
An Integrated Architecture for Personalized Query Expansion in Web Search

Alexander Salamanca and Elizabeth León
Data Mining Research Group - MIDAS

School of Engineering
National University of Colombia

Bogotá D.C., Colombia
{pasalamancar, eleonguz}@unal.edu.co

Abstract

In this paper we present an integrated architecture to
perform personalized interactive query expansion in
Web search. Our approach is to extract expansion terms
in a three stage cycle: 1) keyword extraction with lo-
cal analysis on search results, 2) keyword extraction
with a recommender system on a community of users
and 3) an algorithm to personalize the final list of sug-
gestions. Three methods for local analysis and recom-
mender models are presented and evaluated. The user
profile is built with latent semantic analysis on search
sessions. We prepared a set of experimental scenarios
with user studies in order to assess the system. The
results obtained shows good performance on the per-
ceived quality by users on suggested terms.

Introduction
Personalization had been seen as one of the most promis-
ing trends in the near future for improving significantly the
enjoyment of the search experience on the Web. The main
idea is deliver quality results prepared uniquely for different
users, which do not share necessarily the same interests on
the long term with another people.

The approach described in this paper exploits relations
between keywords of the user’s search history and a more
general set of keywords that expand the user’s search scope.

Through a three stages cycle, which consists of extracting
key terms by local analysis, extraction of other key terms
through a system of automatic recommendation and an al-
gorithm to personalize the final list of terms suggested.

Thus, we can produce high quality and relevant query sug-
gestions reformulations of the user intent –verbalized as a
Web query– that increases the chances of retrieving better
results.

This paper is organized as follows: section 2 introduces
related work. Section 3, describes the proposed approach;
section 4, presents system validation; and finally, in section
5 conclusions are presented and we give guidelines for fu-
ture research.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Related Work
Query expansion is the process of adding additional terms
to a user’s original query, with the purpose of improving
retrieval performance (Efthimiadis 1995). Although query
expansion can be conducted manually by the searcher, or
automatically by the information retrieval system, the focus
here is on interactive query expansion which provides com-
puter support for users to make choices which result in the
expansion of their queries.

A common method for query expansion is the relevance
feedback technique (Salton 1979), in which the users judge
relevance from results of a search. This information then
is used to modify the vector-model query with increased
weights on the terms found in the relevant documents. In
(Salton and Buckley 1990), these techniques were proved to
be effective. In (Efthimiadis 1995) is presented a compre-
hensive literature review to extract keywords based on term
frequency, document frequency, etc.

Terms highly co-occurring with the issued keywords
have been shown to increase precision when appended to
the query (Kim and Choi 1999). Several techniques had
been used to measure the text-term relationship level, ei-
ther analyzing entire documents (Qiu and Frei. 1993;
Kraft et al. 2006), lexical affinity relationships (Carmel et al.
2002), or formal concept analysis (Ducrou and Eklund 2007;
Carpineto and Romano 2004) among others.

There are many other attempts to extract expansion terms
from logs as a source data useful for this strategy (Ruthven,
Lalmas, and van Rijsbergen 2003). For example, in (Biller-
beck et al. 2003), large query logs are used to construct
a surrogate for each document consisting of the queries
that were a close match to that document. Baeza-Yates et
al. (Baeza-Yates, Hurtado, and Mendoza 2004) recommend
queries building a term-weight vector for each query. Each
term is weighted according to the number of document oc-
currences and the number of selection of the documents in
which the term appears. Then they use clustering techniques
to identify related queries.

Instead, we investigate methods for analyzing and pro-
cessing the initial search results, and allowing the special-
ization or generalization of the original query. This use
of the data present in the top search results is called local
analysis(Manning, Raghavan, and Schütze 2007). Also, we
combine that information with a more flexible strategy, fo-

20

Local Analysis Module

Recommender
System Server

Client Web Browser

Merging and
Personalization Module

Proxy Server

Search
Engine

Recommender
System Client

In
te

rf
ac

e

q1

Information
need 1

q2

Information
need 2

q m

Information
need m

Figure 1: System architecture

cused on the identification of alternate queries used by an-
other people in a similar information context. Finally, recog-
nizing that people have unique preferences in the long run,
we provide a method for merging results of local analysis
and recommendation approaches in a personalized manner
based on the query terms previously used by the user.

Approach
The characteristic of the Web queries as established in pre-
vious work is that they are generally short and ambiguous.
The Web browsing and searching behavior observed in many
studies complements this nature of search emphasizing the
recurrent and limited vocabulary employed to represent the
information need to be solved.

Previous studies in (Teevan, Dumais, and Horvitz 2005)
had shown that the results lists of commercial search engines
are very optimized for many common queries, but also had
been identified some kind of search sessions where the user
is clearly not satisfied with the original results provided by
the engine for the first query, hence, the user may be forced
to modify the original query adding or removing or changing
the keywords that shape the information need behind his in-
tent until the result set is satisfactory. Therefore, we observe
that is missing some way to reinterpret the user information
need in order to put it in terms of the vocabulary used for
that concept beyond the language limits of the user.

The goal of the system is embody a technique to gener-
ate a handful of terms to re-express or to wide or to narrow
the initial scope of the Web query. Using the intrinsic rela-
tions within the keywords extracted from the user behavior,
in some meaningful way, and matching them with the key-
words obtained from the local analysis of the Web search
results to derive the desired terms is possible to get the de-

sired result.

Aiming exploratory search scenarios, the system make
use of the advantages of these ideas: with local analysis, the
key terms are good to detect information descriptors of the
results allowing fast rewriting of the original query, direct-
ing the search towards the desired conceptual space; with the
recommender system, the key terms are from a different na-
ture and they can make different functions: they can enrich
the user vocabulary as well as they can show novel descrip-
tors of seemingly disconnected concepts but related in the
ground; the personalization is performed at the query refine-
ment stage and not in the presentation result because we do
want to preserve the original result list (besides relevance
built with diversity, freshness, among other criteria) and we
want to give to the user a sense of control with an interactive
personalization scheme provided by the list of suggestions.
Also, taking in account regular and previous behavior we
provide a succesful way to tackle the problem of refinding
(Teevan 2007).

Architecture

The prototype system architecture is depicted in the figure
1, where the component modules are presented: a module
for extraction of terms with local analysis over the search
engine result set (run from the web browser), a module for
extraction of suggestions with a recommender system over
a community of searchers (run from a proxy server or the
search engine itself) and finally a module for personalized
posprocessing and merging that use the user profile to repo-
sition, if needed, the list of terms, to user preference.

21

Preprocessing module

Local Analysis Scheme

k-top terms
extraction

Term weighting module

Search Engine
Results to Initial Query

Figure 2: Local Analysis Module

Local Analysis
The local analysis module is outlined in the figure 2, where
the weighting module can be changed according to the meth-
ods presented here. All they are based on vector model rep-
resentation of the search engine results for a given query
and calculate matrices term document. Henceforth, a docu-
ment is another name for the surrogate that the search engine
makes for a web result (title + summary). In this way, at
best, we may consider up to 100 documents for processing.
Stop words are discarded. Here are the specifics for each
representation.

In order to detect key terms in a collection of documents
with many topics, several techniques had been used with the
goal of quantify the relative contribution of terms. An in-
tuitive manner to measure relevance of terms, is calculating
frequencies of appearance. However, it has been determined
that prevalent relationships for frequency and usefulness in
this method of measuring importance are: too much frequent
terms are not valuable; mid frequent terms can be really use-
ful; very infrequent terms are useful insofar as it can dis-
criminate relevant documents (Efthimiadis 1995).

TFIDF A classic model of term frequencies, where rela-
tions between term frequency and document inverse are cal-
culated as shown in equation 1.

With this model, for every term, a weight is calculated try-
ing to moderate the contribution of too much frequent terms
taking in account the number of documents that contain the
term.

wTFIDF
i =

∑
j

fi,j

maxz fz,j
× log

N

ni
(1)

LSA A vector model based on spectral decomposition of
the TFIDF matrix and recomposition to k-latent dimensions.
Let A = ai,j = TFi,j × IDFi, we project to a space
k = κ, trying to estimate hidden structure behind the con-
cepts. Where κ is at most up to 30% of the contribution
of singular values (proportion determined empirically) of
A. With the latent semantic analysis we get the matrix

B. The latent semantic analysis(Deerwester, Dumais, and
Harshman 1990) uses singular value decomposition (SVD),
A(t×d) = U ×Σ× V T , to discovery co-occurrence implicit
associations. This method can be considered like a soft clus-
tering method if we interpret each dimension of the reduced
space like a group, and the value of the document like a frac-
tional membership level to that group. The matrix Σ consists
of entries are the singular values of A. Then, if the matrices
U and V are “cut” to the first k columns, and Σ is left with
range k, we can reconstruct an approximation of A. Let,
A ≈ B = bi,j = U(t×k) × Σ(k×k) × V T

(d×k). Where the

k = κ value is chosen according to

κP
i=1

σiP
i

σi
< 30%. Finally,

the weighting vector, equation 2, is calculated in a similar
way to TFIDF:

wLSA
i =

∑
j

bi,j (2)

A prevalent difficulty with LSA is the complexity of SVD,
because is cubic in the size of the matrix. Thats why we
consider only the first search summaries to be feasible to
calculate from the client side nearly in real-time.

DFR A language generative model (Amati and Rijsber-
gen 2002) known as divergence from randomness, based on
this simple idea: The more the divergence of the within-
document term-frequency from its frequency within the col-
lection, the more the information carried by the word w in
the document d. To be more specific, is a combination of the
following information measures:

C = cij = Inf1ij × Inf2ij = − log2

[
Prob1

ij

]
×

(
1− Prob2

ij

)
Where each term of the above equation are calculated as:

Prob1
ij =

(
dfi+0.5

n+1

)tfnij

, the probability of finding by
pure chance, tfij occurrences of term i in the document j;
and the probability of finding a new occurrence of term i
in the document j, given that tfij occurrences have been

found, Prob2
ij = 1 −

(
tci+1

dfi×(tfnij+1)

)
and the term tfnij ,

calculated as tfnij = tfij × log2

(
1 + c·mean dl

lj

)
, where c

is a constant established in 1.5, the factor lj is the docu-
ment length and mean dl is the average document length. At
the end, we also use the same model for the extraction of a
column vector with the relative importance of terms in the
collection, see equation 3.

wDFR
i =

∑
j

ci,j (3)

The DFR model, assign a vector representation different
with respect to the induced calculating frequencies only. In
this, the more informative words are considered that they
belong to an elite set of documents, where they distribute
relatively in a greater extent than in the rest of the docu-
ments. On the other hand, there are words, which do not
possess elite documents, and thus their frequency follows a
random distribution, that is the single Poisson model (Amati
and Rijsbergen 2002).

22

In the algorithm 1 is described the specific steps for the
local analysis. The main idea for considering the sum as
proposed in all three methods is that weighting scores repre-
sent a notion of importance in the collection.

Algorithm 1 Term extraction with local analysis
The search result summaries for a query are processed
Calculate the vector-space representation following any
method between
Extract k-terms with most weight

Recommendation approach
For obtaining the terms suggested by a community of users,
we use the approach described below. We compared the
following approaches. First at all, a baseline which out-
put terms based on their frequency through sessions. Then,
we compared it against ideas from the model proposed by
Dupret in (Dupret and Mendoza 2006), and two models pro-
posed in this document. One model based on measures of
co-occurrence using of query terms through sessions from
(Matsuo and Ishizuka 2004) (originally designed for key-
word extraction in a single document), and finally, a model
based on measures of similarity. Here we explain more in
detail the three models, where the rationale is, how to find
suggestion terms, used by another people in a similar context
and where they give them successful results.

It’s noted that this component acts at a point where it
could access the web behavior information activity from
a relatively large community. For each one of the mod-
els presented here, we used the dataset from (Salamanca,
González, and León 2007). It is composed of data col-
lected from the proxy server at the National University of
Colombia, since August 2006 to January 2008 in a spanning
through 52 weeks (non consecutive), and it records Web be-
havior of about 52,000 users. With this dataset, were per-
formed some basic preprocessing steps, such as cleaning,
filtering and calculation of browsing sessions. They are de-
fined as sets of activities within an inactivity time threshold
(defined empirically).

On this sessions, searching sessions were extracted and
we discarded entries with values in attributes like domains
and query terms outside of frequency limits. This was per-
formed in order to leave out domains and query terms too
much (in)frequents. The approaches explained here are in-
different to whether they are executed directly in the search
engine itself or if they are executed in an intermediate server
(like a proxy) between many clients and the search engine.

Dupret The thought behind this method is how to find bet-
ter queries on alternate queries with the same selected doc-
uments and get only the ones with improved ranking. We
modified the original approach in the sense that we are only
interested in query terms, not in complete queries.

Co-occurrence through sessions Calculating a co-
occurrence matrix of query terms through sessions, and then,
on the most frequent query terms co-occurring with terms in
the initial query, a chi-square statistic, modified as can be

seen the equation 4 is used to select the query terms with
highest χ

′2 value.

χ
′2 (w) =

∑
c∈G

{
(freq(w, c)− nwpc)

2

nwpc

}
−

max
c∈G

{
(freq(w, c)− nwpc)

2

nwpc

} (4)

where G refers to set of most frequent terms, pg is the
sum of the total number of query terms in sessions where g
appears, divided by he total number of query terms in the
whole log, and nw is the total number of terms in sessions
where w appears.

k-NN VPTree In the figure 3 the involved components in
the recommendation method are shown. First at all, a pre-
processing stage is needed in order to detect sessions of re-
lated objects of interest for users. With a binary representa-
tion of domains visited by the people we can use the Jaccard
dissimilarity coefficient as a distance function, because this
is suitable with asymmetric attributes, and in the distribution
of frequency shows a very skewed shape. The problem is
equivalent to find the k-nearest neighbors in a metric space
defined by 5. For the implementation we use python and the
metric spaces library by Jochen Schulz1 in a space of 65434
terms with 1442 domains as dimensions. For efficiency rea-
sons, we used a special data structure for the calculations of
similarity in a metric spaces, the VPTree(Yianilos 1993).

A “Vantage Point Tree” is a static, balanced, binary tree
which can be used to index metric spaces. Construction is
done by picking one object (the “vantage point”) from the
set of objects to index and then determining the distance of
all remaining objects to the vantage point. The median dis-
tance is determined and the set of remaining objects is split
in two parts: objects whose distance to the vantage point is
smaller than the median distance and the rest (objects whose
distance to the vantage point is larger than or equal to the
median). For both of the resulting sets new child nodes,
called “left” and “right”, are created recursively. The van-
tage point and the previously calculated median distance are
stored in the current node. When searching a node, the dis-
tance between the current node’s value and the search ob-
ject is calculated. If it is <= k (the given maximum dis-
tance), this node’s value is added to the list of search re-
sults. Searching proceeds recursively into the left subtree
if distance − k < median and into the right subtree if
distance + k >= median. Since the construction phase
takes advantage of the median of all distances, VPTrees do
a fairly good job of balancing their subtrees. Runtime com-
plexity for the construction phase is O(nlog(n)), searching
is O(log(n)) and space requirement is O(n).

Jδ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
(5)

1svn://svn.well-adjusted.de/mspace/branches/nn-query

23

Preprocessing,
Search session detection

and dimensionality reduction

Recommender System

k-Top terms most similar
to query terms

Indexing of terms

Web log records

Query
terms

Figure 3: Recommendation system module

Personalization of term list
As in every personalization effort is required the evidence of
past behavior, therefore we present our approach to capture
the user profile.

This is how the search works from the user’s perspective:
first, the user raises their need for information and as verbal-
ization let it be, q. Then, the search engine returns a set S
of summaries of the relevant documents found.Each portion
of text generated (title and summary) si is an approximate
descriptor generated by the search engine on the content of
the page. These summaries usually are built to put the terms
of search in context within the page content, and this discus-
sion deliberately ignore the algorithm that uses the search
engine for deriving such abstracts, aware of the bias that can
imply.

Often, the user scans very quickly the whole 10 snippets
and decides to select a few results (usually 1 or 2) to satisfy
the information need it has. Usually, scanning on the snip-
pets that is more than enough to determine the likelihood
of relevance (i.e. there is correlation between what the user
deems as important and the fact that it is really important for
that user in his context).

Therefore in this study we decided to make a representa-
tion bag of words collecting terms that the user employs for
querying wi ∈ q, and the words coming out in summaries of
the search engine for pages selected as relevant by the user,
excluding repetition of terms used in the query. This vector
terms of what we to consider as a “document”.

So, sets of “documents”are associated under a logical
structure, it was decided to adopt as a criterion of selec-
tion taking those who are in a session, which corresponds
to a series of events defined by a threshold of inactivity in
an amount of given time and given the caveat that although
there were sessions with multiple objectives here we sup-
pose that they only deal with related topics.

With this group of “document vectors”, in the next is ex-
plained of to calculate a summary of overall preferences for
the user:

Once all the keywords most prominent have been ex-

Algorithm 2 Preferences calculation algorithm
If the set of session matrices B are preprocessed by LSA
as explained before (with a κ with up to 10% of the contri-
bution from the singular values) aligned by rows (terms)
and we sum all the weights through the columns and then
normalize it we can derive a column vector P , which pro-
vides a level of importance of each term, then that the user
has seen summaries of search engines to meet their infor-
mation needs over time (equally weighted between short
and long term). P = pi =

∑
j

bij

Now, if we repeat the above process through multiple ses-
sions and update the vector P aligned with the terms, it
will create a single vector with the tastes over time and
it can be assumed what is a vector around the convergent
terms of affinity for the interests of the user

tracted, these are moderated by the weights assigned to the
profile vector P , and thus provides the user with relevant
suggestions terms of expansion. The personalization is per-
formed when we weight the set of main keywords using the
respective weights from the vector P . If the word does not
exist in the profile P , we weight it with a weight of inf .
The ranked list of suggestion terms is presented to the user
ranked by their weights. In the algorithm 3 is summarized
the complete process.

Algorithm 3 Algorithm for adaptive term suggestions
Derive a vector with affinities for terms in the long term,
based on observed behavior
Derive a set of key terms based on the results of the con-
sultation issued by the user.
Derive a set of key terms based on the model of recom-
mendation
Using the profile moderate or boost key terms found in
the steps two and three
Show terms

System Validation
The evaluation focused on the user perspective to measure
the quality of the suggestions made by the system. Evalua-
tions were conducted offline through surveys that did gener-
ate terms at random. We asked volunteers to rate on a scale
qualitative degree of relationship that they associated with
each terms in the context of the original query.

The studies involved on a voluntary basis 69 students (52
men and 17 women) with an average age of 24.3 years in var-
ious undergraduate and postgraduate programs in the Fac-
ulty of Engineering. In the graphs depicted in 4 is summa-
rized characteristics of the population in terms of the ability
to search the Web and their knowledge of the subject of the
proposed queries.

Local Analysis Offline Evaluation
To evaluate the system, we downloaded and preprocessed up
to 100 snippets using the Google API, and the vector-space

24

Web search self-estimated hability

0
10

20
30

40

Inexpert Expert

N
o.

 o
f u

se
rs

Knowledge of subject
0

10
20

30
40

Inexpert Expert

N
o.

 o
f u

se
rs

Figure 4: Some characteristics of participants

Average performance for three representations

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

unknown irrelevant related closely
related

TFIDF
LSA
DFR

Figure 5: Terms quality as assessed by users with local anal-
ysis methods

model was calculated in Matlab with the help of Text Ma-
trix Generator toolkit2. We set experiments varying num-
ber of documents (snippets) used for obtaining the terms
in the analysis methods based on locally. They were cal-
culated considering up to 10 documents, 20 documents, 50
documents and 100 documents. In total, it were assessed a
group of 64 queries of broad themes and it were constructed
a survey system which generated the terms and organized
randomly, without replacement, so as to reduce the bias. It
produced 10 terms and we asked to people to estimate, on
a qualitative scale, the relationship level of every term re-
garding their knowledge of query subject in question. In the
figure 5, it is shown the average results of all methods.

We also has evaluated the average runtime of the experi-
ments in Matlab after 100 executions. The scripts for term
generation were run in a Windows Turion of 1.8 GHz with
2 GB of RAM. The results are shown in figure 6, and they
were obtained with the profiler built-in in Matlab.

Recommender System Offline Evaluation
For the evaluation process of query terms suggested by
the methods of recommendation, we have implemented all
methods in python scripts and we conducted surveys on the
same group of participants that the local analysis method,
but only in 34 queries from the original set. Figure 7 presents
results on the same type of evaluation than before.

2http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/

Average Execution Time in Matlab (100 runs)

0
50

10
0
15
0
20
0

TFIDF LSA DFR

Se
c.

Figure 6: Average execution time for 64 queries (100 runs)
with local analysis

Average performance for recommender systems

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

unknown irrelevant related closely
related

kNN-VPTree
Coocur.
Dupret
Freq.

Figure 7: Terms quality as assessed by users with recom-
mender systems

25

Average Answer Time
in the Recommender Systems

(20 runs)
0

40
0

80
0

12
00

16
00

kNN-
VPTree

Coocur. Dupret Freq

m
s.

Figure 8: Average answer time for 34 queries (20 runs) with
recommender systems

baseline proposed system
perceived time 5 and 10 min. 5 and 10 min.
effective time 5 and 10 min. 5 and 10 min.
query terms 3.2 3.1
reformulations 2.5 2.3
average ranking 2.5 2.8
avg. suggested terms used - 1.4

Table 1: Assessments for concrete search tasks

In order to take a measure of the execution time of the rec-
ommendation systems, they were implemented in a python
web server and their response times were calculated for the
queries in the study. The results are shown in figure 8.

Interactive System User Study
To measure the effectiveness of the complete system, it was
asked a group of 20 volunteers participate in a study where
they searched for information, with exploratory tasks and
with tasks with specific answers. They used a toolbar that
implemented the client component of the architecture3, us-
ing DFR as local analysis model rewriting the Google search
results page with the recommendations and disabling the
Google personalization at the client side. A control group
only used the search engine Google as is (also with no per-
sonalization of Google). In both cases the URLs visited
were tracked for further analysis. Participants included 15
men and 5 women with an average age of 23.5, a mastery of
the subject average of 1.25 out of 5 and an average of search
experience self-estimated at 3.3 (on the same scale that was
used for the evaluation of local analysis) out of 5. The re-
sults obtained by the baseline and by the proposed system
are shown in Tables 1, 2 and 3.

Also, to measure the personalization system quality, a
group of 4 participants, who voluntarily agreed to leave their
personal information available, were provided with an per-
sonalized exploratory task. This was chosen at random from
a group of tasks designed based on observed behavior in the
log files of proxy servers at campus. So, the pre-calculated
profiles were preloaded in the browser component to the pro-
cess of personalization. The results are shown in the table 4.

3developed as add-on of the browser mozilla firefox

baseline proposed system
perceived time 5 and 10 min. 5 and 10 min.
effective time 5 and 10 min. 5 and 10 min.
query terms 3.4 4.1
reformulations 2.7 2.4
average ranking 3.7 2.1
avg. suggested terms used - 1.7

Table 2: Assessments for exploratory search tasks

easy use 4.6
perceived utility 2.7
enjoyment 3.8

Table 3: Overall user assessments of the proposed system
interface

Results
According to the assessment of users, is a reasonable per-
formance for the TFIDF model, while for LSA model qual-
ity was not as good, and in fact worsened this regard to the
other. The model of divergence on the other hand, was the
one who obtained the best results for the proportion of terms
related documents while providing the lowest proportion of
irrelevant terms on average.

We believe that the performance was acceptable com-
pared against a system that randomly select terms, and that
execution times for processing the four data sets 4, 10, 20,
50 and 100 snippets for 64 queries test shows that in all cases
it is feasible to perform his calculations from the client. It
is curious to note that the runtime thought that would be
greater, LSA, is in fact the lowest of all. This may be due to
Matlab provides libraries for highly efficient operations and
matrix calculation of SVD, while the other deployments are
not optimized in the same development environment.

About models of recommendation of terms, is that the
best performance is given by the recommendation system
based on measures of similarity with a binary representation
of the terms on the search domains. The use of a structure
as VPTree as a means to make metric indexing obviously
accelerates response times. It also to be noted that a much
simpler model based only in frequency of query terms, offers
a reasonable performance and response time much smaller,
but more conducive to recommend moderately related terms.
All these models are sensitive to an accurate method of de-
tecting sessions, therefore it is possible that the performance
of the co-occurrence and Dupret models has not been as
good as could be expected.

baseline proposed system
perceived time 5 and 10 min. 5 and 10 min.
effective time 5 and 10 min. 5 and 10 min.
query terms 2.7 3.3
reformulations 4.2 3.1
average ranking 2.8 2.6
avg. suggested terms used - 2

Table 4: Assessments for personalized tasks

26

As for evaluations of the prototype in real user tasks. The
system presents a minimal interruption in the normal flow
of users, and receives an overall rating very positive in terms
of ease of use and enjoyment. The listing of query terms
suggested, as an addendum to the results page of the search
engine Google, was received positively in general.

In all test scenarios, tasks were complex enough as they
take between 5 and 10 minutes in both systems. The num-
ber of query terms used in all cases, are slightly greater than
average, and this may indicate a level of recognition that
more terms in Web search, the better the quality of the re-
sults. However, studies on larger populations has shown that
this is not the case and that the most frequent users prefer
to use queries with fewer words. In all cases, it was also
noted that there were reformulations on the original query,
and although the number of terms used at the suggestion of
our system was not greater than 2, this indicates that there is
scope to satisfy those needs better information.

Conclusions and Future Work

In this paper, we have presented our work on the develop-
ment of an adaptive Web search system that allows the users
to interactively refine their queries. According to user evalu-
ation, we have found a reasonable model to provide adaptive
expansion terms to reformulate user’s information needs in
case that the first results were no satisfactory, with a vec-
tor model built over the search engine results for a given
query. Of the three methods evaluated, we have found the
divergence from randomness and the term frequency-inverse
document being almost equivalent, with the former being the
slowest in our tests.

Also we did evaluate the recommender system and have
found a similar performance in finding related terms based
on the “wisdom of crowds”, with semantic links granted by
the aggregated behavior of a community of searchers.

In our evaluation of the whole system, participants
showed a trend to use an amount of terms, superior to ex-
pected. Therefore we believe that our system can be most
useful in situations in which users do not possess that level
of sophistication. In all cases, the system was well received
in terms of usability.

An important characteristic of the proposed system is that
its performance improves with its continuous use, i.e., the
more information in the system, the better the recommenda-
tions results.

In general, our architecture was able to find semantically
related terms as effective support for the process of search-
ing for users with customized interests.

Acknowledgments.

We are very grateful with all the participants of the studies
presented here. Also, we thanks the very valuable help of
Jochen Schulz in the implementation of the metric space for
nearest neighbors search. Also, we thanks to the anonymous
reviewers for helpful comments.

References
Amati, G., and Rijsbergen, C. J. V. 2002. Probabilis-
tic models of information retrieval based on measuring
the divergence from randomness. ACM Trans. Inf. Syst.
20(4):357–389.
Baeza-Yates, R.; Hurtado, C.; and Mendoza, M. 2004.
Query recommendation using query logs in search engines.
In Current trends in database technology - EDBT 2004
workshop.
Billerbeck, B.; Scholer, F.; Williams, H. E.; and Zobel, J.
2003. Query expansion using associated queries. In CIKM
’03: Proceedings of the twelfth international conference on
Information and knowledge management, 2–9. New York,
NY, USA: ACM Press.
Carmel, D.; Farchi, E.; Petruschka, Y.; and Soffer, A. 2002.
Automatic query refinement using lexical affinities with
maximal information gain. In SIGIR ’02: Proceedings of
the 25th annual international ACM SIGIR conference on
Research and development in information retrieval, 283–
290. New York, NY, USA: ACM Press.
Carpineto, C., and Romano, G. 2004. Exploiting the poten-
tial of concept lattices for information retrieval with credo.
J. UCS 10(8):985–1013.
Deerwester, S.; Dumais, S. T.; and Harshman, R. 1990.
Indexing by latent semantic analysis. Journal of the Amer-
ican Society for Information Science 41:391–407.
Ducrou, J., and Eklund, P. 2007. Searchsleuth: The con-
ceptual neighbourhood of an web query. In Proc. of Fifth
International Conference on Concept Lattices and Their
Applications CLA 2007.
Dupret, G., and Mendoza, M. 2006. Automatic query
recommendation using click-through data. In Symposium
on Profesional Practice in Artificial Intelligence, 19th IFIP
World Computer Congress, WCC 2006,.
Efthimiadis, E. N. 1995. User choices: A new yard-
stick for the evaluation of ranking algorithms for interactive
query expansion. Information Processing & Management
31:605–620.
Kim, M.-C., and Choi, K.-S. 1999. A comparison of
collocation-based similarity measures in query expansion.
Inf. Proc. and Mgmt. 35(1):19–30.
Kraft, R.; Chang, C. C.; Maghoul, F.; and Kumar, R. 2006.
Searching with context. In WWW ’06: Proceedings of the
15th international conference on World Wide Web, 477–
486. New York, NY, USA: ACM Press.
Manning, C. D.; Raghavan, P.; and Schütze, H. 2007. An
Introduction to Information Retrieval. Cambridge U.P.
Matsuo, Y., and Ishizuka, M. 2004. Keyword extraction
from a single document using word co-occurrence statisti-
cal information. International Journal on Artificial Intelli-
gence Tools.
Qiu, Y., and Frei., H. 1993. Concept based query expan-
sion. In Proc. of the 16th Intl. ACM SIGIR Conf. on Re-
search and Development in Inf. Retrs.

27

Ruthven, I.; Lalmas, M.; and van Rijsbergen, C. J. 2003.
Incorporating user search behavior into relevance feed-
back. In JASIST 54(6):529-549.
Salamanca, A.; González, F.; and León, E. 2007. Global
analysis of web behavior at the national university of
colombia. In Proceedings of XXXIII Latinoamerican Con-
ference in Informatics.
Salton, G., and Buckley, C. 1990. Improving retrieval per-
formance by relevance feedback. Journal of the American
Society for Information Science 41:288–297.
Salton, G., ed. 1979. The SMART Retrieval System - Exper-
iments in Automatic Document Processing. Prentice-Hall.
chapter Relevance feedback in information retrieval, 313–
323.
Teevan, J.; Dumais, S. T.; and Horvitz, E. 2005. Be-
yond the commons: Investigating the value of personaliz-
ing websearch. In Proceedings of Workshop on New Tech-
nologies for Personalized Information Access (PIA ’05).
Teevan, J. 2007. Supporting Finding and Re-Finding
Through Personalization. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology.
Yianilos, P. 1993. Data structures and algorithms for near-
est neighbor search in metric spaces. In ACM-SIAM Sym-
posium on Discrete Algorithms.

28

