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Abstract 
In open societies such as multi-agent systems, it is important 
that coordination among the several actors is achieved 
efficiently. One economical way of capturing that aspiration 
is consensus: social conventions and lexicons are good 
examples of coordinating systems, where uniformity 
promotes shared expectations of behavior and shared 
meanings. We are particularly interested in consensus that is 
achieved without any central control or ruling, through 
decentralized mechanisms that prove to be effective, 
efficient, and robust. The nature of interactions and also the 
nature of society configurations may promote or inhibit 
consensual emergence. Traditionally, preference to adopt 
the most seen choices (the majority option) has dominated 
the emergence convention research in multi-agents, being 
analyzed along different social topologies.  
Recently, we have introduced a different type of interaction, 
based on force, where force is not defined a priori but 
evolves dynamically. We compare the Majority class of 
choice update against Force based interactions, along three 
dimensions: types of encounters, rules of interaction and 
network topologies. The experiments we have made show 
that interactions based on Force are significantly more 
efficient for group decision making. 

Introduction   
Shoham and Tennenholtz (1992) have defended that in 
multi-agent systems agents have to agree on common rules 
to decrease the number of conflicts and promote 
cooperative behaviour. These rules take the form of 
conventions that the agents share to favour coordination. 
Research goals have been centred around the idea of 
emergent collective choice in a decentralised way. This has 
been the theme of such works such as (Delgado 2002; 
Delgado, Pujol and Sangüesa 2992, Sen and Airiau 2007). 
 Essentially, the problem can be stated as follows. A group 
of homogeneous agents has to decide to adopt a 
behavioural strategy out of a given set. There are no good 
reasons to prefer one strategy over the other, the individual 
decision, and even the collective selection are arbitrary. 
What is important is that everyone adopted the same 
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strategy. We can think of examples such as the direction in 
which traffic flows: it is quite unimportant whether it is 
right or left, as long as everyone uses the same lane. 
In dynamical systems this problem proves intractable to 
solve beforehand or in a centralized fashion (Shoham and 
Tennenholtz 1997), so efforts have been concentrated in 
developing emergent co-learning processes that allow 
consensus to be achieved among all the agents (actually, 
usually only 90% of consensus defines convergence, to 
allow for isolated agents to exist without any mind-
changing interactions). 
Agents have a chance to change their convention when 
they interact with other agents, in a decentralised and 
locally confined manner. Shoham and Tennenholtz (1994, 
1997) have studied the efficienty of convergence in these 
conditions, and selected the highest cumulative reward 
(HCR) as the most efficient individual update rule. 
In the initial research on convention emergence (Shoham 
and Tennenholtz 1992; Shoham and Tennenholtz 1994; 
Shoham and Tennenholtz 1997], there were no restrictions 
on interactions; any agent could interact by chance with 
any other individual. Kittock (Kittock 1995) introduced 
interaction graphs in order to specify restrictions on 
interactions and made experiences with the HCR update 
rule along different interaction graphs. Based on his 
experiments with regular and fully connected graphs, he 
conjectured that efficiency depends on the diameter of the 
graph. In what concerns the number of interactions needed 
to accomplish consensus, Kittock observed a variation with 
the number of agents of O(N3) for regular graphs and 
O(NlogN) for fully connected ones. 
However, regular graphs are not very realistic. “If we pay 
attention on real networks, we find out that most of them 
have a very particular topology, they are complex 
networks. (…) Complex networks are well characterized 
by some special properties, such as the connectivity 
distribution (either exponential or power-law) or the small-
world property” research (Delgado, 2002). Delgado et al 
(Delgado, 2002; Delgado, Pujol and Sangüesa 2002) have 
made experiments with HCR update rule for fully 
connected, regular, scale-free and small-world graphs and 
their results were consistent with Kittock’s, confirming the 
relation between efficiency and graph diameter. Delgado 
observed also that scale-free and small-world networks 
were as efficient as fully connected ones, but small-world 
networks were slower to converge to a unique choice. 
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In the latter strategy update rules, agents only interact 
along a succession of pair wise encounters, i.e, they apply 
their strategy update rule after meeting one agent, 
randomly chosen inside the group of its “neighbors”. 
Walker and Wooldridge (Walker and Wooldridge 1995) 
introduced the deterministic Simple Majority (SM) strategy 
update rule, adapted to simultaneous encounters, where 
each agent has access to the strategies of all its neighbors 
before strategy update.  Delgado (Delgado 2002) 
introduced a stochastic variation to SM—he named it the 
Generalized Simple Majority (GSM). 
In (Urbano and Coelho 2005) a new rule for strategy 
update was introduced, named Recruitment based on Force 
with Reinforcement (RFR). This rule showed faster 
convergence than HCR in the case of fully connected 
networks. In RFR, agents have different power to influence 
others, but their force is not defined a priori in a hierarchy 
network as in (Kittock 2004), rather it evolves dynamically 
along the interactions. Agents submit to stronger agents, 
copying their strategies, but also inheriting their force, in a 
double mimetic process. 
In (Urbano et al. 2008) we compare Recruitment based on 
Force against HCR for different topology graphs and RFR 
proved to be more efficient for Fully connected, Small-
world, Scale-free, Regular and Random networks. 
The co-existence of several concomitant social networks, 
and mechanisms permitting permeability among contexts 
in different networks, has allowed more frequent and 
quicker convergence that were not possible in some of the 
hardest cases (Antunes et al. 2007; Antunes et al. 2008). 
In the present paper, we advance research on the emergent 
collective adoption of a common strategy. We expand and 
summarize our results concerning RFR versus HCR/EM, 
and introduce a new behavior called Recruitment of the 
Strongest with Reinforcement, adapted to simultaneous 
encounters. 
This paper is organized as follows: in the next section we 
describe the different network topologies used in the 
experiments. Then we introduce two strategy update rules 
(one based on force, and the other on majority) for pair 
wise encounters and compare them along the different 
social graphs. Then we continue by describing strategy 
update rules (one based on force, and the other on 
majority) for simultaneous interactions, which are 
compared. Finally we conclude pointing some future 
directions. Since this works extends previous work 
presented in (Urbano et al 2008) it is unavoidable to 
describe the results of that research here. 

Interaction Graph Topologies 
The interaction graph topology is a general way of 
modeling restrictions on inter-actions. Restrictions could 
be due to spatial barriers, communicating links, different 
castes, social groups, etc. We have experimented with five 
network topologies: fully connected, regular, scale-free, 
small-world and random. The average path length is 
calculated by finding the shortest path between all pairs of 

nodes, adding them up, and then dividing by the total 
number of pairs. It indicates us, on average, the number of 
steps it takes to get from one member of the network to 
another. The diameter of a graph is the longest shortest-
path between nodes. The clustering coefficient is a 
measure of “all-my-friends-know-each-other” property. 
When it is high, we may say: “the friends of my friends are 
my friends.” The clustering coefficient of a node is the 
ratio of existing links connecting a node’s neighbors to 
each other to the maximum possible number of such links. 
The clustering coefficient for the entire network is the 
average of the clustering coefficients of all the nodes. 

Regular Graphs 
By definition, a graph is considered regular when every 
node has the same number of neighbors. We are going to 
use a special kind of regular graph, explored in (Kittock 
1995) and named Contract Net with Communication 
Radius K in (Tennenholtz 1996). CN,K is the graph (regular 
ring lattice) on N nodes such that node i is adjacent to 
nodes (i+j) mod N and (i−j) mod N for 1≤j≤K. In a CN,K 
graph, every node has connectivity 2*K. These are highly 
clustered graphs but have very long path lengths (average 
path length and diameter grow linearly with the number of 
nodes). 

Fully Connected Graphs 
 
In this type of graph topology, named KN, there are no 
restrictions on the pattern of interactions: each agent is 
connected to every other agent in the society. This means 
that an agent can potentially interact with any other agent. 
KN is a special case of a regular graph where each agent 
has N-1 neighbors, in a group of N agents. 

Random Graphs 
RN,K are random graphs with N nodes and average 
connectivity of K. Every node, has on average, K 
neighbors chosen randomly. The clustering coefficient of 
RN,K tends to 0 and the average path length is small and 
grows logarithmically with N. 

Scale-free Graphs 
This network type, SN,γ has a large number of nodes 
connected only to a few nodes and a small number of well-
connected nodes called hubs. The power law distribution 
highly influences the network topology. It turns out that 
major hubs are closely followed by smaller ones. These 
ones, in turn, are followed by other nodes with an even 
smaller degree, and so on. As the network changes in size, 
the ratio of hubs to the number of nodes in the rest of 
network remains constant—this is why it is named scale-
free. The connectivity of a scale-free network follows a 
power law P(k) ~ k-γ. Such networks can be found in a 
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surprisingly large range of real world situations, ranging 
from the connections between websites to the 
collaborations between actors.  
To generate the scale-free graphs we have used the Albert 
and Barabási extended model (Albert and Barabási 2000), 
since Delgado argues that it allows some control over the 
exponent (γ) of the graph (Delgado 2002). The inspiration 
of this algorithm is that of “preferential attachment,” 
meaning that the most “popular” nodes get most of the 
links. The construction algorithm relies on four parameters: 
m0 (initial number of nodes), m (number of links added 
and/or rewired at every step), p (probability of adding 
links), and q (probability of edge rewiring). The algorithm 
starts with m0 isolated nodes and at each step performs one 
of these three actions until the desired number N of nodes 
is obtained: 

(1) with probability p, add m (≤ m0) new links. Pick two 
nodes randomly. The starting point of the link is chosen 
uniformly and the end point of the link is chosen according 
to the probability distribution:  

! ++="
j
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where Πi is the probability of selecting the ith node and ki 
is the number of edges of node i. This process is repeated 
m times. 

(2) with probability q, m edges are rewired. That is, 
repeat m times: choose uniformly at random one node i and 
one link lij. Delete this link and choose a different node k 
with probability {Πl}l=1,…, N and add the new link lik. 

(3) with probability 1-p-q add a new node with m links. 
These new links will connect the new node to m other 
nodes chosen according to {Πl}l=1,…, N. 
Using this algorithm, the parameter γ is a function of m 
and p: 

1)1)1(2( ++!= mpm"  

Small-world Graphs 
The Small World graphs are highly clustered graphs (like 
regular graphs) with small average path lengths (like 
random graphs, described above). To generate small world 
graphs we use the Watts-Strogatz model (Watts 1999; 
Watts and Strogatz 1998). It depends on two parameters, 
connectivity (K) and randomness (P), given the size of the 
graph (N).  
This model starts with a CN,K graph and then every link is 
rewired at random with probability P, that is, for every link 
lij we decide whether we change the “destination” node 
with probability P; if this is the case, we choose a new 
node k uniformly at random (no self-links allowed) and 
add the link lik while erasing link lij. In fact, for P = 0 we 
have WN = CN,K and for P = 1 we have a completely 
random graph (but not scale-free). For intermediate values 
of P there is the “small-world” region, where the graph is 
highly clustered (which means it is not random) but with a 
small characteristic path length (a property shared with 
random graphs). 

Albert-Barabási model graphs have not the small-world 
property and reciprocally the Watts-Strogatz model does 
not generate scale-free graphs (it generates an exponential 
connectivity distribution, not a power law).   

Strategy Update Rules in Pair wise 
Interactions 

Agent societies consist of N agents on a graph, where 
every agent is located on a node of the graph. Its adjacent 
nodes are its neighbors. In order to make experiments and 
simulations we have adopted a simple agent model where 
they have at their disposal a finite repertoire of strategies. 
We only deal with the two strategies case. We use here the 
concept strategy in a very abstract way: it can be a social 
norm, like driving on the left or on the right lane, the 
meaning of a word, an orientation for flocking, etc. In 
order to focus on the essential features of agent 
interactions, the agent environment consists solely of other 
agents, which in turn depend on the network topology. So, 
each agent has to adopt one of the strategies from the 
repertoire and through mutual interactions they can change 
their adopted strategies along time. A consensus, or 
collective choice, exists when all the agents are using the 
same particular strategy. 
From the point of view of each agent, there is an 
interaction scenario of a sequence of pair wise asymmetric 
encounters, where it meets randomly one of its neighbors. 
After an encounter, each agent updates its strategy, i.e., it 
selects the strategy it will use in the next interaction—the 
result need not necessarily be a change in strategy 
adoption. Therefore, agents need strategy update rules 
(behaviors). We assume that each agent updates its strategy 
at each encounter. Shoham and Tennenholtz (Shoham and 
Tennenholtz 1992; Shoham and Tennenholtz 1997) have 
studied the effects of updating less frequently on the 
efficiency of global choice emergence. We only consider 
asymmetric encounters, where only one of the agents 
applies its strategy update rule, based on the strategies used 
by all the individuals involved in the interaction. Thus, 
interactions are always considered from the point of view 
of some particular agent. We now describe the two strategy 
update rules whose performance we subsequently compare. 
In the first scenario the agent and its selected partner 
strategies are crucial for the update, and in the second case, 
it is the simultaneous strategies of its neighbors and its own 
strategy that influence the update rule. 

External Majority/ Highest Cumulative Reward/ 
Feedback Positive with Score 
 
The External Majority strategy update rule (EM) was 
introduced by Shoham and Tennenholtz (Shoham and 
Tennenholtz 1992) and is the following: adopt the strategy 
that was observed more often in other agents in the last m 
interactions, and remain with your current strategy 
otherwise—in case of a draw do not change. In EM, 
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memory is used to register the strategies observed during 
the last interactions. An agent updates its memory after 
observing its partner strategy and then decides to change to 
a new strategy only in case it was more frequently 
observed than the current one. 
In the context of lexical emergence, Kaplan (Kaplan 2000) 
introduced a strategy update rule called Positive Feedback 
with Score, which is pretty much the same as EM. The 
only difference is that, in case of equality, the agent does 
not necessarily remain with its current strategy but chooses 
randomly one of the previously most seen strategies. 
Kaplan considered the full history of encounters for 
strategy update. 
The most referred strategy update rule is the Highest 
Cumulative Reward update rule (HCR), which was 
developed in the context of game theory by Shoham and 
Tennenholtz (Shoham and Tennenholtz 1994). Intuitively, 
a game involves a number of players each of which has 
available to it a number of strategies. Depending on the 
strategies selected by each agent, they each receive a 
certain payoff. The payoffs are captured in a payoff matrix. 
Thus, returning to the context of this paper, when two 
agents meet they play a pure coordination game, which is 
an instance of the class of coordination games introduced 
by Lewis (Lewis 1969). The pure coordination game is 
defined by the following symmetric payoff matrix: 
 

 A B 
A +1,+1 -1,-1 
B -1,-1 +1,+1 

 
Suppose that every player has two available strategies, say 
A and B. If both players play A, both players receive a 
payoff of 1. If they play B they receive a payoff of 1. 
When the players do not agree, for example, player 1 plays 
A and player 2 plays B, they will both receive a payoff a -
1; the remaining situation is symmetric. The condition on 
the entries of the payoff matrix makes it clear that the best 
action consists in playing the same strategy, i.e., 
coordinating. 
According to the HCR update rule, an agent switches to a 
new strategy if and only if the total payoff obtained from 
that strategy in the latest m interactions is greater than the 
payoff obtained from the current strategy in the same last 
m interactions. The m parameter may not have limit, 
implying that the full history of pair wise meetings will 
play a role in the strategy selection process, or we can 
implement a forgetting mechanism by limiting m. The 
agents’ memories register the payoffs that each strategy 
has received during the last m encounters. When an agent 
receives new feedback it discards its old memory to 
maintain the memory at a fixed size.  
Shoham and Tenneholtz (Shoham and Tennenholtz 1997) 
showed that EM and HCR are equivalent strategy update 
rules in the case there is a repertoire of two strategies to 
select. 

Recruitment based on Force with Reinforcement 
In this strategy update rule there is a new attribute, besides 
the strategy, called force. Thus, agents are characterized by 
two attributes: strategy and force. These attributes can be 
observed during encounters. During a dialogue 
(asymmetric), involving two agents, one is the observing 
agent and the other is the observed one. The observing 
agent “fights” metaphorically with its partner, comparing 
its force with the partner’s force. If the observing agent is 
the stronger one, or if they have identical force, it will 
loose the fight; otherwise it will be the winner. The 
winner’s behavior is: (1) if they have the same current 
strategy its force is reinforced by 1 unit, otherwise (2) it 
does nothing. The loser’s behavior is: (1) it imitates both 
strategy and force in case they have different current 
strategies, otherwise imitates the force of the winner agent 
and increments its force by 1 unit. In sum, stronger agents 
recruit weaker agents for their parties, enlarging the 
influence of their options. As the recruited agents will be at 
least as strong as the winners, they will be better recruiters.  

At the beginning of an experiment, every agent has the 
same value of force (0) and their forces evolve along with 
interactions. Therefore, there is no a priori (off line) power 
hierarchy. This shows a clear contrast with the work of 
Kittock on authority (Kittock 2004), where agents have 
fixed different influences on one another’s behavior, 
modeled by the probability of receiving feedback during 
encounters: the more influential agents receive feedback 
with some probability, while the less influential agents 
always receive feedback. 

The force attribute can be interpreted not as the strength of 
an individual because, being imitated, it is diffused along 
agents, and does not belong to any agent, but as the force 
of the strategy the player is adopting. The more the 
strategy is diffused the more it will have stronger 
representatives. So when a player observes a stronger agent 
it is recruited, inheriting his force, i.e., updating the 
information about the strategy it is now adopting. There is 
a positive reinforcement when an agent faces another with 
the same strategy during a meeting, which is the 
amplification mechanism for strategy diffusion. RFR does 
not try to simulate any natural behavior and it was 
introduced in (Urbano and Coelho 2005) as the best 
outcome of experimenting with several strategies involving 
the idea of emergence of hierarchies in consensus 
emergence. We think it is simpler than the EM as agents do 
not need to maintain the recent history of encounters in 
spite of using force as an extra attribute. It maintains the 
essential properties of EM, which is the capability to adapt, 
locality (an agent relies only is the information gathered in 
interactions), and no more cognitive skills than the 
capability to imitate. 
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Experiments and Results for the Pair wise 
Strategy Update Rules 

Experiments were conducted using the most recent version 
of the Netlogo platform (Wilensky 2003), version 4.0.2, 
released December 2007. 
The system starts with half of the agents adopting 
randomly one of the strategies (50% possibilities for each). 
In each step, every agent, in an asynchronous way, is 
selected and chosen for asymmetric strategy updating. The 
order of selected agents is completely random and changes 
in each iteration. We use the same measure of per-
formance as in (Kittock 2005; Delgado 2002): average 
number of interactions to a fixed convergence, where 
convergence means the fraction of agents using the 
majority strategy. We made 100 runs for each parameter 
setting and in each run we have measured the number of 
encounters until 90% convergence and calculated the 
average performance of the different runs. 
Our main goal was to compare the performance of the two 
strategy update rules: External Majority (EM) and 
Recruitment based on Force with Reinforcement (RFR). In 
order to choose the size of memory of EM update rule we 
have made a lot of experiments with different types of 
networks and the size = 3 achieved the best performance. 
Both Kittock (Kittock 2005; Kittock 2004) and Delgado 
(Delgado 2002; Delgado, Pujol and Sangüesa 2002) chose 
size = 2 in their convention experiments, but size 3 EMs 
out-performed size 2 EMs in our own tests. 

Figure 1 – RFR vs EM in and random networks (with 40 
neighbors per agent on average - RN,20) and fully connected 
networks (KN). 

So we will only present the comparison between RFR and 
the best EM (EM-3). The comparison between these two 
behaviors was made along the different kinds of networks 
described before, using different parameter settings. Again, 
we only present here the most representative experiments. 
For all settings we made the number of agents range from 
100 to 1000, using a step of 100. 
In figure 1, we can see a comparison between the average 
number of meetings needed for a 90% convergence using 
the two behaviors in fully connected (dashed lines) and 
random networks (K=20, solid lines), and with RFR 
(diamonds) and EM (squares) as update rules. In both cases 

RFR clearly outperforms EM, since consensuses are 
reached in a much lower number of meetings. Besides, the 
difference appears to increase with N. In fact, in the above 
experiments, improvements vary between 26% and 37%. 
 
Using other types of networks, the difference between the 
two behaviors is even clearer. In figure 2 we compare the 
performance of the two behaviors in small-world networks 
(with P = 0.1, dashed lines), regular networks (with K = 
20, each agent with 40 neighbors, solid lines) and scale-
free networks (with γ=2.5, dotted lines). In these cases we 
need to use a logarithmic scale in the y axis. The average 
number of meetings needed to reach a consensus is again 
much lower when RFR (diamonds) is used. In Scale-free 
networks, the performance is improved between 25% and 
37%; in Small-world networks improvements reach 80%. 
Using regular networks the difference with N greater than 
500 is so huge that it is not represented. 

Figure 2 - RFR vs EM in small-world, WN(K=12; P=0,1), regular, 
CN,20, and scale-free networks, SN,2.15. 

Strategy Update Rules in Simultaneous 
Interactions 

In contrast with previous experiences, now, in each 
encounter an agent interacts not only with a randomly 
chosen neighbor, but with all his neighbors at the same 
time. Interaction is asymmetric, seen from the point of 
view of an agent—the simultaneous state of neighbors is 
used to update agents’ strategy, and naturally will have to 
be taken into account in the strategy update rules. Again, 
each agent updates its strategy at each encounter.  

Generalized Simple Majority 
The natural strategy update rule to use in simultaneous 
interactions with all neighbors, equivalent to EM, for the 
pair wise encounter, would be the Simple Majority created 
by Walker and Wooldridge (Walker and Wooldridge 
1995). Following this rule, an agent only changes strategy 
when more than half of the neighboring agents adopt a 
different strategy than its current one. This deterministic 
rule does not guarantee convergence to a consensual 
situation for some networks, specially the regular ones. In 
some cases, even in small groups, agents get stuck in a 
deadlock, never reaching a situation of full convergence or 
even 90% convergence. Delgado (Delgado 2002) 
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developed a stochastic version of Simple Majority, which 
they named the Generalized Simple Majority (GSM). We 
are going to describe GSM, not exactly the sane way as 
was originally defined by Delgado.  
Suppose we have N agents in a graph with a well-defined 
neighborhood for every agent. If agent j has K neighbors it 
will adopt state S with a probability that depends on the 
number of neighbors adopting S (

S
K ): 
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The formula above is a corrected version of the one 
introduced by (Delgado 2002). This rule generalizes 
Simple Majority since, for β→∞, an agent adopts state S 
only when at least half of the neighbors are in that state. 
Note that when a tie occurs, the probability of changing is 
50%. In our experiences, we used β = 10 – it was also used 
in (Delgado 2002). 

 
Figure 3 – Probability of changing to a new state S, for β=10, 
given the percentage of neighbors that are adopting S. 
 
As illustrated in figure 3, the probability of adopting S is 
positive even when the neighbors adopting S are not in 
majority. This is true for values greater than 38%. 
Conversely, it is possible to adopt a state that is adopted by 
the minority of the neighbors, which can happen if the 
majority is no greater than a percentage of 62%. Note that 
when a tie occurs, the probability of changing is 50%. 
Delgado provided some analytical evidence for the 
convergence of GSM, but no theorem exists that 
guarantees it. In our experiments, GSM has always 
converged to a consensual situation of 90%, in all types of 
networks, varying the number of agents until 1000.  

Recruitment by the Strongest with Reinforcement 
 
In order to adapt the RFR update rule to simultaneous 
interactions, partners in encounters will not be chosen 
randomly as before. Now an agent can access the strategies 
of all its neighbors—it will choose the strongest to 
compare forces and eventually imitate it and for 
reinforcement. The behavior is pure Recruitment based on 
Force with Reinforcement (RFR), but it will be with the 
strongest of its neighbors, not with a random chosen 
neighbor. We will name this strategy update rule 
Recruitment by the Strongest with Reinforcement (RSR). 

There is simultaneous access but real interaction (applying 
RFR) is only with the strongest.  

Experiments and Results for the Simultaneous 
Strategy Update Rules 

The comparison between RSR and GSM was made along 
the different kinds of networks described in section 2, 
using different parameter settings. Again, we only present 
here the most representative experiments and for all 
settings we made the number of agents range from 100 to 
1000, using a step of 100. We counted the number of 
encounters necessary for 90% consensus along 100 runs 
for each parameter setting and values were averaged. 
In figure 4, we can see a comparison between the average 
number of meetings needed for a 90% convergence using 
the two behaviors in fully connected (dashed lines), 
random networks (K=20, dotted lines) and scale-free 
networks (with γ=2.15, solid lines) with RSR (squares) and 
GSM (diamonds) as update rules. 

 
Figure 4 – RSR vs GSM in and random networks (with 40 
neighbors per agent on average - RN,20), fully connected networks 
(KN), and scale-free networks, SN,2.15. 

With the exception of fully connected networks, RSR 
clearly outperforms GSM, since consensuses are reached in 
a much lower number of meetings. In the fully-connected 
case, GSM is slightly better, around 1%, which is marginal 
and not perceptible in the chart. In the Random networks 
case, we have an improvement for RSR around 16% for 
N=100 and gradually the difference increases, and 
stabilizes around 35% for N greater than 500. In the Scale-
free case, RSR, again, exceeds GSM, with an improvement 
which varies between 33% and 48% (N > 500). 
 
Using other types of networks, the difference between the 
two behaviors is even clearer. In figure 5, we compare the 
performance of the two behaviors in small-world networks 
(with K=12, P = 0.1, dashed lines) and regular networks 
(with K = 20, solid lines). In these cases we need to use a 
logarithmic scale in the y axis. The average number of 
meetings needed to reach a consensus is now much lower 
when RSR (squares) is used. In Regular networks, the 
performance is improved in 99%, reaching 99,9% for N 

74



above 600; in Small-world networks improvements reach 
93% for N=100, reaching 98% for N bigger than 300. 

Figure 5 – RSR vs GSM in small-world, WN(K=12; P=0,1), and 
regular networks, CN,20. 

Conclusions and Future Work 
In what respects our primary goal of comparing strategy 
update rules based on majority against ones based on force, 
the main conclusion is that those based on force almost 
always perform better than the ones based on majorty. This 
conclusion is valid for all types of networks with different 
parameter settings, except the case of fully connected 
graphs in simultaneous encounters. Even considering that 
we did not exhaust all type of networks and its parameters, 
this is an impressive result. According to our experiments 
strategy update rules based on force, represent at least a 
25% improvement over the majority one, but is much 
higher in many settings, most extremely in regular 
networks. 
An interesting point is that our results for the RFR strategy 
update rule show that the network diameter strongly 
influences the performance, as noted in other settings by 
authors such as Kittock (Kittock 2005) and Delgado 
(Delgado 2002). The smaller the network diameter is, the 
better. Also, the performance of fully-connected networks 
and scale-free ones seems to be quite similar (as can be 
observed in figure 1, comparing lines with similar marks, 
that correspond to the same behavior). This is a very 
important result since scale-free networks are much less 
expensive than fully-connected ones. Nevertheless, we 
must perform experiments with greater values of N in 
order to obtain definite conclusions on this matter. 
Besides performing experiments with larger values of N, 
three other aspects are scheduled for short-term future 
work. One is to consider that agents can choose between 
more than two strategies. The other is to explore the 
performance of these behaviors in networks with 
dynamical structure, and finally we want to see force 
strategy update rules applied to situations where agents can 
choose between strategies valued differently. 
 

 References 
Albert, R., Barabasi, A.-L. 2000. Topology of evolving 
networks: Local events and universality, Phys. Rev. Lett. 
85, 5234-5237. 
Antunes, L., Balsa, J., Urbano, P., Coelho, H. 2007. The 
Challenge of Context Permeability in Social Simulation. 
Proceedings of the The Fourth European Social Simulation 
Association Conference. 
Antunes, L., Balsa, J., Urbano, P., Coelho, H. 2008. 
Exploring Context Permeability in Multiple Social 
Networks. (submitted) 
Barabasi, A.-L. 2002. Linked: The New Science of 
Networks, Perseus Publishing, Cambridge, Massachusetts. 
Delgado, J. 2002. Emergence of Social Conventions in 
Complex Networks. Artificial Intelligence, 141, 171-185. 
Delgado, J., Pujol, J.M., Sangüesa, R. 2002. Emergence of 
coordination in scale-free networks. Web Intelligence and 
Agent Systems 1(2) , 131-138. 
Kaplan, F. 2000. L’Emergence d’un Lexique dans une 
Population d’Agents Autonomes. These de doctorat de 
l’Université de Paris VI. 
Kittock, J.E. 1995. Emergent conventions and the structure 
of multi-agent systems, in: L. Nadel, D. Stein (Eds.), 1993 
Lectures in Complex Systems, in: SFI Studies in the 
Sciences of Complexity, Addison-Wesley, Reading, MA.  
Kittock, J.E. 1994. The impact of locality and authority on 
emergent conventions: Initial observations, in Proc. AAAI-
94, Seattle, WA, AAAI Press,  pp. 420–425. 
Lewis, D.K., 1969. Convention: A Philosophical Study, 
Harvard Univ. Press, Cambridge, MA. 
Sen, S., Airiau, S. 2007. Emergence of norms through 
social learning. In Proceedings of the twentieth 
International Joint Conference on Artificial Intelligence 
(IJCAI’07).  
Shoham, Y, Tennenholtz, M. 1992. Emergent conventions 
in multi-agents systems: initial experiments results and 
observations. In Proceedings of the 3rd International 
Conference on Principles of Knowledge and Reasoning, 
(1992) 225-231. 
Shoham, Y, Tennenholtz, M. 1994. Co-learning and the 
evolution of social activity. Technical Report STAN-CS-
TR-94-1511, Department of Computer Science, Stanford 
University, Stanford, CA, USA. 
 Shoham, Y, Tennenholtz, M. 1997. On the Emergence of 
Social Conventions: modeling, analysis and simulations. 
Artificial Intelligence 94, 139-166. 
Tennenholtz, M. 1996 Convention evolution in 
organizations and markets. Computational and 
Mathematical Organization Theory 2, 261-283.  
Urbano P., Coelho, H. 2005. From Consensus to 
Consensus: random evolution of collective choices, in 
Proceedings of EPIA 2005 MASTA Workshop, Carlos 
Bento, Amilcar Cardoso and Gaël Dias (eds.), Covilhã 
(Portugal), December 5-7, IEEE, 2005..  
Urbano, P., Balsa., J., Antunes, L. and Moniz, L. 2008. 
Efficiency of the Emergence of Consensus in Complex 
Networks – assessing force influence. (Submitted). 

75



Watts, D.J. 1999. Small Words, the Dynamics of Netwroks 
between Order and Randomness, Princeton University 
Press, Princeton, NJ. 
Watts. D.J. and Strogatz, S.H. 1998. Collective dynamics 
of 'small-world' networks, Nature, 393, 440-442. 
Wilensky, U. 1999. NetLogo. 
http://ccl.northwestern.edu/netlogo/. Center for Connected 
Learning and Computer-Based Modeling, Northwestern 
University, Evanston, IL. 

76




