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Abstract

Email has become increasingly ubiquitous in recent times
bringing with it new problems. In this paper we revisit two
such problems, namely information leak detection and recipi-
ent recommendation, and study the impact of previously pro-
posed solutions on real email users. Previous work address-
ing these problems showed a lot of promise on static email
corpora tests. In this paper, we implement these solutions
in an integrated interface as an extension to Mozilla Thun-
derbird, a popular open source email client. By capturing
data about the usage patterns in the extension, we evaluate
the performance of the proposed algorithms against baseline
methods and address issues related to user interface design
and implementation. Preliminary results from a user study
show promising usage patterns, indicating that these features
can benefit a large number of email users.

Introduction

The network of contacts maintained via email has been
growing steadily over the years. Until relatively recently,
email was used primarily for work-related contacts by most
people. Now email is used for many contact with many over-
lapping social circles, including friends, neighbors, and rela-
tives, as well as social circles associated with various on-line
communities. Moreover, the number of people with multi-
ple email addresses (eg separate work and personal emails)
has grown. All of these changes make it harder for users
to choose the right place to send a message they have com-
posed.

In past work, several specific problems have been ex-
plored. Carvalho and Cohen (2007) considered the problem
of email leaks, where the problem of detecting and prevent-
ing messages from being sent to unintended recipients was
addressed. This problem was also addressed by Boufaden et
al. (Narjs Boufaden 2005). Another task considered by Car-
valho and Cohen (Carvalho and Cohen 2008), Pal and Mc-
Callum (Pal and McCallum 2006) and others (Byron Dom
2003) is recipient recommendation, where the task consists
of finding persons who are potential recipients for a mes-
sage under composition given its current contents. Recipient
recommendation is related to the problem of address auto-
completion. The work by Carvalho and Cohen improves
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upon the text similarity to address book entries method used
in many email clients currently, by using the message con-
tent to predict recipients.

Prior work on these tasks has evaluated the effectiveness
of various algorithms in experiments with static email cor-
pora. Such studies cannot address a number of crucial is-
sues. What is the best way to present predictions to end
users (e.g., the prediction that an outgoing email address is
a ”leak”)? How accurate do predictions need to be in or-
der to be considered helpful to users? Are learning methods
for these tasks efficient enough to be used in current email
clients? How do the tasks of recipient recommendation and
leak detection interact?”

To address these questions, we build an extension,
CutOnce' that adds these capabilities to Mozilla Thunder-
bird, a popular and open source email client. The extension
is designed to elicit the impact of the proposed algorithms by
toggling between baseline predictions and predictions using
the algorithms on a per user basis. All aspects of the usage
of the extension are logged and periodically emailed (if ex-
press permission is given by the user) to us enabling us to
study the impact of the algorithms on users who use email
as a part of their day to day activities.

The paper is organized as follows. We introduce both
message addressing problems, and explain the choice of
email client in the next section followed by a section with the
details of the proposed algorithms. We then discuss the is-
sues with implementation in Mozilla Thunderbird, followed
by a section that explains the logging scheme. We end by
describing our learnings from the analysis of user logs and
finally presenting our conclusions.

Recipient Recommendation and Leak
Detection

The widespread use of email has raised serious privacy con-
cerns. A critical issue is how to prevent email information
leaks, i.e., when a message is accidentally addressed to non-
desired recipients. This is an increasingly common problem
that can severely harm individuals and corporations — for
instance, a single email leak can potentially cause expensive

'Derived from a quote in Neuromancer by William Gibson
where Case says “Easy, mon. Measure twice, cut once, wise man
putit...”



law suits, brand reputation damage, negotiation setbacks and
severe financial losses.

Another important message addressing problem is recip-
ient recommendation, i.e., recommending persons who are
potential recipients for a message under composition given
its current contents, its previously-specified recipients or a
few initial letters of the intended recipient contact. This task
can be a valuable addition to email clients, particularly in
large corporations, where negotiations are frequently han-
dled via email and the cost of errors in task management is
very high. A system with intelligent message addressing can
prevent a user from forgetting to add an important collabo-
rator or manager as recipient, preventing costly misunder-
standings, communication delays and missed opportunities.

In this paper, recipient recommendation is achieved by
displaying a ranked list with all recipients from the user’s
address book. As described below, different algorithms can
be used to rank recipients.

The same algorithms can also be used to provide email
leak prevention. However, instead of ranking all entries in
the address book, only the already-specified recipients of a
message under composition need to be ranked (with the least
likely address on the top).

Email Clients

Selecting an email client in which the recipient recommen-
dation and leak detection algorithms could be implemented
depended on several factors such as the ease with which it
could be modified to incorporate new features, popularity of
the client, whether or not the client is open/source, ease with
which the modifications can be distributed to other users,
operating system interoperability etc.

The options we considered included Mozilla Thunder-
bird, a new standalone email client which we would have to
develop from scratch, GMail etc. Developing a new email
client had the disadvantage that it would take a long time
for it to be used widely if at all. Morever considerable ef-
fort would have to be put into engineering efforts which was
peripheral to the issue at hand. GMail has the advantage of
being widely used especially in the academic community,
however the API offered by GMail was inadequate for our
needs. Mozilla Thunderbird on the other hand is very popu-
lar, has a well established mechanism to add extensions and
is open source which makes it an excellent platform to im-
plement new features on. Extensions that we develop can be
distributed easily in a zip-based format and installed using
Thunderbird’s Extension Manager.

Mozilla Thunderbird extensions are developed primarily
in Javascript. User interfaces are specified using a Mozilla
specific XML based file format called XUL.

Algorithms

The algorithms chosen for implementation in the Mozilla
Thunderbird extension have to be computationally inexpen-
sive since Javascript is a slow interpreted language. Ex-
pensive operations in Javascript tend to bog down the email
client and make it virtually unusable.

Recency and Frequency based ranking

Recency ranking ranks candidate recipients by ranking re-
cipients to whom messages were sent more recently higher
using an exponential decay function.

—timerank(doc)
recency(r) = Z e e (1)

doceD(r)

timerank(doc) is the chronological rank of doc with
timerank(doc) being 1 for the most recently sent message.
D(r) is the set of messages in the Sent folder that were sent
to the recipient r. Based on preliminary tests, 7 is set to 0.01
in CutOnce, highlighting the importance of the 100 most re-
cent messages.

Another baseline is based on the frequency to whom pre-
viously sent messages were addressed. Frequency ranking
orders candidate recipients by the number of messages ad-
dressed to them in the sent folder, i.e.,

frequency(r) = Z 1 (2

doceD(r)

TFIDF method

We can treat recipient recommendation as a multi-class clas-
sification problem and use the TFIDF classifier using the
Rocchio algorithm as described elsewhere (Joachims 1997;
Carvalho and Cohen 2007). The centroids for each recipient,
represented as TFIDF vector over terms, is first computed by
iterating through the Sent folder in the email client.

> tfidf(doc)  (3)

doceD(r)

centroid(r) = D)

For a new message new_doc that is being composed, we
compute its cosine distance with each recipient centroid and
rank the recipients according to this distance.

Aggregating Rankings with Data Fusion

The ranks obtained by the recency, frequency and TFIDF
methods can be combined using data fusion techniques
based on the Mean Reciprocal Rank (MRR) (Aslam and
Montague 2001; Craig Macdonald 2006; Ogilvie and Callan
2003) of the baseline rankings. Results from (Carvalho and
Cohen 2008) showed that MRR ranking works better than
a pure TFIDF ranking for tests using several users from the
Enron email collection.
The MRR ranking score can be expressed as:

e
mrr(r) = recency_rank(r) @

p gl
frequency_rank(r)  tfidf rank(r)

, 1.e., the final aggregated ranking of a recipient is a function
of the ranking of this recipient on the base rankings (TFIDF,
frequency and recency).

Based on preliminary tests, we set a and (3 to 1.0 and  to
2.0 by default.



Figure 1: The recipient recommendation dialog window
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Figure 2: The information leak and recipient recommendation dialog window; displayed when Send button is pressed.
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Implementing the Training in Thunderbird

Since the algorithms are implemented in Javascript, scalabil-
ity and computation time are significant factors. The mem-
ory available to the extension is also limited since computa-
tion occurs on client machines. Keeping this in mind, steps
were taken to keep the training time in check to limit the
impact on user experience. Firstly, all words with a docu-
ment frequency lower than a fixed threshold (set at 5) were
eliminated from the TFIDF representation. Secondly cen-
troids for recipients to whom the number of messages sent

was below a threshold (set at 5), were not calculated. The
procedure used to compute the centroids is described in Al-
gorithm 1. After the model is trained, the parameter values
are stored in a text file on the user’s computer. When the
client is restarted, this model file is read in thus preventing
the need to retrain the system each time the client is started.

Prediction

The runtime components of CutOnce are triggered using
two mechanisms



Algorithm 1 Training procedure

for all doc in Sent folder do
for recipients r of doc do
centroid(r) = centroid(r) + tfidf(doc)
n(r) =n(r) + 1
end for
end for
for all recipients r do
centroid(r) = centroid(r) /n(r)
end for

i) When users send a message, a dialog box pops up with
potential leaks and a list of recommended recipients. Items
on the list can be clicked on to add recipients from the rec-
ommendation list or to remove them from the recipient list
for the leak list. This dialog box has a countdown timer that
sends the message after 10 seconds if the user does not take
any action thus ensuring that no additional action is needed
to send a message. (See Figure 2 for screenshot)

ii) The compose window has a Recommend recipients
button that pops up a window with a list of recommended
recipients for the message being composed. Recipients can
be added to the message by clicking on the suggested recipi-
ents just as in the Send dialog. (See Figure 1 for screenshot)

Evaluation against baseline methods

Ranking recipients based on TFIDF similarity was used as
a baseline method. Studying the improvement offered by
the proposed algorithms over the baseline method requires
statistics about the performance of the baseline. To ob-
tain this, the extension uses baseline predictions for roughly
half the installations (chosen randomly at installation time).
When the logs returned by users are studied, indicators in the
log specify whether the baseline method was used enabling
comparisons. The extension also allows user to change the
relative weight assigned to the TFIDF ranking method in re-
lation to the weight assigned to frequency and recency.

Logging
CutOnce logs information about all aspects of the usage

of the extension. The following pieces of information are
logged

o Whether the use used the explicit Send button or let the
timer countdown

o whether the user deleted a recipient (possibly due to a po-
tential leak)

o rank of the deleted recipient in the potential leak list
e the MRR score of the recipient deleted

e the amount of time elapsed before the recipient was
deleted

e whether recipients were added from the recommendation
list

e rank of the added recipient in the recommendation list

Figure 4: Log message
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e time elapsed before recipient was added
e the MRR score of recipient added

The user is prompted to send log information every week.
If the user acquiesces, a new email compose window is
opened up with the log information pre-filled in the content
section. Users are also encouraged to send in comments in a
designated area in this email. (See Figure 4)

User study
Description

Here we describe a user study based on the CutOnce cur-
rently in progress at Carnegie Mellon University. Mozilla
Thunderbird users from the Pittsburgh area were recruited
on the web and via newsgroups for a four-week long study.
These participants were told that the goal was to study how
to improve the way people address email messages based on
the intelligent addressing techniques (Carvalho and Cohen
2007; 2008).

We required the participants to be Mozilla Thunderbird
users, writing email using Thunderbird on a daily basis, and
being at least 18 years-old. The recruitment message also
indicated that the task would be simple, with minimum or
no interruptions at all.

After contacting the study researchers indicating their in-
terest, participants would then be instructed to install Cu-
tOnce, train it on their sent folder, and keep on using Thun-
derbird as usual.

After successfully installing and training CutOnce, par-
ticipants received a message explaining exactly what the ex-
tension does and what was expected to happen by the end of
their first week using CutOnce. This message contained the
instruction:

Every time you compose a message, we collect statis-
tics (timers and counters only, never private infor-
mation) of your usage of the extension. In about
a week from today, the extension will open a com-
position window for you, and we expect you to
hit “send”. This message is addressed to us at



Figure 3: Adoption statistics
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email.research.cmu@gmail.com and will contain the
information we are collecting (counters and timers) as-
sociated with your usage of the extension. After re-
ceiving that message, we’ll let you know about the next
steps in the study.

Figure 4 illustrates the automatically composed message
addressed to the researchers. Participants can read all con-
tents of this message, before eventually allowing it to be
sent. After this message is received and analyzed, qualified
participants® are partially compensated (20% of total com-
pensation) and invited participate in the second phase of this
user study.

In the second phase of the study, participants will be com-
pensated with the remaining 80% of the total compensation
after three more weeks using CutOnce and completing a fi-
nal questionnaire.

The questionnaire is concerned with the general CutOnce
experience, quality of predictions, reactions of the partici-
pant and suggestions for improvement. We believe it can be
a valuable source of information for improving CutOnce or
designing these features for large scale email systems. The
final questionnaire is detailed below.

1. What is your general impression of the extension (5(ex-
cellent) 4(good) 3 (neutral) 2(bad) 1(very bad))?

2. Where could it be improved? (open question)

3. How would you grade your overall experience (5(excel-
lent) 4(good) 3 (neutral) 2(bad) 1(very bad))?

4. Would you recommend it? (yes or no)

5. Did the extension catch any email leak? (yes or no) If so,
please tell us about it.

6. How often did you use the suggestions? (5(always) 4(fre-
quently) 3(sometimes) 2(rarely) 1(never))?

7. In your opinion, what was the quality of the suggested
rank? (5(excellent) 4(good) 3 (neutral) 2(bad) 1(very
bad))?

2Qualification for the invitation to participate is based on how
long a user has been using Thunderbird, the languages that most
messages are written, how frequently he or she uses Thunderbird
and general patterns of email use.
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8. Were the suggestions helpful? (5(very helpful) 4(helpful)
3 (kind of”) 2(marginally) 1(not at all))?

9. Were the suggestions annoying? (1(always) 2(frequently)
3(sometimes) 4(rarely) S(never))?

10. Did the extension change the way you compose mes-
sages? (yes or no) If so, please tell us about it.

11. Would you keep on using this extension after this study?
(yes or no)

12. Would you you recommend it (to your friends, etc.)? (yes
or no)

13. What did you like and dislike the most?

14. Any suggestions or comments?

Analysis and Results

The user study is currently in progress and here we report
results obtained from the logging messages obtained so far.

We were expecting that approximately 50% of the logged
users would use TFIDF as ranking algorithm, and 50% us-
ing the MRR ranking scheme. However, approximately
72% of the users who submitted logging messages so far
had their rankings based on TFIDF, while 28% based on
MRR3. Proportionally also, the majority of the accepted leak
predictions and recipient recommendations originated from
TFIDF-ranked participants.

Although preliminary, this is an indication that users may
be more satisfied with pure textual-based recommendations,
or even that recommending the same frequently and/or re-
cently addressed recipients may in fact annoy participants.

By the time this paper was submitted, 23 users had agreed
to participate, but only 13 were qualified for the second stage
of the study so far. Some users have not completed their first
stage, and therefore cannot be considered for the next step on
the user study. Other users were not qualified because either
they did not have enough recipients (small address book), or
they were not using Thunderbird on a daily basis.

3This can be explained by the fact that anyone can download
CutOnce from the web, and participants can easily un-install the
extension (or disallow logging messages to be sent) at anytime.



Table 1: User Study Preliminary Results

User | [AB] | [train| | |test| | [leaks| | |recs]
ul 69 2181 15 1 0
u2 64 81 18 0 1
u3 78 1485 4 2 10
u4 12 87 9 1 3
u$ 545 9728 25 6 0
u6 16 183 22 2 0
u7 15 516 24 1 2
ug 46 1048 50 1 0
u9 476 9262 4 2 0
ul0 38 492 17 1 1
ull 86 1124 22 0 0
ul2 47 471 4 0 0
ul3 57 731 37 1 0

Preliminary results on these 13 users (ul...ul3) are shown
in Table 1. In this Table, |AB)| is the size of the user’s ad-
dress book (number of email addresses in the address book),
[train| is the number of sent messages used for training the
leak prediction and recipient recommendation algorithms
(see Section Algorithms), |test| is the number of sent mes-
sages where predictions were displayed to the user (reported
in the logging message), |leaks| is the number of times a
user removed a leak predicted by CutOnce from his recipi-
ent list, and |recs| is the number of times the user accepted
a recipient recommendation provided by CutOnce.

Table 1 suggests that most users utilized leak predictions
at least once. Recipient recommendation was also used by
5 qualified participants on the study. Despite most data in
Table 1 were collected from the first week of CutOnce us-
age — when some users may be still experimenting with the
extension — we believe these are promising numbers and
indicate that both intelligent message addressing techniques
can potentially be adopted by a large number of email users.

This adoption will certainly depend on various factors,
many not even addressed here, such as user interface, im-
plementation speed and rank quality. Still, we believe the
continuation of this user study can make key contributions
to better understanding and design of intelligent message ad-
dressing systems.

Adoption

The Thunderbird extension developed was submit-
ted to the Mozilla Addons webpage. At the time
of writing this paper, there were 52 daily users

of the extension (See Figure 3). More statis-
tics are available at https://addons.mozilla.org/en-
US/thunderbird/statistics/addon/6392. The  of-

ficial CutOnce website and links to the user
study  described above can be  visited @ at
http://www.cs.cmu.edu/%7Evitor/cutonce/cutOnce.html.

Conclusions

This paper introduced CutOnce, an extension of the open
source email client Mozilla Thunderbird that provides email
leak prediction as well as recipient recommendations for

messages under composition. These techniques are desir-
able additions to email clients, particularly if the user is sus-
ceptible to high-cost errors such as accidentally addressing
non-intended recipients (email leaks) or frequently forget-
ting to address intended recipients.

CutOnce implements several algorithms for these tasks,
including as Recency and Frequency baselines, a Rocchio
TFIDF classifier and a rank-based data fusion technique
(Carvalho and Cohen 2007; 2008). Because it had to be
written in Javascript, careful design decisions were neces-
sary to optimize memory and processing resources on client
machines.

We also described a user study based on CutOnce hosted
at Carnegie Mellon University. Preliminary results indicate
that leak prediction and recipient recommendation can po-
tentially be adopted by a large number of email users. Al-
though the various factors affecting the widespread adoption
of these functionalities are still under investigation, we be-
lieve this study can provide important contributions to intel-
ligent addressing systems.
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