
Teaching Artificial Intelligence Playfully∗

Mike Zyda and Sven Koenig
University of Southern California (USC)

Computer Science Department
Los Angeles, California (USA)

{zyda,skoenig}@usc.edu

Abstract

In this paper, we report on the efforts at the University
of Southern California to teach computer science and
artificial intelligence with games because games mo-
tivate students, which we believe increases enrollment
and retention and helps us to educate better computer
scientists. The Department of Computer Science is now
in its second year of operating its Bachelor’s Program
in Computer Science (Games), which provides students
with all the necessary computer science knowledge and
skills for working anywhere in industry or pursuing
advanced degrees but also enables them to be imme-
diately productive in the game development industry.
It consists of regular computer science classes, game
engineering classes, game design classes, game cross-
disciplinary classes and a final game project. The Intro-
duction to Artificial Intelligence class is a regular com-
puter science class that is part of the curriculum. We
are now converting the class to use games as a motivat-
ing topic in lectures and as the domain for projects. We
describe both the new bachelor’s program and some of
our current efforts to teach the Introduction to Artificial
Intelligence class with games.

Introduction
Games allow universities to teach computer science hands
on and motivate students because playing games is fun
(Cliburn 2006). In addition, games allow students to de-
bug their code easily since the code can be tested by playing
the games, with visual results. It is therefore not surprising
that many universities investigate how to use games to teach
computer science, as evidenced by papers in the Game De-
velopment in Computer Science Education Conference and
the Frontiers in Education Conference. The Department of
Computer Science at the University of Southern California
(USC) is now in its second year of operating its Bache-
lor’s Program in Computer Science (Games) and Master’s
Program in Computer Sciences (Game Development) (Zyda
2006). An important aspect of the bachelor’s program is
to motivate students to learn computer science, and thus to

∗Our research was partly supported by a grant from the Fund for
Innovative Undergraduate Teaching of the University of Southern
California.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

boost student enrollment and retention, which is important
since the US needs to double the number of science and
technology graduates by 2015 according to the July 2005
report of the TAP Forum (Business Roundtable 2005). The
bachelor’s program is designed to make the students better
computer scientists as well as improve skills typically ne-
glected in computer science programs, such as being cre-
ative and working in teams with very different expertise.
It provides students with all the necessary computer sci-
ence knowledge and skills for working anywhere in industry
or pursuing advanced degrees but also enables them to be
immediately productive in the game development industry
since they are not only strong programmers and system de-
velopers but also understand the game development process
well. It consists of 37 units of computer science classes and
42 units of game development classes. It was created not by
watering down the regular bachelor’s program in computer
science but rather by replacing elective slots with game de-
velopment classes, making it look very much like a double
major. As such, the bachelor’s program consists of regular
computer science classes, game engineering classes, game
design classes, game cross-disciplinary classes and a final
game project. Some of the regular computer science classes,
including CSCI 460 (Introduction to Artificial Intelligence),
are now being converted to use games as a motivating topic
in lectures and as the domain for projects. In the following,
we describe both the bachelor’s program and our current ef-
forts to teach CSCI 460 (Introduction to Artificial Intelli-
gence) with games.

USC
USC was able to build on several strengths to build the
bachelor’s program, including its top-ranked engineering
and cinema schools. Some researchers at USC’s Informa-
tion Sciences Institute (ISI) work on serious games, that
is, games whose primary purpose is training and education
rather than entertainment. Researchers at USC’s Institute
for Creative Technology (ICT) develop engaging immersive
technologies for learning and training in cooperation with
the entertainment industry and the army. For example, the
research of Mike van Lent, a researcher at ICT, on explain-
able artificial intelligence was integrated into the Microsoft
Xbox title “Full Spectrum Warrior,” the top selling Xbox
game in June 2004. Researchers at the Interactive Media

90



• Core Requirements (43 units)
– General Education (20 units)
– Science (4 units)
∗ PHYS 151LG (4 units): Fundamentals of Physics I

– Writing (7 units)
∗ WRIT 140 (4 units): Writing and Critical Reasoning
∗ WRIT 340 (3 units): Advanced Writing

– Mathematics (11-12 units)
∗ MATH 125 (4 units): Calculus I
∗ MATH 126 (4 units): Calculus II
∗ MATH 225 (4 units): Linear Algebra and Differential Equations
∗ EE 241 (3 units): Applied Linear Algebra (alternative to MATH 225)
∗ optional but highly recommended classes
· MATH 226 (4 units): Calculus III
· EE 364 (3 units): Introduction to Probability and Statistics

• Computer Science (37 units)
– Programming and Software Development (16 units)
∗ CSCI 101 (3 units): Fundamentals of Computer Programming
∗ CSCI 102 (4 units): Data Structures
∗ CSCI 105 (2 units): Object-Oriented Programming (C++ Version)
∗ CSCI 201 (4 units): Principles of Software Development (C++ Version)
∗ CSCI 377 (3 units): Introduction to Software Engineering

– Theory (6 units)
∗ CSCI 271 (3 units): Discrete Methods in Computer Science
∗ CSCI 303 (3 units): Design and Analysis of Algorithms

– Hardware and Systems (9 units)
∗ CSCI 402 (3 units): Operating Systems
∗ EE 450 (3 units): Introduction to Computer Networks
∗ CSCI/EE 352 (3 units): Computer Organization and Architecture

– Autonomy and Immersion (6 units)
∗ CSCI 460 (3 units): Artificial Intelligence
∗ CSCI 480 (3 units): Computer Graphics

• Game Development (42 units)
– Game Engineering (11 units)
∗ CSCI/ITP 380 (4 units): Videogame Programming
∗ CSCI/EE 452 (3 units): Game Hardware Architectures
∗ CSCI 487/ITP 485 (4 units): Programming Game Engines

– Game Design (8 units)
∗ CTIN 488 (4 units): Game Design Workshop
∗ CTIN 484 (2 units): Intermediate Game Development
∗ CTIN 489 (2 units): Intermediate Game Design Workshop

– Game Cross-Disciplinary (17 units)
∗ CSCI 180 (3 units): Survey of Digital Games and their Technologies
∗ CSCI 280/ITP 280x (4 units): Videogame Production
∗ CSCI 281 (3 units): Pipelines for Games and Interactives
∗ CTAN 443 (2 units): 3D Animation and Character Animation
∗ CTAN 452 (2 units): Introduction to Computer Animation
∗ CSCI 486 (3 units): Serious Games Development

– Final Project (6 units)
∗ CSCI 491a (4 units): Final Game Projects
∗ CSCI 491b (2 units): Advanced Game Projects

• Technical Electives (6 units)

Figure 1: Bachelor’s Program in Computer Science (Games)

Division of USC’s School of Cinematic Arts study both
commercial and internally developed games with the goal
of creating a body of knowledge about players, the games
they play, and how they play them to design games that ex-
hibit new and better play mechanics and create satisfying
new social interactions. For example, the game “flOw” was
part of Jenova Chen’s thesis research at the Interactive Me-
dia Division and is now commercially available on PlaySta-
tion 3 game consoles. Other award-winning games include
“Cloud” and “The Misadventures of P.B. Winterbottom.”
Bing Gordon, the Executive Vice President and Chief Cre-
ative Officer of Electronic Arts since March 1998, teaches
classes in the Interactive Media Division. In February 2007,
USC established its USC Games Institute to create a sci-
ence of games (Zyda 2007), unify and represent USC game
research on and off campus, and reach out to the rapidly
growing number of video game companies in Los Angeles
and elsewhere.

Bachelor’s Program
The bachelor’s program was created in large part by the first
author of this paper, a principal force behind the creation
of the online game America’s Army at the MOVES Insti-

tute of the Naval Postgraduate School (Zyda et al. 2005)
and now director of USC’s GamePipe Laboratory, with the
help of many faculty members (including the second author
of this paper) and administrators at USC. Figure 1 gives an
overview of its structure, and the following sections describe
it in more detail, using a shortened version of (Zyda, La-
cour, & Swain 2008). We use the following abbreviations
for classes from different departments: CSCI = Computer
Science, CTAN = Animation Program of the School of Cine-
matic Arts, CTIN = Interactive Media Program of the School
of Cinematic Arts, EE = Electrical Engineering, ITP = Infor-
mation Technology Program, MATH = Mathematics, PHYS
= Physics, and WRIT = Writing.

Regular Computer Science Classes
USC uses games in regular computer science classes early
on, both as motivating topic in lectures and as domain for
projects. For example, CSCI 101 (Fundamentals of Com-
puter Programming) teaches C++ using a semester-long
small game project where the students extend a simple ping-
pong game. A special section of CSCI 201 (Principles of
Software Development) then builds a simple 2D networked
game in C++ with the entire class participating as a group.
As another example, CSCI/EE 352 (Computer Organiza-
tion and Architecture) teaches computer organization and ar-
chitecture from a computational perspective, including low-
level programming. CSCI/EE 452 (Game Hardware Archi-
tectures) then teaches programming the Playstation 3, Xbox
360 and GPU hardware as a case study.

Game Design Classes
Game engineers should understand game design. Game
design classes teach students how to design games on pa-
per, stimulating their creativity. They introduce a friendly
element of competition into the classroom, namely to de-
sign the most fun game. USC uses a three-class sequence
of game design classes run by USC’s School of Cinematic
Arts that uses a process called play-centric design (Fullerton
2006), namely CTIN 488 (Game Design Workshop), CTIN
484 (Intermediate Game Development) and CTIN 489 (In-
termediate Game Design Workshop).

Game Development Classes
Game engineering classes teach students how games work
and how they can code their games so that they can play
them afterwards. USC created a two-class sequence of game
engine programming, namely CSCI/ITP 380 (Video Game
Programming) and CSCI 487/ITP 485 (Programming Game
Engines). The idea behind this sequence is to use a high-
level toolkit (Microsoft XNA Game Studio Express) in the
first class and an actual game engine (built on top of the
Ogre3D rendering engine) in the second class.

Game Cross-Disciplinary Classes
Some game classes are cross-disciplinary classes that bring
together students with different backgrounds, including en-
gineering, interactive media, animation, fine arts and mu-
sic, since game design and development requires a variety

91



of knowledge and skills. The fine arts students come from
a 2D and 3D game art and design minor. CSCI 180 (Sur-
vey of Digital Games and their Technologies) gives a com-
prehensive survey of the history of videogame technology
and game design by combining historical lectures, discus-
sions, and student research presentations with a lab that en-
ables students to play consoles and game emulations from
the early 1970s to today. CSCI 280/ITP 280x (Videogame
Production) gives an introduction to game development via
a combination of lectures, motivational overview talks by
guest speakers from the game industry and a lab in which
students build individual games using GameMaker. CSCI
281 (Pipelines for Games and Interactives) teaches students
how to build 3D models and animations and manage game
assets. CTAN 443 (3D Animation and Character Anima-
tion) teaches students how to develop and animate game
characters. CTAN 452 (Introduction to Computer Anima-
tion) teaches students the fundamentals of animation using
commercial tools. CSCI 486 (Serious Games Development)
teaches students how to build games whose primary pur-
pose is learning and teaches them how to assess those games
for their ability to provide that learning. All the projects
of this class are built for real clients in areas such as im-
munology, Russian political history, fish biology, disaster
command, fire-fighting command, airplane assembly and fi-
nancial management.

Final Project Classes

Final game project classes give students a more holistic view
of computer science and teach or reinforce a variety of skills,
including computational thinking skills, software engineer-
ing skills, programming skills, game development skills,
artistic skills, problem-solving skills and teamwork skills
(such as collaboration and communication skills) in teams
with very different expertise, both to develop an engaging
game and to code it. CSCI 491a (Final Game Projects) is
a game cross-disciplinary class that brings together all of
the skills learned by the students to develop a game in large
cross-disciplinary teams. There is a production pipeline:
The teams receive game designs from CTIN 484 (Inter-
mediate Game Development) and CTIN 489 (Intermediate
Game Design Workshop), that were taught in the previous
semester, and assets from CSCI 281 (Pipelines for Games
and Interactives) and CSCI 443 (3D Animation and Char-
acter Animation) and game-engine technology from CSCI
522 (Game Engine Development), which are taught concur-
rently. 491b (Advanced Game Projects) is used to further
develop these games and get them ready for competition.
The students demonstrate these games in a joint demo day
at the end of each semester to representatives from the game
and computing industry, including Sony, Electronic Arts,
Activision, THQ Interactive, Digital Domain, Seven Stu-
dios, Tactical Language, National Geographic, Dassault, iS-
portGames, Lockheed Martin, Disney, Emsense, Harmonix
Music, Kotrala, Motorola, Applied Minds, Northrup Grum-
man, Big Stage, Sandia National Laboratories, Konami, Lu-
cas Arts, and Pandemic.

Enrollment, Retention and Job Opportunities
In Fall 2006, there were only 223 applicants to the Bache-
lor’s Program in Computer Science. In Fall 2007, after the
introduction of the Bachelor’s Program in Computer Science
(Games), there were 219 applicants to the Bachelor’s Pro-
gram in Computer Science and 164 applicants to the Bach-
elor’s Program in Computer Science (Games). Thus, the
application rate increased substantially, which doubled the
enrollment figures and thus achieved one of the intended
purposes. It is still too early to evaluate whether the reten-
tion rate increased as well. Currently, the undergraduate stu-
dents in computer science are split about evenly into both
programs, with no statistically significant difference in their
GPA averages. USC managed to put 30 students into in-
ternships and jobs in Spring 2007 and 50 students in Spring
2008 at game and computing industries such as Electronic
Arts, THQ Interactive, Disney, Activision, Blizzard, Apple,
Emsense, Big Huge Games, 7 Studios and Applied Minds.

Artificial Intelligence
CSCI 460 (Artificial Intelligence) is a regular computer sci-
ence class that is part of the bachelor’s degree and regularly
taught by the second author of this paper. We are now mod-
ifying the class to use games as a motivating topic in lec-
tures and as the domain for all projects, which makes sense
since artificial intelligence becomes more and more impor-
tant for game development, now that games use graphics li-
braries that produce stunning graphics and thus no longer
gain much of a competitive advantage via their graphics ca-
pabilities. Many games need path-planning capabilities and
thus use search methods. Some games already use machine
learning or planning methods. For example, “Black and
White” uses a combination of inductive learning of decision
trees and reinforcement learning with neural networks, and
“F.E.A.R” uses goal-oriented action planning. Thus, games
can be used to illustrate many areas of artificial intelligence
and, furthermore, provide research challenges for artificial
intelligence (Buro 2003). It was tempting for us to use a
publicly available game engine throughout the class and then
ask the students to perform several projects in it, such as a
search project to plan the paths of the game characters and a
machine-learning project to make them adapt to the behav-
ior of their opponents. However, the students in the Bach-
elor’s Program in Computer Science (Games) already have
plenty of exposure to game engines while the students in the
Bachelor’s Program in Computer Science do not need the
additional overhead. To put all students on the same footing
and allow them to concentrate on the material taught in the
class, we decided to go with several small projects that do
not need a large code base. We now describe two different
projects that we are currently developing for the undergrad-
uate and graduate introductions to artificial intelligence (two
different classes with similar syllabi), a step-by-step one for
search and a more open-ended one for machine learning.
They are challenging projects that require ambitious, mo-
tivated and smart students. Some might argue that they are
more suitable for graduate students than undergraduate stu-
dents, which we still need to evaluate.

92



Figure 2: Sliding-Block Puzzle Solvable with 10 Moves

Search
We are developing a step-by-step project for search. Heuris-
tic search and, in particular, A* are among the important
single-agent search techniques and thus good candidates for
a project in artificial intelligence. An obvious choice for
a project is to use A* to solve the eight puzzle or similar
sliding-tile puzzles (Hordern 1986), perhaps with different
heuristics. However, information on how to solve sliding-
tile puzzles with A* is covered in almost all textbooks. We
therefore used to use sliding-block puzzles, where one has
to move blocks of different sizes and shapes in a rectangu-
lar enclosure to move a given block to a given goal posi-
tion. Sliding-block puzzles are only seldomly covered in
textbooks.1 One can ask the students to design informed
consistent heuristics for them and then solve them by cod-
ing and running A* with these heuristics. There exist dif-
ficult instances of sliding-block puzzles since solving them
is PSPACE-complete in general (Hearn 2004), which makes
A* quickly run out of memory. Thus, care must be taken to
select relatively easy instances, such as instances with small
enclosures and short solutions. Figure 2 shows such an in-
stance, where the large block has to be moved so that it could
be moved out of the exit on top. However, both sliding-tile
puzzles and sliding-block puzzles are more puzzle-like than
game-like.

We are therefore developing a project where the students
use a generalization of A* (that we call Adaptive A*) to
move game characters in initially unknown gridworlds to a
given goal cell. The students need to code A* and Adap-
tive A* and then develop a good understanding of A* and
heuristics to answer questions that are not yet covered in
textbooks. We give them a description of Adaptive A* and
its application to path planning in initially unknown grid-
worlds. Figure 5 gives a shortened description that closely
follows (Koenig & Likhachev 2005a). The search project is
versatile since it allows for theoretical questions and imple-
mentations:

• One can ask the students to code A* in a way so that it searches
forward and breaks ties among cells with the same f-value in
favor of a cell with either the smallest g-value or the largest g-
value and then explain the difference in the number of expanded
cells or in runtime in randomly generated mazes that are gener-
ated with a terrain generator that they are provided with (easy).

• One can ask the students to code A* both in a way so that it
searches forward from the current cell of the game character to
the given goal cell and in a way so that it searches backward

1Examples of sliding-block puzzles can be found at
www.puzzleworld.org/SlidingBlockPuzzles/4x5.htm and
www.pro.or.jp/ fuji/java/puzzle/slide/V1.0/fuji.index.html.

Figure 3: Forward A* Searches

Figure 4: Adaptive A*

from the given goal cell to the current cell of the game character
and then explain the large difference in the number of expanded
cells or in runtime (moderately difficult).

• One can ask the students why Adaptive A* leaves initially con-
sistent heuristics consistent and makes them more and more in-
formed (to be precise: no less informed) over time, which can
be shown with two simple proofs (moderately difficult).

• One can ask the students to code both Adaptive A* and A* in a
way so that they search forward from the current cell of the game
character to the given goal cell and then measure the difference
in the number of expanded cells or in runtime (easy).

• One can ask the students how to generalize Adaptive A* to the
case where the given goal cell moves, for example, because the
game character is trying to catch a hostile game character or
because the game character is trying to catch up with a friendly
game character (difficult).

• One can ask the students to explain the behavior of Adaptive A*
if the action costs of actions can increase as well as decrease,
which can happen in real-time computer games (easy).

• One can ask the students how to generalize Adaptive A* so
that it continues to find cost-minimal paths if the action costs
of actions can increase as well as decrease (difficult). Alter-
natively, one can ask them to read up on D* Lite (Koenig &
Likhachev 2005b) (which has this property and is thus the path-
planning method of choice for real-time computer games), code
both Adaptive A* and D* Lite, and measure the difference in
runtime (difficult).

Overall, the search project is not easy since it requires stu-
dents to develop a good understanding of A* and heuristics.
(Solutions are available from the second author of this paper
on request.) We learned that the students need a longer ex-
ample to understand exactly how the game characters are
supposed to move, when they observe additional blocked
cells and when they are supposed to search. We have there-
fore recently created a longer version of the project that

93



We explore the following way of making A* more efficient when it solves a series of similar search problems, resulting in a version of A*
that we will call Adaptive A*. The task of Adaptive A* is to repeatedly find cost-minimal paths to a given goal state in a given state space
with positive action costs. The searches can differ in their start states. Also, the action costs of an arbitrary number of actions can increase
between searches by arbitrary amounts. Adaptive A* uses informed h-values to focus its searches. The initial h-values are provided by the
user and must be consistent for the initial action costs. Adaptive A* updates its h-values after each search to make them more informed and
focus its searches even better. An iteration of Adaptive A* proceeds as follows: It first updates the action costs, if necessary, to reflect any
increases in action costs. It then runs a forward A* search to find a cost-minimal path from the start state to the goal state. Assume that
the search determined that the cost of the cost-minimal path is g*. Let CLOSED be the set of states that were expanded during the search.
Then, Adaptive A* sets h[s] := g* − g[s] for all states s ∈ CLOSED, where g[s] is the g-value and h[s] is the h-value of state s after the
search. It then starts a new iteration. One can prove that the h-values of the same state are monotonically nondecreasing over time and thus
indeed become more informed. One can also prove that the h-values remain consistent and Adaptive A* thus continues to find cost-minimal
paths over time without having to re-expand states during the same search. This principle was first described in (Holte et al. 1996) and later
rediscovered in (Koenig & Likhachev 2005a). Now consider characters in real-time computer games such as Total Annihilation or Warcraft.
The game characters often do not know the terrain in advance but automatically observe it within a certain range around them and then
remember it for future use. To make the game characters easy to control, the users can click on some position in known or unknown terrain
and the game characters then move autonomously to this position. We discretize the terrain into cells that are either blocked or unblocked and
assume for simplicity that the game characters can only move in the four main compass directions with unit action costs and thus operate on
four-connected gridworlds. As heuristic estimate of the distance of two cells we use the consistent Manhattan distance. The game characters
initially do not know which cells are blocked. They always know which (unblocked) cells they are in, sense the blockage status of their four
neighboring cells, and can then move to any one of the unblocked neighboring cells. Their task is to move to a given goal cell. Our game
characters find (with Adaptive A*) and then follow a cost-minimal presumed unblocked path from their current cell to the given goal cell,
where a presumed unblocked path is one that does not pass through cells that are known to be blocked. (Note that they can search forward
from their current cell to the given goal cell or backward from the given goal cell to their current cell.) Whenever the game characters observe
additional blocked cells during execution, they add them to their map. If such cells block their current path, they find and follow another
cost-minimal presumed unblocked path from their current cell to the given goal cell, and repeat the process until they either reach the given
goal cell or all paths to it are blocked. Figure 3 shows the resulting A* searches and Figure 4 shows the resulting Adaptive A* searches for a
simple navigation example. The black circle is the game character. Black cells have been observed as blocked. The arrows show the planned
paths from the current cell of the game character to its goal cell, which is in the lower right corner. All search methods break ties between
cells with the same f-values in favor of cells with larger g-values and remaining ties in the following order, from highest to lowest priority:
right, down, left and up. All cells have their h-value in the lower left corner. Generated cells also have their g-value in the upper left corner
and their f-value in the upper right corner. Expanded cells are shown in grey. For Adaptive A*, expanded cells have their updated h-values
in the lower right corner. Note that A* re-expands the three cells in the bottom row because the h-values are misleading. Adaptive A* avoids
these re-expansions since it updates the h-values.

Figure 5: Excerpt: Description of Adaptive A* for the Search Project (Short Version)

contains such an example. One comment on ratemypro-
fessors.com after fielding the project in the graduate intro-
duction to artificial intelligence was “Beware the “warm
up project.” Its [sic!] like warming up by running a
marathon, but the class is interesting!” We improved the
project description and fielded it again in the graduate in-
troduction to artificial intelligence, where is was evaluated
with a detailed questionnaire that included questions such
as “was the project easier, equally difficult or harder than
2-week projects in other computer science classes at USC”
(7:8:8), “was the project less time-consuming, equally time-
consuming or more time-consuming than 2-week projects in
other computer science classes at USC” (4:8:10), “did the
project achieve its objective of allowing you to understand
A* better” (23:0:2) and “should we offer the project again”
(24:2:1). Some students suggested that we provide a code
skeleton and de-emphasize the proofs.

Machine Learning
We are developing a similar step-by-step project for machine
learning, namely one that uses genetic algorithms to evolve
game characters that survive in a hostile environment, in-
spired by (Laramee 2002), and that use neural networks for
the recognition of static hand poses and gestures, inspired by
(Mitchell 1997). However, we are also experimenting with

Figure 7: Pinball Simulator (Winstead & Christiansen 1994)

a more open-ended project for machine learning where the
students use machine-learning methods to control the sim-
ulation of a pinball machine, see Figure 6. Playing pin-
ball provides an interesting control problem (namely, how
to best affect the ball) that combines high-level planning
with low-level control in a time-constrained and not com-
pletely predictable environment. Insight into this control
problem can potentially be used to solve more complex con-
trol problems, such as flying helicopters. It appears to be
relatively simple: First, we use a simple pinball machine
that does not require state information other than the state of
the ball, which is given by four floating point numbers that

94



Write a learning system that learns to play pinball well on a simple pinball simulator that we will provide you with. First modify the layout
of the pinball table so that the ball gets easily lost when it ends up in the wrong part of the table. Then, rearrange the bumpers so that the
learning system can score high in that part of the table. The task of the learning system is to get as high a score as possible with, say, 50
balls. It can observe the coordinates of the ball, but has no prior knowledge of the layout of the pinball table. Now the learning system has to
trade-off between shooting the ball where it can learn something new, shooting the ball where it can score high, and shooting the ball where
it is safe. How does your learning system handle this trade-off? For example, does it reason about the trade-off explicitly or implicitly? You
can look up prior work on this problem, including (Johnson 1993; Winstead & Christiansen 1994; Winstead 1996), but be creative and come
up with ideas on your own (either something completely different or something that extends the previous ideas).

Figure 6: Excerpt: Pinball Project

describe its position and velocity. Second, there are only
two binary user inputs that describe which flipper buttons
have been pressed. However, the control problem is chal-
lenging to solve. It is therefore not surprising that we know
of three undergraduate projects (often honors projects) that
attempted to learn when to flip the flippers to either keep
the ball in play for as long as possible or to score as high
as possible, namely a student at Massachusetts Institute of
Technology who used both stochastic hillclimbing and Ho-
effding races (Johnson 1993), a student at Tulane University
who used reinforcement learning (Winstead & Christiansen
1994; Winstead 1996), and our own student who used neu-
ral networks. We use a cleaned-up version of the simple
pinball simulation of Nathaniel Winstead, see Figure 7. We
added two kinds of interfaces, a user interface that allows
people to play the simulation and a software interface that al-
lows one to write controllers. We provide a simple controller
that repeatedly flips both flippers up and down when the ball
crosses an imaginary line from above that is close to the flip-
pers, for a total of less than 1500 lines of C++ code. Peo-
ple can play much better than this simple controller (even
if they have never played the pinball simulation before), yet
it is challenging to write better controllers. We have used
this project as an undergraduate honors project, as an intro-
ductory graduate research project and as the last project in
graduate artificial intelligence classes that covered a variety
of machine learning and search methods, including decision
trees, neural networks, reinforcement learning, probabilistic
search with Markov decision processes, and hill-climbing
algorithms (such as simulated annealing and genetic algo-
rithms). We then left it up to the students to attack this con-
trol problem with any method that they learned in the class.
We ran early trials of this project (where the students came
up with very creative solutions) but yet have to use it in arti-
ficial intelligence classes at USC.

Conclusion
We reported on the efforts of USC to teach computer sci-
ence and artificial intelligence with games. We are having
fun in the process! The future will show whether we man-
age to achieve our objectives, namely to increase retention
and educate better computer scientists. We will soon put
projects and additional material onto our webpages at “idm-
lab.org/gameai”.

References
Buro, M. 2003. Real-time strategy games: A new AI research
challenge. In Proceedings of the International Joint Conference

on Artificial Intelligence, 1534–1535.
Business Roundtable. 2005. Tapping America’s potential: The
education for innovation initiative.
Cliburn, D. 2006. The effectiveness of games as assignments
in an introductory programming course. In Proceedings of the
Annual ASEE/IEEE Frontiers in Education Conference, 6–10.
Fullerton, T. 2006. Play-centric games education. IEEE Com-
puter 39(6):36–42.
Hearn, R. 2004. Tribute to a Mathemagician. A K Peters. chapter
The Complexity of Sliding Block Puzzles and Plank Puzzles.
Holte, R.; Mkadmi, T.; Zimmer, R.; and MacDonald, A. 1996.
Speeding up problem solving by abstraction: A graph oriented
approach. Artificial Intelligence 85(1-2):321–361.
Hordern, E. 1986. Sliding Piece Puzzles. Oxford University
Press.
Johnson, M. 1993. Algorithms for pinball simulation, ball track-
ing, and learning flipper control. Technical report, Massachussets
Institute of Technology. Bachelor’s Thesis.
Koenig, S., and Likhachev, M. 2005a. Adaptive A* [poster ab-
stract]. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, 1311–1312.
Koenig, S., and Likhachev, M. 2005b. Fast replanning for navi-
gation in unknown terrain. Transactions on Robotics 21(3):354–
363.
Laramee, F. 2002. AI Game Programming Wisdom. Charles River
Media. chapter Evolving the Perfect Troll.
Mitchell, T. 1997. Machine Learning. McGraw-Hill.
Winstead, N., and Christiansen, A. 1994. Pinball: Planning and
learning in a dynamic real-time environment. In Proceedings of
the AAAI-94 Fall Symposiumon Control of the Physical World by
Intelligent Agents, 153–157.
Winstead, N. 1996. Some explorations in reinforcement learning
techniques applied to the problem of learning to play pinball. In
Proceedings of the AAAI-03 Workshop on Entertainment and AI /
A-Life, 1–5.
Zyda, M.; Mayberry, A.; McCree, J.; and Davis, M. 2005. From
viz-sim to vr to games: How we built a hit game-based simula-
tion. In Rouse, W., and Boff, K., eds., Organizational Simulation:
From Modeling and Simulation to Games and Entertainment. Wi-
ley Press. 553–590.
Zyda, M.; Lacour, V.; and Swain, C. 2008. Operating a com-
puter science game degree program. In Proceedings of the Game
Development in Computer Science Education Conference.
Zyda, M. 2006. Educating the next generation of game develop-
ers. IEEE Computer 39(6):30–34.
Zyda, M. 2007. Creating a science of games. Communications of
the ACM 50(7):26–29.

95




