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Abstract

Coordination is an important phenomena occurring in a wide
variety of social and technical systems. We use simulation
to examine the ways in which one important system prop-
erty, the interaction network, effects overall levels of coordi-
nation. In particular, we survey the performance of six differ-
ent learning algorithms, including reasonable strategies and
no regret strategies on networks generated by six different al-
gorithms. Our results suggest that no-regret mechanisms not
only perform better but also come closer to replicating human
behavior in the network coordination task.

Introduction

Coordination and cooperation are extremely important so-
cial phenomena that have prompted research in a wide array
of disciplines, including sociology, psychology, economics
and philosophy. Game theorists in particular have been in-
terested in the study of cooperation and coordination. The
Prisoner’s Dilemma (Axelrod 1984) alone inspired more that
one thousand articles (Donninger 1986). More importantly,
research on the Prisoner’s Dilemma and related problems
has been applied to real world scenarios (e.g. (Cable &
Shane 1997)). Commons(?), a Clearly, these are important
problems with significant real-world application.

As awareness of social networking websites like Face-
book, MySpace and LiveJournal grows, both researchers
and members of the public alike are becoming increasingly
aware of the crucial role that social networks play in a wide
variety of social phenomena (e.g. (Backstrom ez al. 2006)).
Among other results, there is significant evidence that an
individual’s position within the social network plays a sig-
nificant role in influencing their productivity (Cataldo et al.
2007).

Parallel to this interest in social network research, a new
game theoretic framework has been developed that incorpo-
rates some aspects of social networks into a game theoretic
framework. These new games, called graphical games, re-
strict each player’s influence to his immediate neighbors in
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Figure 1: An Example of the Graph Coloring Coordination
Problem

the social network (Kearns 2007). Early experimental re-
sults from these games indicate significant network effects.
Kearns, Suri, & Montfort (2006) conducted experiments in
which human subjects solved a version of the vertex coloring
problem that was converted into a graphical game. Each par-
ticipant had control of a single vertex in the network. One
task was to coordinate (indirectly) with their neighbors so
that they all had the same color. Participants had limited
knowledge of the network; they were only able to see their
immediate neighbors. Figure 1 shows an example of this
game.

Kearns, Suri, & Montfort (2006) observed several inter-
esting relationships between network structure and appar-
ent difficulty of coordination. In particular, they found that
networks generated by preferential attachment made solv-
ing the coloring problem more difficult than did networks
based on cyclical structures, and that small-world networks
were easier still. However, due of the constraints imposed
by working with human subjects, Kearns, Suri, & Mont-
fort (2006) were able to test a limited of networks. As such,
there were several potentially confounding variables, includ-
ing network size and density.

This work attempts a more robust investigation into the
effects of network structure on coordination by using simu-



lation to more completely explore the network dimension.

Background
Learning Mechanisms

We use the modified versions of six learning algorithms
as introduced by Greenwald et al. (2001). The algorithms
can be divided evenly into two classes, reasonable learning
methods (Friedman & Shenker 1998; Erev & Roth 1996;
Friedman & Shenker 1996) and no-regret learning meth-
ods (Foster & Vohra 1993; Auer et al. 1995; Hart & Mas-
Colell 2000). Reasonable learning algorithms are algorithms
that rapidly learn to play (with high probability) the strat-
egy with the highest average payoff (Friedman & Shenker
1998). No-regret learning is based on minimizing a mathe-
matical formalization of regret. In this context, the regret for
a player using strategy ¢ is the difference between the pay-
off actually received for using strategy ¢ and the payoff that
would have been received if a different strategy, j, had been
used every time that ¢ was used (Greenwald & Jafari 2003).

Network Topologies

A variety of network generation algorithms were used to
construct the interaction network. These included two
scale-free networks (Barabdsi & Albert 1999; Eppstein &
Wang 2002), two small-world networks (Kleinberg 200;
Watts 2003) and two simple networks (lattice and Erdos &
Rényi (1960)). A comparison of the network generation al-
gorithms can be found in table 2 !.

Name Small-World Scale-Free
Barabasi-Albert (PA) Yes Yes
Eppstein-Wang (Eppstein) ~ Yes Yes
Erdos-Renyi (Erdos) No No
Kleinberg (Kleinberg) Yes No
Watts (Watts) Yes No
Lattice (Lattice) No No

Figure 2: A Comparison of the network generation models

Methods

The simulation was built using the Repast (North, Collier, &
Vos 2006) framework for agent-based simulation. The un-
derlying interaction for the simulation was the coordination
version of the graph coloring problem. In this game, agents
control the color of a single vertex in a network and are re-
warded based on the number of neighbors who have chosen
the same color. The underlying network remains unchanged
for the duration of the simulation. Each simulation consists
of a sequence of 2000 rounds with each round consisting of
several stages. First, each agent independently chooses a fu-
ture action. When all agents have made a decision, they act.
In this case, acting consists of revealing the new action and

!The network generation parameters used were 3 = 0.5(Watts)
and a = 2.0(Kleinberg).
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being rewarded based on the new coloring of the network.?
Finally, after all agents have acted, each agent is given an
opportunity to learn from their new observation.

Each simulation consists of a homogeneous population all
using the same learning algorithm and utility function 3

Four independent variables were varied for the simula-
tion: the number of vertices in the network, the average
number of neighbors each vertex had(average degree), the
graph generation algorithm and the learning algorithm. The
numbers of vertices in the network varied between 49, 100,
400 and 900, while the average degree was one of 2.0, 4.0,
8.0, 16.0 and 24.0.

Results

The results provide strong evidence that the structure of the
interaction network can influence coordination. In particu-
lar, there is evidence that lattice-style networks lead to lower
levels of coordination. In addition, no-regret algorithms in
general and the Foster-Vohra and Internal Regret algorithms
in particular show both .

Learning Algorithms

We begin by comparing the performance of the assorted
learning methods. Figure 3 shows the performance of each
learning method. It would appear that the no regret algo-
rithms and potentially the stage learning algorithm are do-
ing the best.* Indeed, when the performance of each learn-
ing method is separated by graph topology we can see that
the FV and IR algorithms outperform the others by roughly
a factor of 10 (see Figure 4). This is again the case when
examining the robustness of the learning algorithms as the
graph increase in size (Figure 5) and density (Figure 6). Ta-
ble 1 shows the impact as determined by a simple linear
model of each learning method compared to random. Al-
though all algorithms do perform significantly better than
random, the difference is not compelling outside of the FV
and IR.

Learning Method Impact

RE 108
Responsive 112
Stage 264
FS 610
FV 1399
IR 1435

Table 1: Average number of conflicts compared to random.

2 Agent behavior was synchronized for simplicity. Future work
includes removing this simplification.

3The reward function is independent of the “color” chosen. In
other words there is no inherent preference for one color over other.
The informed, responsive variants of the algorithms were used with
parameters v = 0.45, ¢ = 0.05, K = 5(IR), B = 1.0(FS), and
a = 1000.0(FV). These were the best-performing parameters for
each algorithm.

“Because of the number of simulations run, all differences men-
tioned are statistically significant(p < 0.01).



FS Learning FV Learning IR Learning

S

All Learning Methods o T . ] P
£ 8] b€ g £ 8]
o 5 % 5 °4 s =]
S 4 I % g7 T g 27 g 2
- - ° g 2] : g g8 g 8l
~ i ! . s 8] s 8] 1 s R] i 1
H i | R P e ey <. ales | =
i H | 49 400 49 400 49 400
o i i | Number of Players Number of Players Number of Players
S | i H ;
g A
1 ' H Random Learning RE Learning Responsive Learning
T ! | o 5 5 ; q ,
8 i : . 2 o1 . H . .
o ; ! - £ g s 84 : 84
2 H : ! i i S 7y I S 7 T S " T
8 J H : i ; ; 2 o { s o ! e o !
S e ; ! ! g 8] g g8 g g1
N 8 i : ! 2 8] B 2 & g g ]R] 75
3 | < s < s L < o lams=mE T
: T e T T
| 19 40 49 a0 49 40
: Number of Players Number of Players Number o Players
8 | :
S
- Stage Learning
o = : ‘
T T 2 %ég
> [:4 =
L - 49 400

E
RE - |-
Stage — }

Number of Players

Random —|
‘esponsive —| }

Figure 5: A sequence of boxplots illustrating the influence
that the size of the network had on the average number of
conflicts. Each plot shows data for a single learning algo-
rithm.

Figure 3: Average Number of conflicts as a function of the
learning method.
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Figure 4: A sequence of boxplots illustrating the influence
that the underlying network generation algorithm had on the
average number of conflicts. Each plot shows data for a sin-
gle learning algorithm.

Figure 6: A sequence of boxplots illustrating the influence
that the density of the network had on the average number
of conflicts. Each plot shows data for a single learning algo-
rithm.

58



All Learning Methods

4000

3000

2000

{—

-
_—
e ©

1000

H
H
M
M

o -

Eppstein -
Erdos | |-
Lattice —|

PA |
Watts —

Figure 7: Performance of the FV and IR learning methods
as a function of network topology.

Network Topology

The effect of network topology appears to be highly depen-
dent on the learning method being used. However, because
FV and IR perform much better and more consistently, we
focus on these learning methods. Figure 7 shows the perfor-
mance of FV and IR on the assorted networks. As you can
see, performance is severely degraded on the lattice network
topology. This mirrors the performance of human subjects
in this task and may lend ecological validity to complement
the performance advantage of no-regret learning methods.

Conclusion & Discussion

Interaction networks do indeed have an effect on overall co-
ordination levels. However, the precise effect depends on the
learning strategy. With no-regret learning methods, lattice-
style networks tend toward significantly lower levels of co-
ordination than other types of networks. Surprisingly, this
effect only holds for lattice networks and not for non-small-
world networks in general(e.g. Erdos-Rényi networks).
Further work is needed in relaxing some of the assump-
tions being made. In particular, the assumption regard-
ing synchronous decision-making among the population is
clearly unrealistic and must be removed. Also, the assump-
tion of a homogeneous population, regarding both learning
algorithms and preferences among the various “colors” must
be relaxed. In addition, it is unclear exactly why the rea-
sonable strategies performed so poorly. More experiments
are needed to determine precisely the set of circumstances
in which reasonable strategies underperform. Despite these
shortcomings, this work provides additional evidence that
no-regret algorithms consistently perform well in a network
context. In addition, there is evidence that no-regret algo-
rithm are capable of mimicking observable human behavior.
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