not make high-level decisions based on 
their localized, contextually weak information.  Agents 
play this global role as a hierarchical collection of 

intercommunicating  components.  It is here that students 
normally investigate the AI aspects of their designs. 
 This command-and-control framework is based heavily 
on established design patterns in object-oriented 
programming (Gamma et al. 1995).  Effective engineering 
control systems (intelligent or otherwise) usually reflect a 
purposeful, well-structured design.  In software 
engineering, however, students (and many professionals) 
tend to build haphazard contraptions that bear little 
resemblance to the real-world counterparts they are 
modeling.  This system is designed to foster design-related 
self-discipline.  In particular, its agent framework natively 
supports the following design patterns for students to 
augment: 

Structural patterns define what entities are: 

• The Composite pattern, as described earlier, supports 
hierarchical structures of components. 

• The Flyweight pattern supports multiagent simulations 
of many entities and/or of entities with complex, shared 
hierarchical structures.  It reduces memory use and 
simulation overhead, thereby improving simulation 
speed. 

• The Facade and Decorator patterns allow baseline 
entities to play similar, reusable roles with minimal 
additional code or modification.  For example, a car and 
truck are basically subtypes of a common vehicle that is 
qualified as passenger-carrying and cargo-carrying, 
respectively.  In all other respects, they may be the 
same. 

Creational patterns define how to build and configure the 
structure of entities: 

• The Prototype, Factory, and Builder patterns provide an 
object-oriented production mechanism within the 
simulation.  For example, a student might specify for a 
traffic simulation that there are any number of cars and 
trucks with certain, unique properties.  Setting up a 
simulation should not require substantial coding because 
these patterns do the lower-level assembly work. 

Behavioral patterns define what entities can do: 

• The Strategy pattern supports the reusable, plug-and-
play philosophy of components.  It seamlessly allows 
students to swap different implementations under 
investigation to observe their comparative performance. 

• The Chain of Responsibility pattern supports disciplined 
engineering considerations in the interconnection of 
components.  At the heart is delegating tasks to the 
proper components, and then enforcing an established 
chain of command for information transfer up and down 
the hierarchy.  It reduces the opportunity for spaghetti 
code and hacks, and it makes such inferior solutions 
apparent. 
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• The Visitor pattern serves as the transmission medium 
within the chain of command.  It can be modeled with 
real-world communication considerations, such as 
bandwidth, speed, latency, noise, errors, ambiguity, and 
so on. 

• The Command and Interpreter patterns serve as the 
intercommunication content model to allow events and 
decisions to propagate appropriately among entities.  
For example, one course assignment had a centralized 
traffic controller instructing agents to avoid collisions 
through different classes of English-based commands:  
absolute (“turn to 0 degrees”), quantitative relative 
(“turn left by 90 degrees”), and qualitative relative 
(“keep turning left until I say stop”). 

• The Observer and Mediator patterns serve as the 
intercommunication delivery model to pass commands 
between entities.  They support variations on one-to-one 
and one-to-many transmissions of arbitrary, student-
defined content. 

• The State pattern provides a straightforward decision-
making framework for implementing finite-state 
processes with minimal code.  Students can focus on the 
content and meaning of the processes, instead of on their 
implementation. 

Simulation 

A stochastic, discrete-event simulator manages all entities 
and serves as a test-and-evaluation framework. Students 
first design, assemble, and configure their components and 
agents, and then they place them into an operating context 
of the environment.  The intent is to run controlled 
experiments to measure performance according to students' 
criteria.  This process consists of two parts: 

• A control simulation establishes baseline performance; 
e.g., tracking and intercepting a target in a predator-prey 
simulation. 

• A test simulation augments the baseline by changing 
one—and only one—aspect of it; e.g., increasing the 
magnification of the predator's eye sensors, or replacing 
them with a different model.  Any measured 
performance differences between the baseline and test 
simulations can therefore be directly attributed to this 
perturbation of the model.  In other words, it establishes 
a cause-and-effect relationship. 

 In both parts, a general-purpose logger records standard 
details (like time, positions, attitudes, and events), as well 
as those specified by the student.  The logs export as plain 
text files. 
 A major strength of stochastic simulation lies in its 
probability-based non-determinism.  A single run is 
therefore meaningless from an analytical standpoint:  the 

results could be representative of reality, or they could be 
purely coincidental, and there is no way to assess any 
confidence in either outcome.  The simulation framework 
allows students to run an arbitrary number of independent 
iterations (often thousands) with the same initial conditions 
so that the probabilities unfold naturally over their 
inherent, yet hidden, independent and dependent 
distributions.  The law of large numbers can tease out 
many emergent properties.  The logger keeps track of the 
individual and aggregate results. 

Analysis 

Analysis is an external process involving the premise of 
the experiments, their results, and the students' qualitative 
and quantitative reasoning abilities to process the data, 
draw conclusions, and report their findings.  Consistent 
with the overall philosophy of this work, students are freed 
from most of the mundane, tedious overhead that distracts 
them from the focus.  The analysis work, however, is 
entirely their own, and is done with external tools like 
spreadsheets and statistics packages.  This dovetails well 
with the scientific method of running experiments to prove 
(or disprove) and explain hypotheses.  While it is certainly 
possible that students can randomly generate and test (in 
other words, hack) until something acceptable emerges, 
with sufficient pedagogical emphasis from the instructor 
on experimental discipline and rigor, students should learn 
firsthand the value of well-defined AI experiments. 

Discussion and Future Work 

In spring 2007, an earlier proof-of-concept form of this 
system was successfully fielded in an upper-division 
undergraduate AI course.  The encouraging results, as well 
as student feedback, contributed to its continual 
development and improvement.  It is expected to play the 
core computational role in the next offering of this course.  
Once stable, it will be made available in the public domain 
for academic use. 
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