
Using SOA Provenance to Implement
Norm Enforcement in e-Institutions

Javier Vázquez-Salcedaand Sergio Alvarez-Napagao
Universitat Politècnica de Catalunya, Spain

{jvazquez,salvarez}@lsi.upc.edu

Abstract

In the last 10 years several approaches and technologies other
than MAS (such as Web services and Grid computing) have
emerged, with the support of the industry, providing their
own solutions to distributed computation. As both Web ser-
vices and Grid computing are based in the concept of ser-
vice orientation, where all computation is split in indepen-
dent, decoupled services, there is an opportunity for MAS re-
searchers to test and extend their mechanisms and techniques
in these emerging technologies. In this paper we describe
a way to adapt the HARMONIA framework to be applied in
highly regulated Web services and Grid computing scenarios.
To do so we include aprovenance mechanismas part of our
norm enforcement mechanisms, which can be integrated into
a SOA Governance workflow. We will show with an example
how provenance allows the observation of both service inter-
actions and (optionally) extra information about meaningful
events in the system that cannot be observed in the interaction
messages.

Introduction
With the growth of the Internet and the World Wide Web
over the last fifteen years, previous metaphors for compu-
tation have been superseded by a new metaphor, ofcom-
putation as interaction, where computing is not an action
of a single computer but the result of a network of com-
puters. Multi-Agent Systems (MAS) are one of the tech-
nologies that have emerged in this new metaphor. But they
are not the only one. In the last 7 years other technologies
such as Web services (World Wide Web Consortium (W3C)
2004) and Grid computing (Foster & Kesselman 1998) have
emerged and matured, with the support of both the research
community and the industry. These technologies are based
in the concept of service-orientation (Erl 2004): a distributed
system is comprised of units of service-oriented processing
logic (theservices) which hide their internal logic from the
outside world and minimize dependencies among them. Re-
cently some of these service-oriented technologies are con-
verging into a single overarching framework, called Service-
Oriented Architectures (SOA). Such framework is creating
a collection of best practices principles1. But there are still

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Some of these principles are service abstraction (beyond what
is described in the service contract, services hide logic from the

deeper questions in the SOA community regarding the func-
tioning of distributed systems using automated components.
Many of these issues have been tackled in the research areas
of Artificial Intelligence, Distributed Artificial Intelligence
and, in particular, Multi Agent Systems research.

Thanks to the closeness between agent oriented and
service-oriented approaches, some cross-fertilization be-
tween both technologies is feasible. The SOA community
already has identified some potential to integrate agent re-
search in SOA. For instance, Paurobally et. al have proposed
to adapt and to refine Multi-Agent Systems research com-
munity results to facilitate the dynamic and adaptive negoti-
ation between Semantic Web Services (Paurobally, Tamma,
& Wooldridge 2005). Foster, Jennings and Kesselman al-
ready identified in (Foster, Jennings, & Kesselman 2004) the
opportunity to have some joint research between the Grid
and Agents communities.

In our view, there are also opportunities to apply both or-
ganizational and institutional approaches in SOA technolo-
gies in order to create a social layer on top of existing Web
services and Grid platforms. To do so there are two main
extensions to be done to SOA platforms:

• The introduction of additional semantics to the commu-
nication between services, in order to be able to check
the actual behaviour of the actors in a distributed scenario
from the intended behaviour.

• The introduction of higher-level behavioral control mech-
anisms, based in the extraction of some concepts such as
commitments, obligations and violations, which can be
derived thanks to some intentional stance extracted from
the communication semantics.

There have been already some attempts for the first ex-
tension. An example is the work presented in (Willmottet
al. 2005), where a connection between Agent Communi-
cation Languages and Web Service Inter-Communication is
proposed, to then extend service communication with some
FIPA performatives. The architecture we present in this pa-
per uses this approach.

outside world), service loose coupling (services maintain arela-
tionship that minimizes dependencies and only requires that they
maintain an awareness of each other) and service autonomy (ser-
vices have control over the logic they encapsulate). See (Erl 2004)
for more details and patterns in service-oriented design.

77



In the case of the second extension (introducing higher-
level behavioral control mechanisms in SOA) it is necessary
to have a language and a framework with which to model
and manage the commitments. In this paper we present an
approach that tackles this issue by defining a provenance-
aware norm enforcement framework which combines agents
and web services from an institutional approach, using sub-
stantive norms and landmarks.

SOA behaviour control and monitoring

Provenance

The aim of the IST-funded EU Provenance project was to
conceive a computer-based representation of provenance in
distributed service-oriented applications that allows users to
perform useful analysis and reasoning. Theprovenanceof
a piece of data is the documentation of the process that pro-
duced the data. This documentation can be complete or par-
tial (for instance, when the computation has not terminated
yet); it can be accurate or inaccurate; it can present con-
flicting or consensual views of the actors involved; it can be
detailed or not.

The Provenance architecture assumes that provenance is
investigated in open, large-scale systems composed by ser-
vices, seen as actors, that take inputs and produce outputs.
In this abstract view, interactions between actors take place
using messages. Actors may have internal states that change
during the course of execution. An actor’s state is not di-
rectly observable by other actors; to be seen by another ac-
tor, the state (or part of it) has to be communicated within a
message sent by its owner actor. This architecture has for-
mal foundations in theπ-calculus (Milner 1999) and asyn-
chronous distributed systems (Lynch 1996). Theπ-calculus
is of interest in this context because of its approach to defin-
ing events that are internal to actors as hidden communica-
tions. This view also allows to formally define mappings
with a) Grid applications, b) Web Services and c) Agent-
Mediated Services and Applications.

Elements of the provenance architecture The prove-
nance of a data item is represented in a computer system
by a set ofp-assertionsmade by the actors involved in the
process that created it. A p-assertion is a specific piece of
information documenting some step of the process made by
an actor and pertains to the process. There are three kinds of
p-assertions that capture an explicit description of the flow
of data in a process. Aninteraction p-assertionis an asser-
tion of the contents of a message by an actor that has sent or
received that message. Arelationship p-assertionis an as-
sertion about an interaction, made by an actor that describes
how the actor obtained output data or the whole message
sent in that interaction by applying some function to input
data or messages from other interactions. Anactor state p-
assertionis an assertion made by an actor about its internal
state in the context of a specific interaction.

The long-term facility for storing the provenance repre-
sentation of data items is theprovenance store. The prove-
nance store is used to manage and provide controlled access
to the provenance representation of a specific data element.

Provenance life-cycle The provenance life-cycleis com-
posed of four different phases. First, actors create p-
assertions represent their involvement in a computation. Af-
ter their creation, p-assertions are stored in a provenance
store, with the intent they can be used to reconstitute the
provenance of some data. After a data item has been com-
puted, users or applications can query the provenance store.
At the most basic level, the result of the query is the set of
p-assertions pertaining to the process that produced the data.
More advanced query facilities may return a representation
derived from p-assertions that is of interest to the user. Fi-
nally the provenance store and its contents can be managed
through a specific interface (subscription management, con-
tent relocation, etc).

Provenance awareness By transforming a MAS into a
provenance-aware MAS, the resulting system gets the capa-
bility to produce at execution-time an explicit representation
of the distributed processes that take place. Such represen-
tation can be then queried and analyzed in order to extract
valuable information to validate, e.g., the basis of decisions
taken in a given case, or to make an audit of the system over
a period of time.

SOA Governance
SOA Governance2 is an emergent concept in the SOA com-
munity used for activities related to exercising control over
services (webMethods 2006). It is a form of electronic gov-
ernance that has its focus on distributed services and com-
posite architectures, more concretely on SOA scenarios.

In the last years many companies have started to switch to
Service-Oriented Architectures for flexibility reasons and to
adapt to technologies and practices under continuous growth
and standardization. After adopting services as a kind of
business asset, SOA Governance has appeared in the form
of a methodology which affects the full life-cycle of the ser-
vices in terms of specification, design, implementation, de-
ployment, management, control, monitoring, maintenance,
intercommunication, and redesign. Its aim is to give guide-
lines on how to establish shared policies, processes, archi-
tecture and policies across each layer of an organization.

SOA Governance tries to solve several issues, includ-
ing: uncontrolled development of services that adapt usual
process, usually leading to fragile services less robust than
the previous implementation counterparts; lack of reusabil-
ity, either because they are not designed with reusability in
mind, or because they are not seen as valuable components
in themselves; security compromise; and unexpected perfor-
mance.

In summary, SOA Governance is intended to give the
methodology and the tools needed to maintain the order in
SOA environments. Some reports already try to identify
how the community is doing at heading in this direction and
which companies are on the good track and what do they
lack of (Fulton 2008; Kenney & Plummer 2008).

2SOA Governanceshould not be confused withE-Governance.
E-Governance can be defined as the use of Information and Com-
munication Technology as a means to improve transparency, qual-
ity and efficiency of service delivery in the public administration.

78



Figure 1: Actors in the OTMA system. Each medical unit is
represented by an agent (circle in figure).

There are three steps that define SOA Governance man-
agement (webMethods 2006). Design-Time Governance
deals with the definition and application of policies that will
govern the design and implementation of Web services in the
organization, prior to their deployment in the actual busi-
ness environment. During Run-Time Governance, policies
are defined and enforced in order to govern the deployment,
execution, and use of the Web services. Eventually, web ser-
vices are supposed to be redesigned and reimplemented in
order to adapt to business evolving requirements. Change-
Time Governance focuses on how the changes on the ser-
vices affect the behaviour of a whole SOA environment.

The approach currently used in SOA Governance man-
agement is based on adding additional Web services in the
SOA environment. The main components are:

• Registry: a central catalog for business services.

• Repository: a database of governance policies and meta-
data.

• Policy enforcement points: services responsible for the
enactment of the policies.

• Rules engine: automatic system that manages the enforce-
ment of the policies.

• Configuration environment: user interface for the config-
uration and definition of policies and governance work-
flows.

Use Case: The Organ Transplant
Management Application

The Organ Transplant Management Application (OTMA) is
an Agent-Mediatede-Institution for the distribution of or-
gans and tissues for transplantation purposes. It extends
CARREL (Vázquez-Salcedaet al. 2003), the aim of which
was to help speeding up the allocation process of solid or-
gans for transplantation to improve graft survival rates. As
opposed to CARREL, OTMA uses standard web service
technology and is able to interact with provenance stores in
order to keep track of the distributed execution of the allo-
cation process for auditing purposes.

Norm OTM :N37
Condition OBLIGED(hospital

DO ensure compatibility(organ, recipient))
BEFORE (allocator DO assign(organ, recipient)))

V iolation NOT(done(ensure compatibility(organ, recipient))
condition AND done(assign(organ, recipient))
Sanction inform(board,“NOT(done(ensure compatibility(organ,

recipient)) AND done(assign(organ, recipient))”)
Repairs {stop assignation(organ);

assert(
NOT(done(ensure compatibility(organ, recipient))
BEFORE done(assign(organ, recipient)), p store

);
wait(asserted(
ensure compatibility(organ, recipient)));
resume assignation(organ);}

Figure 2: Example of an OTMA norm

Figure 1 summarizes the different administrative domains
(solid boxes) and units (dashed boxes) that are modeled in
the OTMA system. Each of these interact with each other
through agents (circles in the figure) that exchange informa-
tion and requests through messages. In a transplant manage-
ment scenario, one or more hospital units may be involved:
the hospital transplant unit, one or several units that pro-
vide laboratory tests and the Electronic Healthcare Record
(EHCR) subsystem which manages the health care records
for each institution. The diagram also shows some of the
data stores that are involved: apart from the patient records,
these include stores for the transplant units and the Organ
Transplant Authority (OTA) recipient waiting lists (WL).
Hospitals that are the origin of a donation also keep records
of the donations performed, while hospitals that are recip-
ients of the donation may include such information in the
recipient’s patient record. The OTA has also its own records
of each donation, stored case by case.

A Normative framework based in Norms and
Landmarks

We use HARMONIA(Vázquez-Salceda 2004) as the basis for
our normative framework, although the connection between
the ideal states in the norms and the actual execution states
of the system is done through the concept of landmarks, as
in (Aldewereldet al. 2005).

In our normative framework we propose that enforcement
of norms should not be made in terms of direct control of
a central authority over the goals or actions that the agents
may take, but through the detection of theviolation states
that agents may enter into and the definition of thesanc-
tions that are related to the violations. With this approach
we do not make strong assumptions about the agents’ in-
ternal architecture, as thee-Institution only monitors the
agent behaviour (that is, agents are seen asblack boxes.).
The enforcement of the norms in ane-Institution is achieved
through a special kind of agents, theEnforcement Agents,
which monitor the behaviour of the agents, detect violations
and check the compliance of the sanctions.

79



Norms in organ transplant management
We use a language for substantive norms (Aldewereldet al.
2006) which is an evolution of the original norm language
in HARMONIA. Its central element is the norm condition,
based in deontic concepts (OBLIGED, PERMITTED, FOR-
BIDDEN) which can be conditional (IF) and can include
temporal operators (BEFORE, AFTER). The violation is a
formula derived from the norm to express when a violation
occurs. The sanction field is a set of actions which should be
executed when a violation occurs (e.g. imposing a fine, ex-
pulsion of an agent), while the repairs field contains a set of
actions to undo the negative effects of the violation. The lan-
guage also included the specification of the detection mecha-
nism, but in our provenance-based enforcement architecture
this is no longer needed.

An example (extracted from organ and tissue allocation
regulations) is presented in Figure 2. It expresses the obli-
gation of the hospital to carry on the compatibility tests for a
potential recipient of a given organ before assigning the or-
gan to that recipient. The violation condition defines when
the violation of that norm occurs. In this scenario, the sanc-
tions field applies an indirect punishment mechanism (repu-
tation) to the hospital, by informing about the incident to the
board members of the transplant organization. The repair
plan consists of stopping the assignation process, recording
the incident in the provenance store (which acts as a log) and
then wait for the compatibility test to be performed.

It is important to note that the combination of violation
and sanction handling provides a flexible way to implement
safety control of a medical system’s behaviour (i.e., avoid
the system to enter in a undesirable, illegal state because of
a failure in one of the agents).

Control Landmarks
Landmarks(Aldewereld 2007) are often used with similar
purposes in order to provide abstract specifications of orga-
nizational interaction in general. Landmarks are formalized
as state descriptions, which are partially ordered in directed
graphs to form landmark structures which are calledland-
mark patterns.

In our case we extend the use of landmarks to represent
highly relevant positive and negative states of the system
(positive and negative landmarks) and the partial ordering
between those states imposed by the regulations or prac-
tices. For instance, in the norm in Figure 2 we can identify
two critical states as landmarks, the one whereensure
compatibility happens and the one whereassign
happens. The norm also imposes a partial ordering where
the former should always happen before the latter.

Given the set of landmark patterns coming from the insti-
tution, agents may reason about the exact sequencing of ac-
tions or the protocol to use to pass from one landmark state
to the other. This even allows an agent to create acceptable
variations of a predefined protocol that are legal and that al-
low them to fulfill their interests or to cope with an unex-
pected situation not foreseen in the protocol. Given some
landmarks, agents may even negotiate the protocol to use.

Landmarks can be used as checkpoints by the enforcing
agents (e.g. whenever the assignation is done, it should be

Norm OTM :N37
V iolation NOT(done(ensure compatibility(organ, recipient)) AND
condition done(assign(organ, recipient))
Detection (NOT(
condition asserted(ensure compatibility(organ,recipient), t1)

AND asserted(assign(organ, recipient), t2)
) OR
((asserted(ensure compatibility(organ, recipient), t1)
AND asserted(assign(organ, recipient), t2)
AND (< t2 t1))

Figure 3: Example of a violation handling rule

the case that previously the compatibility check was done).
In short, norm enforcement can be done by checking that the
system as a whole passes only through positive landmarks
during its execution and in the proper order. In our system,
landmarks are mapped into conjunctions of p-assertions, and
landmark ordering is expressed in rules by means of the time
stamps attached to each p-assertion. Figure 3 shows an ex-
ample of how these p-assertions can be then used to detect a
violation of the norm in Figure 2.

An architecture proposal for norm
enforcement ine-Institutions based in

Provenance

In this section we introduce our proposal for a generic
Provenance-based norm enforcement architecture. Al-
though current version is mainly designed for Web service
and Grid platforms, it can be easily adapted to be used also
by agents in an agent platform. The global picture of this
architecture is shown in Figure 4. When application agents
enter for the first time in thee-institution, they can access the
norms, the ontological definitions and the landmark defini-
tions in the context manager module. Agents log the relevant
events by creating p-assertions that are sent to the observer
agent, which is the one that keeps the Provenance store that
acts as a log for all the reported events. The observer agent
sends some of those reported p-assertions to one or more
Enforcement agents (each of those should have previously
registered the list of p-assertions they need to be notified,
according to the norms each of them has to enforce). Each
enforcement agent combining the reported events in the p-
assertions with the norms and landmarks that such agent is
responsible to enforce. If a violation is detected, then the
enforcement agent should execute the sanction and repair
plans, as specified in the norms.

It should be noted that thee-Institution framework, HAR-
MONIA, does not need to be modified for using Provenance.
Provenance is only a different way to observe the state
of a distributed system, which records and provides inputs
(events and actions) that can be used for norm enforcement.

The following sections describe in detail each of the ac-
tors in our proposed architecture, focusing on their main
roles and components.

80



Figure 4: A generic Provenance-based norm enforcement architecture

Context Manager
In the approach taken for the architecture, everye-institution
defines a normative context. This context gathers all the ele-
ments needed for understandability and interoperation be-
tween the agents belonging to a specific institution. The
Context Manager is a registry responsible for the manage-
ment of these elements and for providing to the agents any
information related to the normative context.

An instance of this registry will represent a specific nor-
mative context, and will contain:

• a specific vocabulary defining the meaning of the terms
used in the interactions between the agents of the institu-
tion,

• shared descriptions about processes and actions in the do-
main, and

• the norms that may affect the interactions between parties
bound to the context.

To fulfill its responsibilities, the Context Manager has
three main components, explained in the next subsections.

Ontology The Ontology is a repository which stores def-
initions of terms, as well as references to definitions, for
the data models of the context. This ontology should de-
fine, for a given domain, terms such as objects and entities
(e.g. patient, doctor, organ, kidney), predicates (e.g. com-
patible(organ, recipient)) and actions (e.g. assign(organ, re-
cipient)). In our architecture the ontology plays an important
role as it should fix the interpretation for all terms that ap-
pear in the norms to be enforced.

Norm Repository This module is responsible for storing
and managing the norms of thee-institution. Each norm in-
cludes not only the deontic expression but also the violation
condition, the sanction plan and the repairs plan.

Landmark Mapping This module is responsible for stor-
ing the mapping between landmarks and p-assertions. Such
mappings can be used by both a) the application agents, to
use the same p-assertion structure when reporting a relevant

event that is listed as a landmark in the normative context
of thee-institution; and b) the enforcement agents, that can
use these mappings to translate the p-assertions they receive
from the observer agent into landmarks.

Application Agent

The Application Agents are those agents that interact within
each other inside thee-institution and its context. They have
the same generic role as the agents in any typical multi-agent
system and they do not necessarily have an active role in
norm enforcement, but they should report all relevant events
to the observer agent by creating p-assertions, which will be
used by the enforcement agents to enforce the norms apply-
ing to the application agents’ behaviour. P-assertion creation
and reporting is handled by the p-assertion plug-in, a mid-
dleware component common to all Application Agents.

Before an Application Agent can start its activity within
thee-institution, it has to retrieve the definitions, norms and
landmarks of the context from the Context Manager. In this
paper we make no assumption about the internal architecture
of the agent and how this knowledge can be incorporated
in the agent reasoning cycle. We also make no assumption
about the exact technological platform in which it is imple-
mented: it can be either a Web service, a Grid service or even
a FIPA-compliant agent with a service wrapper that allows
the agent to interact with the other actors in the architecture.
Our only assumption is that the agents internal reasoning cy-
cle has been modified to be able to report meaningful events
(landmarks) through the Assertion Plug-in.

Assertion Plug-in This component is a middleware plug-
in which manages the interaction between the application
agents and the Provenance Store, ensuring a safe, reliable,
and accurate recording of the events and landmarks gener-
ated by the agents execution. Whenever an agent wants to
report the occurrence of a landmark:

1. The Assertion Plug-in translates this landmark into one
or more p-assertions, by following the landmark mapping
rules retrieved from the Context Manager.

81



2. The Assertion Plug-in sends the p-assertion(s) to the Ob-
server Agent by using the Provenance Client API.

To avoid that p-assertions stop the execution of the agent
or that some p-assertions get lost due to temporary unavail-
ability communication problems between the Application
Agent and the Observer Agent, the plug-in uses a p-assertion
queue, which allows the p-assertion submission to be com-
pletely asynchronous and loosely coupled to the core of the
agent, avoiding critically blocks in its execution.

Observer Agent

An Observer Agent has the responsibility to safely register
and maintain the environmental events and state changes of
the e-institution. The information gathered is then used in
the norm enforcement, by providing selected pieces of in-
formation to the interested Enforcement Agents.

The gathering and the selection are critical processes.
Some possible errors which depend on the Observer Agent
and could compromise norm enforcement can take place, for
example, if the events logged are not complete or reliable
enough, or if the information provided to the Enforcement
Agents doesn’t match with their needs or arrives too late.

The gathering is handled by the Provenance Store which,
along with the Assertion Plug-in, offers the proper record-
ing functionalities. The Monitor acts as a link between this
repository and the Enforcement Agents, offering registering
and notification mechanisms. Both Observer Agent compo-
nents are described in the subsections below.

Monitor The Provenance Store works only in apushway.
The Enforcement Agents preferably need a real-time ac-
curate representation of thee-institution, so the Observer
Agent, as an actor, should behave in apull way. That is
why we have implemented the Monitor, layered on top of
the Provenance Store. This component will keep an accurate
real-time representation of the p-assertions being recorded in
the Provenance Store.

Of course, this job should be handled efficiently, not only
in time, but also in space, only keeping pointers to the p-
assertions that are for some interest for the other agents. A
registry is therefore incorporated to the Monitor, to which
the Enforcement Agents subscribe with a list of mapped
landmark patterns. While continuously reconstructing the
real-timepicture of the e-institution, the Monitor will just
query those p-assertions which match with the patterns of
the Enforcement Agents registered. As soon as a p-assertion
has appeared in the Provenance Store that matches a regis-
tration pattern of an Enforcement Agent, this p-assertion is
sent to the registrant.

Provenance Store The Provenance Store is usually an in-
dependent service, but we consider it as part of the Observer
Agent, as these will be the only actors of thee-institution
which will make use of them. As a repository of raw p-
assertions, it will only receive one kind of input, provided by
the Assertion Plug-ins of the Application Agents. As well, it
will only generate one kind of output, in this case the result
of the queries made by the Monitor, as sets of p-assertions.

Enforcement Agent
The Enforcement Agents are responsible for the fulfillment
of a subset of the norms of the context in thee-institution.
This requires them to have a complete knowledge of the con-
text, by retrieving the descriptions and the norms from the
Context Manager, as well as a complete knowledge of all
the events in the system related to the norms they have to en-
force. These enforcement is then guaranteed by a) firstly de-
tecting the violations, and then b) applying the correspond-
ing sanctions.

In order to generate the knowledge about the events, these
agents take profit of the Observer Agent by registering the
set of landmarks they are supposed to look after. Once
registered, they will be properly notified in the form of p-
assertions. Therefore, there is no need of a direct communi-
cation between an Enforcement Agent and the Application
Agents. The Translator converts these p-assertions into a
format understandable by the Enforcement Agent. Another
component is needed for detecting the violations. In our case
we are using a Jess engine, which matches the events, in the
form of Jess facts, and the norms, in the forms of Jess rules.
The Enforcement Engine is responsible for registering to the
Observer Agents and applying sanctions. A further explana-
tion of how this component works is also included below.

Translator The Observer Agent sends p-assertions to the
Enforcement Agent when they are of any interest. However,
the Violation Detection Engine is an instance of a Jess en-
gine. The Translator is a simple component which parses
these p-assertions and generates Jess facts.

(defrule OTM-RULES-MODULE::assertconfirmassignment

(MAIN::Element (LocalName "opencontent")

(ElementID ?content))

(MAIN::Element (LocalName "timestamp")(Text ?timestamp)

(ParentID ?content))

(MAIN::Element (LocalName "confirmassignment")

(ElementID ?confirmassignment)(ParentID ?content))

(MAIN::Element (LocalName "organ")(Text ?organ)

(ParentID ?confirmassignment))

(MAIN::Element (LocalName "pid")(Text ?pid)

(ParentID ?confirmassignment))

(not (OTM-RULES-MODULE::confirmassignment

(ElementID ?confirmassignment)(timestamp ?timestamp)

(organ ?organ)(pid ?pid)))

=>

(assert (OTM-RULES-MODULE::confirmassignment

(ElementID ?confirmassignment) (timestamp ?timestamp)

(organ ?organ)(pid ?pid))))

Figure 5: An example of translation rule from p-assertion to
Jessasserted fact

The Translator obtains the translation rules from the Con-
text Manager. In Figure 5 we show one example of a rule
that obtains a Jess assertion of an organ assignment, taking
an organ assignment p-assertion as input. This rule parses
the XML formatted p-assertion, keeping only the relevant
data for the system and generating an asserted fact, which
will be added to the Jess engine. In this case, the rule is in-
volved in the moment that the doctor of a hospital accepts

82



the organ offer and therefore confirms the assignment pro-
posed by the OTA. According to the medical protocol being
followed, the relevant pieces of data in this step are the exact
moment of the assignment, the recipient patient identifier,
and the organ. They are retrieved from the XML p-assertion
and written in a Jess fact.

When an agent records a p-assertion indicating the con-
firmation of an assignment, it includes content compliant
with the OTMA XML schema. On the left side, this rule
matches one by one the elements contained inside theopen-
contentelement: the exact moment of the action, the name
of the event (confirmAssignment), and inside theconfirmAs-
signmentelement, the organ being proposed for reception
and the ID of the recipient. After the matching, the left side
of the rule checks that there was no assertion made yet for
the same event. On the right side, the rule asserts the event
confirmAssignmentinto the base of facts.

He have implemented an automatic translator of rules, ca-
pable of parsing an schema and generating one rule per each
kind of event the content of the p-assertion might contain,
which right now we assume is once per each XML element
defined. It will be improved in future releases.

Violation Detection Engine Once the Enforcement En-
gine has received the norms from the Context Manager, it
creates a set of Jess rules out of them and sends them to the
Violation Detection Engine. This component is, in fact, an
instance of a Jess engine which will execute these rules with
the facts provided by the Translator. Whenever a violation is
detected, the Enforcement Engine is conveniently informed.

Enforcement Engine The Enforcement Engine is the
component of the Enforcement Agent that takes decisions
and plans actions whenever a violation is raised. In order to
interact with the Violation Detection Engine, this component
needs to provide Jess rules for each norm.

The violation for the normN37has to be raised whenever,
in the confirmation of an assignment, this assignment has
been made before having checked for compatibility. This
might happen when the assignment is done but the compati-
bility is never ensured. But also when both things are done,
but in the wrong order. This second case is the one depicted
in Figure 6. The rule shown in the figure takes as input two
facts: the fact generated (using the translation rule shown in
Figure 5) when the hospital confirmed the assignment of the
offered organ to the doctor, and the fact generated when the
organ was tested for compatibility. The third condition of
the rule,(< t2 t1), will become true if the assignment
has been done before the compatibility test. Whenever the
rule gets executed, a violation fact for the normN37will be
added to the Jess engine and the Enforcement Agent will, at
some point, take measures to repair the violation.

The Enforcement Agent will act accordingly to the type
of measures needed. If the sanction or the repair measures
require that a specific Application Agent executes a certain
action, that agent will be informed of that. On the other
hand, the sanction or the repair measures that involve the
institution as itself will be carried into effect by the Enforce-
ment Agent.

When an Enforcement Agent is initiated, the ontological

(defrule OTM-RULES-MODULE::eventOTM_N37_2

(OTM-RULES-MODULE::ensure_compatibility (organ ?organ)

(recipientID ?recipientID)(timestamp ?t1))

(OTM-RULES-MODULE::assign (organ ?organ)

(recipientID ?recipientID)(timestamp ?t2))

(< t2 t1)

=>

(assert (OTM-RULES-MODULE::violation (norm OTM_N37)

(organ ?organ)(recipientID ?recipientID)))

Figure 6: An example of violation detection rule in Jess

definitions and the norms of the context are stored in its En-
forcement Engine. This component is also the responsible
for registering to the Monitor.

For the norm example shown in Figure 2, all the measures
should be executed by the Enforcement Agents, as they are
all institutional.

Related work

AMELI (Esteva 2003) is a toolkit for the specification and
verification of agent mediatede-institutions that based on a
dialogical framework. In this framework, all observable ac-
tivities from the agents are seen as messages in the context
of a scene. In AMELI all norms are regimented through the
specification of a pre-defined protocol, guaranteeing norm-
compliance of agents by restricting the set of possible ac-
tions to the ones defined in the protocol.

In (Aldewereldet al. 2006; Aldewereld 2007) there is
a first exploration of substantive norms already applied to
AMELI. The main difference in our approach is that we can
also include internal information from agents which is not
part of any interactions. On the other hand, the formalism
defined in (Cliffe, De Vos, & Padget 2008) only considers
messages as observable events.

(Ashri et al. 2006) introduces integration ofe-Institutions
in Grid environments by extending the GRIA framework,
which is based on basic web services. Our solution gives
more flexibility to the behaviour of the services, as norms
are substantive and not rigidly regulated.

It is important to note that the provenance mechanism
used here is an implementation of an open architecture
(Grothet al. 2006) that ensures interoperability in heteroge-
neous systems without compromising security or scalability.
Other provenance mechanisms are mainly based on a mid-
dleware layers which only capture interactions. This kind of
provenance mechanisms can be used in less regulated envi-
ronments but bring little extra power to the existing mecha-
nisms in agent-mediatede-Institutions.

Academic research on SOA Governance is still not abun-
dant, but there are already some interesting proposals of
models (Derler & Weinreich 2007), methodologies (Zhou
et al. 2007; Papazoglou 2006) and frameworks (Kajko-
Mattsson, Lewis, & Smith 2007). In our paper we present
a novel approach to the topic based on flexible normative
enforcement via landmark monitoring.

83



Conclusions
The fact that the SOA business community is concerned
about how to define and manage policies for the definition,
deployment and change of Web services is a clear sign that
organizations need to translate and adapt their own business
processes and methodologies of work in their SOA environ-
ments. Electronic Institutions respond to the need of regu-
lation in MAS that have to be bound to certain norms that
apply in the context of an institution. They provide a theo-
retical solution that could match many of the needs of SOA
Governance as, once the policies are defined, ane-Institution
framework could take care of their enforcement.

However, SOA Governance does not focus on MAS.
With our architecture proposal we aim at bridging this gap
by combining Web services and agents inside a normative
framework derived from HARMONIA, and deployed in het-
erogeneous (MAS, Web services and/or Grid) platforms.

As next steps we will define a mapping between the op-
erational representation of norms and: 1) orchestration lan-
guages, which would allow us to better integrate our pro-
posed architecture into business processes, as well as 2)
choreography languages, which would give us the possi-
bility of extending the uses of the interaction provenance
recording. By defining a mapping, norms could be instanti-
ated in languages like WS-BPEL or WS-CDL, which could
be imported directly by web service workflow engines which
are currently widely used.

Acknowledgment
This work has been funded by IST-2002-511085 PROVE-
NANCE and IST-2006-034418 CONTRACT projects.
Javier Vázquez-Salceda’s work has been also partially
funded by the “Ramón y Cajal” program of the Spanish Min-
istry of Education and Science.

References
Aldewereld, H.; Grossi, D.; Vázquez-Salceda, J.; and
Dignum, F. 2005. Designing Normative Behaviour by the
Use of Landmarks.Proc. of AAMAS-05 Int. WS on Agents,
Norms and Institutions for Regulated MAS.
Aldewereld, H.; Dignum, F.; Garcı́a-Camino, A.; Noriega,
P.; Rodrı́guez-Aguilar, J. A.; and Sierra, C. 2006. Opera-
tionalisation of norms for usage in electronic institutions.
In AAMAS’06: Proc. of the 5th Int. Joint Conf. on Au-
tonomous Agents and MAS, 223–225. NY, USA: ACM.
Aldewereld, H. 2007. Autonomy vs. conformity : an insti-
tutional perspective on norms and protocols. PhD Thesis.
Ashri, R.; Payne, T. R.; Luck, M.; Surridge, M.; Sierra, C.;
Aguilar, J. A. R.; and Noriega, P. 2006. Using Electronic
Institutions to secure Grid environments. InTenth Int. WS
CIA 2006 on Cooperative Information Agents, 461–475.
Cliffe, O.; De Vos, M.; and Padget, J. 2008. Embedding
Landmarks and Scenes in a Computational Model of Insti-
tutions. InCoordination, Organizations, Institutions, and
Norms in Agent Systems III. 41–57.
Derler, P., and Weinreich, R. 2007. Models and Tools for
SOA governance.

Erl, T. 2004.Service-Oriented Architecture. Upper Saddle
River, NJ, USA: Prentice Hall PTR.
Esteva, M. 2003. Electronic Institutions: from specifica-
tion to development.PhD Thesis, UPC.
Foster, I., and Kesselman, C. 1998.The Grid: Blueprint
for a New Computing Infrastructure. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.
Foster, I.; Jennings, N. R.; and Kesselman, C. 2004. Brain
meets brawn: why Grid and agents need each other. In3rd
Int. Conf. on Autonomous Agents and MAS, 8–15.
Fulton, L. 2008. The Forrester Wave: SOA Service Life-
Cycle Management, Q1 2008.
Groth, P.; Jiang, S.; Miles, S.; Munroe, S.; Tan, V.;
Tsasakou, S.; and Moreau, L. 2006. An architecture for
provenance systems.
Kajko-Mattsson, M.; Lewis, G. A.; and Smith, D. B. 2007.
A Framework for Roles for Development, Evolution and
Maintenance of SOA-Based Systems. InICSEW’07: Proc.
of the 29th Int. Conf. on Software Engineering WS, 117.
Washington, DC, USA: IEEE Computer Society.
Kenney, L. F., and Plummer, D. C. 2008. Magic Quadrant
for Integrated SOA Governance Technology Sets, 2007.
Gartner RAS Core Research Note G00153858.
Lynch, N. 1996. Distributed Algorithms.The Morgan
Kaufmann Series in Data Management Systems.
Milner, R. 1999.Communicating and Mobile Systems: the
Pi-Calculus. Cambridge University Press.
Papazoglou, M. P. 2006. Service-oriented design and de-
velopment methodology.Int. Journal of Web Engineering
and Technology2:412–442(31).
Paurobally, S.; Tamma, V.; and Wooldridge, M. 2005. Co-
operation and agreement between semantic web services.
W3C WS on Frameworks for Semantics in Web Services.
Vázquez-Salceda, J.; Cortés, U.; Padget, J.; López-
Navidad, A.; and Caballero, F. 2003. The organ allocation
process: a natural extension of the carrel agent-mediated
electronic institution.AI Commun.16(3):153–165.
Vázquez-Salceda, J. 2004.The role of norms and elec-
tronic institutions in multi-agent systems. The HARMONIA
framework. PhD Thesis. Whitestein Series in Software
Agent Technologies. Birkhäuser.
webMethods. 2006. SOA Governance:
Enabling Sustainable Success with SOA.
http://www1.webmethods.com/PDF/whitepapers/.
Willmott, S.; Pea, F. O. F.; Merida-Campos, C.; Constan-
tinescu, I.; Dale, J.; and Cabanillas, D. 2005. Adapt-
ing agent communication languages for semantic web ser-
vice inter-communication. InWI’05: Proc. of the 2005
IEEE/WIC/ACM Int. Conf. on Web Intelligence, 405–408.
Washington, DC, USA: IEEE Computer Society.
World Wide Web Consortium (W3C). 2004. Web services
architecture. http://www.w3.org/TR/ws-arch/.
Zhou, Y. C.; Liu, X. P.; Kahan, E.; Wang, X. N.; Xue,
L.; and Zhou, K. X. 2007. Context aware service policy
orchestration.icws0:936–943.

84




