
A Content-Based User Model Generation and Optimization Approach for

Movie Recommendation

Oznur KIRMEMIS, Aysenur BIRTURK

Department of Computer Engineering, METU, Ankara, TURKEY
0090 312 210 20 80

{e120321, birturk}@metu.edu.tr

Abstract
Personalization has become a powerful approach for
constructing more precise and easy to use information
search and recommendation systems. The quality of the
personalization is heavily dependent on the accuracy of the
user models created by the system and it is very important
to incorporate content information of the working domain in
order to enrich these models. This paper proposes a content
based movie recommendation algorithm to make
recommendations for the target user through building
content based user models from collaborative-based user
models and characteristics of the movie domain.
Constructed user models are fine-tuned through “highly
liked”, “highly not liked”, and “don’t care” flags. The user
models are presented to the users in terms of the most
important features and dimensions in their profile. This
makes explicit the users’ implicit and unknown preferences
of the movie domain. The system is evaluated and the
results are presented using decision-support metrics.

Introduction

Recommendation systems have become an important
technology for helping users to understand and navigate
complex product spaces. Most recommendation systems
use three approaches for building a user profile and
computing recommendations (Adomavicius and Tuzhilin
2005): collaborative filtering, content-based filtering, and
hybrid approaches. Collaborative filtering recommends
items to a user by matching the user’s taste to that of other
users in the system. On the other hand, content-based
systems recommend items based on the content of the item
rather than other users’ ratings. Hybrid approaches exploit
both content-based and collaborative filtering facilities.
 In this paper, we propose a framework for a content-
based film recommendation system, OpenMore. We have
focused on enhancing user models from collaborative
filtering recommenders where a vector of explicit ratings
on a set of objects is provided by the user (Herlocker et al.
1999) to the content based user model, represented as a list
of preferences (Morita and Shinoda 1994) of different

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

movie features. In (Berkovsky, Kuflik, and Ricci 2006)
content-based user models are constructed from
collaborative-based user models. We also build content-
based user models from collaborative-based user models
but with a different construction and optimization
approach. We do not use collaborative filtering in the sense
of finding the like-minded users; however, we use
collaborative-based user models in order to find best values
of the defined thresholds that are used for the optimization
of the content-based user models. The proposed approach
constructs user models that facilitate the identification of
commonalities in positively or negatively rated objects as
derived by the collaborative user models. Movie profiles
are kept as a vector of feature weights. Features that exist
in each movie are collected from the IMDb database (The
Internet Movie Database, http://www.imdb.com). Feature
weights are calculated prior to the start of the
recommendation process, and weights are assigned to the
features according to the degree of how well they can
discriminate one movie from another, considering the
characteristics of the whole movie domain. Therefore,
feature weights are not kept in binary as in the approach
described in (Berkovsky, Kuflik, and Ricci 2006). These
feature weights and collaboratively built user models are
used to find a weighted list of features that are liked or
disliked by the user. Therefore the user preferences,
interests and needs are modeled, using only the
collaborative-based user model and item profiles. Users are
enabled to view their proposed models. This enables them
to be aware of their implicit or unknown preferences.
 The proposed mechanism was implemented, and its
accuracy was evaluated using the MovieLens million
rating dataset (http://www.grouplens.org), which is a
publicly available movie ratings dataset. As mentioned
before, the IMDb database was exploited for extracting
features of the rated movies for the casting, genre, year,
director, writer, runtime, country, language, and color
dimensions. The collaborative ratings provided in the
dataset and the movie profiles formed after calculating
each feature’s weight in the whole domain, are used to
construct a weighted list of liked and disliked features that
will be used to test the proposed approach. The
construction of user models in this manner was based on
the assumption that a user’s rating of a movie steadily

78

reflects his preferences concerning the features of the
movies. Finally, the generated user models served as a
basis for generating content-based recommendations. In
this first phase of the evaluation process, we have
completed two experiments. The first one was carried out
to fine-tune the prediction generation and to find the best
values for some threshold degrees kept in the system. The
second one actually evaluated the accuracy of the
predictions through the well known accuracy metrics,
precision and recall (Herlocker et al. 1999). The second
phase of the evaluation process is done by 30 active users,
who evaluate the system’s open user profile facility.
Experimental results demonstrate the usefulness of the
constructed content-based user models and the interest of
the users towards the open user profile facility.
 The remainder of the paper is organized as follows.
First, we overview the related works, then we present the
overview of our proposed approach in detail. Details of the
experimental evaluation process are described next, and its
results are discussed. Finally, the concluding remarks are
offered and topics for further research are mentioned.

Related Work

When the movie domain is considered, the major
approaches reported so far use collaborative filtering
(Herlocker, Konstan, and Riedl 2000) and content-based
filtering techniques (Tang, Winoto, and Chan 2003)
(Melville, Mooney, and Nagarajan 2002) (Schein et al.
2002). A feature-weighted user-model generation is
described in (Symeonidis et al. 2007). The well-known
film recommender MovieLens (http://movielens.umn.edu)
is provided by the GroupLens research project. It is based
on collaborative filtering, which requires a sufficiently
large number of ratings in order to achieve an appropriate
recommendation.
 There are few examples of open user profiles (Schafer,
Konstan, and Reidl 2002) and almost no reported studies of
open profiles that combine automated profile construction
mechanism with transparency for the movies domain.
MetaLens, a movie recommender system where user
feedback is taken for different dimensions, is investigated
in (Schafer, Konstan, and Reidl 2002). They take values
for user preferences for different dimensions, but they do
not enhance the user models implicitly using domain
knowledge.
 The incremental-critiquing approach at (McCarthy et al.
2005) describes a system where the user has the option of
directly updating the candidates’ selection query. However,
the system builds the implicit user models incrementally
through taking user feedback, and it does not include an
automated user profile construction mechanism through
item similarities, which is a desirable feature for end-user
satisfaction.
 In recommender systems, many works related to hybrid
recommendation techniques (Balabanovic and Shoham
1997) (Jin, Zhou, and Mobasher 2005) (Salter and
Antonopoulos 2006) tried to integrate multiple approaches

in the prediction generation process (Burke 2002).
MovieMagician (Grant and McCalla 2001) is a hybrid
system that provides a rating prediction when requested.
The features of a movie (kind, actors, and directors) are
captured in a generic granularity hierarchy that is
independent of a particular film and any specific movie is
an instantiation of this hierarchy and the degree to which
the instantiation hierarchies of two movies overlap defines
their similarity. As a result, the features of a film can be
used to find cliques, filter out irrelevant movies, annotate
preferences about various features and generate
explanations for a movie.
 Hybrid recommenders usually combine two or more
recommendation techniques, but they are not concerned
with the conversion of user models between different
techniques. In (Basu, Hirsh, and Cohen 1998), the authors
extract content-based user models from collaborative user
models and use both of these models for generating
predictions. However, our approach focuses on the
generation of pure content-based predictions, based solely
on user models that are converted from collaborative user
models with the efficient usage of domain knowledge. A
content based user model generation is proposed in
(Berkovsky, Kuflik, and Ricci 2006), which converts
collaborative user models to content-based user models.
However, they kept movie items as a set of features where
all the features’ weights are the same: 0 if a feature does
not exist, 1 otherwise (in item profiles). In addition, we
have used three main fine-tuning mechanisms, which
results in higher precision than that of standard content
based user models where movie item profiles are kept in
binary.

System Description

Collaborative filtering is one of the most popular
recommendation techniques which use cross-user
correlations to generate predictions by weighing the
opinions of similar users (Herlocker et al. 1999). The input
to a standard collaborative filtering system is a matrix of
users’ ratings on a set of items, where each row represents
the ratings of a single user and each column represents
ratings on a single item. Thus, collaborative filtering user
models are represented as a vector of pair of ratings ik:rk,
which corresponds to a real rating rk provided by the user
on an item ik.
 Content-based filtering (Morita and Shinoda 1994)
builds personalized recommendations by taking the
features of items that have been rated by the user, and the
set C of available items, not yet rated by the user, i.e., as
input. The output of the system will be a subset of C,
containing the items whose features match the features of
the items that are liked by the user. Content-based
recommenders generate predictions based on the set of
features weighed according to a predefined scale.
Therefore, the resulting user models can be represented as
a vector of the pair of ratings fk:wk, where fk denotes one of

79

the domain features and wk is the level of the user’s
preference regarding this feature.
 In addition to the user profiles, we keep item profiles in
the system as a vector of pairs of fi:wi, where fi denotes one
of the features in a movie and wi denotes its corresponding
weight. The weight wi is equal for all the features fi,
regardless of individual movies.
 In the following subsections, we first describe the idea
behind constructing item profiles and their construction
algorithm. Then the user model construction algorithm is
described. Finally, the recommendation generation step is
discussed in detail.

Item Profile Construction
We consider each movie as a combination of dimensions
where each dimension has a set of features. We base our
item profile construction algorithm on the idea that the
importance of each of the features in the domain should not
be the same when we consider the degree of how well one
discriminates a movie from the others; more specifically,
(1) the ratio of the number the movies that has feature fi to
the total number of the movies in the database, (2) the
number of the possible features in each dimension that
feature fi belongs to.
 We propose that a feature fi will be more discriminative
if fewer movies in the whole movie domain have it. For
instance, consider the following scenario: we have 10
ratings for a user, where in 5 of them actor a1 acts, and the
remaining 5 have country c2. Moreover, the user ratings
for these movies are all the same. In addition, we have a
total of 3500 movies in the domain and in 20 of them actor
a1 acted. Furthermore, there are a total of 600 films that
have country c2. In this scenario, a1 gives more clues
about the user model, although both a1 and c2 exist in the
same number of movies that has same ratings provided by
the user. Although a1 is not a very common feature in the
domain, our user has rated movies in which a1 exists.
However, nearly 17% of all movies have the feature c2 and
it is more probable that the user has no consciousness of c2
since it is a very common feature in the whole movie
domain.
 Our second hypothesis for the item profile construction
process is that a feature will be more discriminative if the
size of its dimension set is large. For instance, almost all
movies have values from the genre and casting dimensions
(except, possibly, animation movies). Therefore every
movie has a set of features from each of these dimensions.
If the size of the dimension set of a feature fi is larger than
another’s, then the probability that the latter exists in any
movie is smaller, which makes it a more descriptive
feature. Consider again, for instance, the casting and genre
dimensions. In our current database that we built for
evaluation, there are 23 genres and 8409 actors/actresses in
total. If an actor/actress acted in most of the movies that a
user rated highly, this is more valuable information for us
than knowing that a genre exists in most of the movies that
the user rated highly.

 In order to model our hypotheses, we used the Inverse
Document Frequency (Sebastiani 2002) theory. We
calculate the item feature weight (IFW) of each feature fi
with the following formula:

Here, |M| is the size of the set of all movies in the domain,
|Mfi| is the total number of movies that has feature fi,and
|Dj| is the size of the dimension that fi belongs to.
 In order to create user models, we use the collaborative
user models and domain specific knowledge for the movies
that we gather from the IMDb movie database. IMDB
provided information in several dimensions; however for
the sake of simplicity, we use 10 feature categories which
we believe to be the most important ones for user
preferences in our work: genre, casting, language, year,
country, rating, director, writer, runtime and color. After
this data is collected, we calculate IFW values for all the
features in the domain and store each movie as pairs of
fi:wi for each of the features fi in each movie, where wi is
the IFW value of fi.

Construction of Content-Based User Models
We form content-based user models by using the
collaborative user models and item profiles. We keep three
weights for each feature fi: neg_weight_fi, pos_weight_fi,
total_weight_fi. neg_weight_fi corresponds to the weight
of fi that is collected from negatively rated movies, and
pos_weight_fi corresponds to the weight of fi collected
from positively rated movies. (The reason behind keeping
these weights separate is described in the Rating
Estimation section). The total weight of a feature in the
user model is kept in total_weight_fi, which is the sum of
neg_weight_fi and pos_weight_fi.
 For each movie rating provided in a collaborative user
model, we have a list of a movie’s features and their
corresponding IFW values. We form the weights of each fi

in the user model by using the ratings of the movie that has
fi in its profile and its corresponding IFW value. Both the
ratings used in OpenMore and the MovieLens dataset use a
[1-5] scale. Ratings greater than 3 are taken as positive,
and less than 4 as negative in almost all of the studies
reported so far that use the MovieLens dataset. In order to
highlight the negativity of the scores, we subtract 3 from
each of the ratings. However, to stress the small negativity
in rating 3, we do not take rating 3 as 3-3=0; we give -0.1
to highlight this effect and differentiate the features that
occurred only in the movies that were rated with rating 3
from the ones that do not exist in the user model (does not
exist in any of the rated movies).
 The weights of the features in the user model are
updated according to the rating of the movie, and the IFW
values. In other words, the result of the multiplication of
the rating of the movie with the corresponding IFW value

()j
f

i D
M
M

fIFW
i

log)log()(×=

80

was added to the positive weights of all the movie genres,
actors and directors involved in the movie, and similarly
for all the remaining dimensions, if the rating for that
movie is greater than 3. If the rating is smaller than 4, then
negative weights of the features are updated in the same
manner. In addition to this, the numbers of occurrences for
each feature in negatively and positively rated movies
having that feature are stored in the system (which will be
used in the Rating Estimation).
 For example, consider the rating “The Usual
Suspects”:4 in the collaborative user model of one user.
According to the IMDb, “Stephan Baldwin” and “Kevin
Spacey” had roles in this movie. The user rated this movie
positively; therefore the pos_weight_fi and total_weight_fi
of these features are increased by the result of the
multiplication of 1(4-3) with the IFW values of these
features. The weights of other features that exist in this
movie are updated accordingly. In addition to this, the
number of occurrences in positively rated movies for these
features is increased by 1.
 We conclude the ideas behind the generation of a
content-based user model below:

1. User models are kept as a vector of
fi:(neg_weight_fi, pos_weight_fi, total_weight_fi)
values, where each fi exists in one of the rated
movies of the user.

2. neg_weight_fi for fi is calculated by the following
formula, where c_neg_fi is the number of
occurrences of fi in negatively rated movies:

 neg_weight_fi= IFW(fi)× c_neg_fi

3. pos_weight_fi for fi is calculated by the following

formula, where c_pos_fi is the number of
occurrences of fi in positively rated movies:

 pos_weight_fi= IFW(fi)× c_pos_fi

4. total_weight_ fi for fi is the sum of neg_weight_fi

and pos_weight_ fi.
5. For each fi, we keep the number of occurrences of

fi in positively rated movies and negatively rated
movies.

Optimizing Content-Based User Models
Considering the working domain, we use the following
mechanisms in order to fine-tune the constructed content-
based user models:

“Don’t Care” Features

Content-based user models typically store features to
which the user is indifferent. For instance, consider the
following scenario: we have a user who sees only
American movies, that is, he never prefers movies
produced in any other country. Almost all of the movies he
has rated have feature “American” for the country
dimension. This shows us that the feature “American” has

no effect on the preferences of the movies for that user, and
the reason behind liking/not liking these movies that have
the “American” feature are the other features except this
feature; therefore this feature is identified as a “don’t
care” feature for the target user.
 “Don’t care” features are identified by the number of
occurrences of that feature in the rated movies and the total
number of movies that the user has rated. Identifying these
features and removing them from the prediction generation
step increases the accuracy of the results, because the
recommender will base its decisions only on the
differentiating features.
 To filter these “don’t care” features, a threshold is
defined: “TH_DONT_CARE”. Features that have the value
((c_pos_fi+ c_neg_fi)/total_rated_movies) greater than
“TH_DONT_CARE” are set to “don’t care” and the
prediction mechanism is designed and implemented such
that only those features that are not “don’t care” are used
in the generation of the recommendation scores.

“Highly Positive” Features

When the movie domain is considered, there can be some
features that the user prefers, and the user likes (has rated
with high scores) all the movies that have that feature,
regardless of other properties of those movies. For
instance, consider a user who is a fan of “Stephen
Spielberg” and likes all the movies directed by “Stephen
Spielberg”, regardless of other features in those movies.
Therefore, if there is a movie directed by “Stephen
Spielberg” that the user has not yet seen, there is a high
probability that the user will like that movie, regardless of
the features in casting, genre or other dimensions. As a
result of this, we can identify these features as “highly-
positive” features and promote them in the prediction score
generation. After such features are identified, the
prediction generation step uses the pos_weights of the
features that exist in any movie together with a “highly
positive” feature, in order to be sure to come up with a
positive score for such movies. However, if there are two
or more movies with a “highly positive” feature, the one
with the highest cumulated pos_weights of its features
beats the others.
 To identify “highly positive” features, two thresholds are
defined: “TH_HIGH_RATIO”,
“TH_HIGH_TOP_COUNT”. First the candidate’s “highly
positive” features are identified, which are the ones that
have a (c_pos_fi/(c_pos_fi+ c_neg_fi)) value greater than
“TH_HIGH_RATIO”. Then these features are sorted
according to their pos_weights and the top
“TH_HIGH_TOP_COUNT” candidate’s “highly positive”
features that have the highest pos_weights are set to
“highly positive”. Therefore, we first eliminate the features
that can not be “highly positive” by using only their
number of occurrences in the positively and negatively
rated films. Then we choose only those with the highest
pos_weights. Therefore, we use the ratings provided for the
movies that have those candidate “highly positive” features
and their IFW values, in order to make second elimination.

81

“Highly Negative” Features

The idea behind “highly negative” features is the same as
the idea behind “highly positive” features. With “highly
negative” features, we try to identify which features always
result in bad scores and use this valuable knowledge to
fine-tune the constructed user models.
 For instance, a user may dislike “horror” movies and
never likes them regardless of other features that exist in a
candidate movie that has the genre “horror”. We identify
“highly negative” features by using the same thresholds
with the “highly positive” case. However, for the “highly
negative” case, first elimination takes only the features that
have a (c_neg_fi/(c_pos_fi+ c_neg_fi)) value greater than
“TH_HIGH_RATIO”. Then these features are sorted
according to their neg_weights in order to take only the top
“TH_HIGH_TOP_COUNT” ones that have highest
neg_weights to “highly negative”.

Further Details about Optimization of User Models

During optimization, we first identify the “don’t care”
features. Then the “highly positive” and the “highly
negative” features are identified from the ones that have
not already been set to “don’t care”. Therefore, a feature
can never be set to both “don’t care” and “highly positive”
or “highly negative”.
 One more optimization is done on the remaining features
that were not set to any of these values: if a feature fi exists
in negatively rated movies, and all those negatively rated
movies have a “highly negative” feature, we set the
neg_weight of that feature to 0, and we increase the
total_weight accordingly (total_weight is set to
pos_weight). The idea behind this optimization is that, the
user did not like those negatively rated movies because of
the “highly negative” features, not because of feature fi. If
this optimization results in features that have a
total_weight equal to 0, then these features are removed
from the user-model.
 The same case does not hold for the features that exist in
positively rated movies where all movies have a “highly-
positive” feature. This was tested during the evaluation
phase and resulted in a decrease in precision. So no
optimization is done for this case.

Prediction Generation

The prediction generation process takes a content-based
user model um and a set of candidate movies MC. It
generates a list of recommended movies that are sorted
according to their calculated recommendation score.
 The prediction generation process produces scores for
three distinct subsets of MC where each one is ordered in
itself according to the produced score:

1. List_Pos: For the candidate movies in MC which
have a feature that exists in um and is “highly
positive”.

2. List_N: For the candidate movies in MC which
have no feature that exists in um and is “highly
positive” or “highly negative”.

3. List_Neg: For the candidate movies in MC which
have a feature that exists in um and is “highly
negative”.

 The resulting recommendation list has the candidates in
List_Pos at the top. Then the candidates in List_N, and
finally, the candidates in List_Neg exist in the
recommendation list. The pseudo-codes for the generation
of these lists are given below:

Gen_List_Pos(User-Mod um, candidate_movie_set MC)
 list_pos={}

rec_score=0
 high_feature_exists=false

for each mc∈MC
{

fSet(mc)=get feature set of mc
for each f ∈ fSet(mc)
{
 if (f ∈ fSet(um) and is_dont_care(f,um)=false)
 {

if(is_highly-pos(f,um)=true)
 high_feature_exists=true

 rec_score=rec_score+pos_weight(f)
 }

}
if (high_feature_exists=true)

add mc to list_pos together with rec_score
 rec_score=0 }

Gen_List_N(User-Mod um, candidate_movie_set MC)
 list_N={}

rec_score=0
 high_feature_exists=false

for each mc∈MC
{

fSet(mc)=get feature set of mc
for each f ∈ fSet(mc)
{
 if (f ∈ fSet(um) and

 is_dont_care(f,um)=false and
is_highly-neg(f,um)=false and
is_highly-pos(f,um)=false

)
 {

 rec_score=rec_score+total_weight(f)
 }
 else
 {
 high_feature_exists=true
 exit for LOOP
 }

}
if (high_feature_exists=false)

add mc to list_N together with rec_score
 rec_score=0 }

82

Gen_List_Neg(User-Mod um, candidate_movie_set MC)
 list_neg={}

rec_score=0
high_feature_exists=false
for each mc∈MC
{

fSet(mc)=get feature set of mc
for each f ∈ fSet(mc)
{
 if (f ∈ fSet(um) and is_dont_care(f,um)=false)
 {

if(is_highly-neg(f,um)=true)
 high_feature_exists=true

 rec_score=rec_score+neg_weight(f)
 }

}
if (high_feature_exists=true)

add mc to list_neg together with rec_score
 rec_score=0 }

Current Implementation

A content-based movie recommender, OpenMore is
developed in order to evaluate the ideas presented in this
paper. Since the proposed approach is tested using the
MovieLens 1 million rating dataset, OpenMore retrieves all
the content information from the IMDb database for the
movies that exist in the dataset.
As described in the Evaluation section, we performed
evaluation in two phases: (1) an automated evaluation of
the proposed approach using the collaborative user models
formed from the MovieLens dataset is performed in order
to determine the best values for the thresholds, and (2) a
user study is performed (after the first phase of the
evaluation is completed) using the same movies.
 The users’ interaction with OpenMore starts after the
login phase. Users login to the system using their username
and password. They have to rate at least 15 movies in order
to start taking recommendations from the system. Users
evaluate films that they have seen on a 5-point scale (5:
masterpiece to 1: bad film). When they have rated (at least)
15 movies, user models are created in the system. Based on
these models, a recommendation list is created as
described in the previous section. A list of
recommendations, sorted according to their prediction
scores, is presented to the user. The movie with the highest
prediction score is at the top of the list. Movies with
positive prediction scores and movies with negative
prediction scores are both presented to the user, together
with their scores (which are normalized so that users view
scores between -100 and 100).
 Constructed user models are presented to the users in 2
main screens:

1. Dimension Screen: Dimensions are listed according
to the total weight of the features in the user model
that are summed up for each dimension. For
instance, for the genre dimension, total_weights of

all the genre features in the user model are summed
up, and a genre dimension is assigned to that score.
Every dimension is then listed in the order of this
score in the Dimension Screen.

2. Feature Screen: When a dimension name in the
Dimension Screen is clicked, the following sets of
features are listed for the sets of features belonging
to that chosen dimension.

a. “don’t care” system_set: features set by the
system to “don’t care”

b. “highly positive” set: features set by the
system to “highly positive”.

c. “highly negative” set: features set by the
system to “highly negative”.

d. 10% of the features that exist in the user
model with the highest total_weight
values. These are the features that do not
belong to the system constructed sets
mentioned above.

Examples of the Dimension Screen and Feature Screen
(for the language dimension) are displayed in Figure 1 and
Figure 2 respectively.

Users can observe their constructed profiles and become
conscious of their possibly unknown preferences for
certain features of the movies through the Dimension
Screen and the Feature Screen. This can also give them a
reasoning mechanism for the predicted ratings, since the
most important and effective features are listed in their
user models.

Experimental Evaluation

In this section, we describe the experimental methodology
and metrics we used to test our approach; and present the
results of our experiments.

Data Set
Our experiments use the MovieLens million rating dataset,
which is a collaborative filtering dataset storing ratings by
6040 users of 3952 movies. Ratings are provided on a scale
of 1 to 5, 5 being excellent and 1 being terrible. Based on
the rating guidelines presented to the users of MovieLens,
we identified ratings of 4 and 5 to signify “good” movies
(McLaughlin and Herlocker 2004). These are the movies
that would make good recommendations.

As mentioned in the readme file of the dataset, a number
of movieIDs do not correspond to any movie, due to some
accidental duplicate entries and inconsistencies. As we are
doing content-based filtering, we processed all the movies
used in the dataset (in order to collect information from the
IMDb database) and the inconsistent movie entries and
their corresponding rating data are removed from the
OpenMore database. Our resulting database has 3881
movie items, 6040 users and 1000187 ratings.

83

Figure 1: Dimension Screen

Figure 2: Feature Screen (for language dimension)

84

We applied 5-fold cross-validation to the dataset of the
ratings by splitting the set of ratings using a 20%-80%
ratio and doing this split 5 times for each user. For each of
the 5 splits, we designate a 20% part of the initial dataset
the evaluation dataset and the remaining 80% of the
dataset was designated the training dataset. We repeat our
experiments with every training set and test set for each of
the users selected for evaluation, and after this phase is
completed we average their results. We generate each
testing set by taking a random sample (Basu, Hirsh, and
Cohen 1998) of the data as follows:

• For every user, we separate and group his
movie/rating pairs into intervals defined by
ratings.

• From each interval, we take the same number of
movie/rating pairs (when possible, since
sometimes the number of items is not divided
evenly by 5), and adjust the distribution in order
to have a 20% distribution of movie/rating pairs
each time.

As a result of this procedure, each of the testing sets is
more representative of the distribution of ratings for the
entire data set than would have been the case with simple
random sampling.

In our experiments, we select 2872 users whose
variance of ratings is not 0 (i.e., the ratings are not
identical). Table 1 shows the distribution of the number of
rated movies among the users in the dataset.

Evaluation Metrics

There are several performance metrics that are commonly
used to evaluate the performance of recommender
systems, such as the mean absolute error (MAE), mean
squared error (MSE), precision, recall, and F-measure
(Mooney 1999) (Herlocker et al. 1999). Moreover,
(Herlocker et al. 1999) classifies these metrics into
statistical accuracy and decision-support accuracy
metrics. The statistical accuracy metrics compare the
predicted ratings against the actual user ratings on the test
data. The MAE measure is a representative example of a
statistical accuracy measure. The decision-support
accuracy metrics, like precision, recall, and F-measure,
measure how well a recommender system can predict
which of a set of unknown items will be highly rated.

Moreover, although both types of measures are
important, it has been argued in the literature (Herlocker
et al. 1999) that decision-support metrics are better suited
for recommender systems, because they focus on
recommending high-quality items, which is the primary
target of recommender systems. Therefore we used
precision and recall metrics in our evaluation. Precision is
defined as the fraction of positive examples classified as
positive that are actually positive. Recall is defined as the
fraction of positive examples classified as positive.

number of rated movies number of users

0 to 25 492
26 to 50 1301
51 to 75 785

76 to 100 553
101 to 125 480
126 to 150 345
151 to 175 306
176 to 200 200
201 to 225 207
226 to 250 148
251 to 300 268
301 to 500 559
over 500 396

Table 1: Distribution of ratings among the users in the dataset

Evaluation Phases
We completed the evaluation process in two phases:

(1) Automated Evaluation Using MovieLens Dataset:
The first phase of the experiment is accomplished using
the MovieLens collaborative filtering dataset. The
collaborative user models in the dataset are transformed to
content-based user models and two sets of experiments
are performed.

First Set of Experiments

The first set of experiments was designed to fine-tune the
prediction mechanism by selecting the most appropriate
values for the TH_DONT_CARE,
TH_HIGH_TOP_COUNT and TH_HIGH_RATIO
thresholds. To accomplish this, we set two of the
thresholds to a constant, while the values of the remaining
ones are gradually modified. For each value of the
modified threshold, a subset of 500 users that rated at
least 100 movies is selected, and for each user, we
performed a 5-fold cross-validation on his rating data. In
this way we completed 5 test runs for each user, which
makes a total of 2500 test runs. Results of the predictions
are evaluated using the metrics mentioned in the
Evaluation Metrics section.

1. Evaluation for TH_DONT_CARE

To find the most appropriate value of TH_DONT_CARE,
TH_HIGH_TOP_COUNT and TH_HIGH_RATIO
thresholds are set to 0.80. The values of
TH_DONT_CARE are increased from 0.70 to 0.95 by 0.5.
Table 2 illustrates the results of the experiments.

85

TH_DONT_CARE Precision Recall
0.70 64.6% 59.2%
0.75 66.0% 59.4%
0.80 72.2% 66.6%
0.85 73.1% 72.8%
0.90 69.6% 78.7%
0.95 67.2% 80.6%

Table 2: Results of evaluation for TH_DONT_CARE

As can be seen, precision increases with increased
TH_DONT_CARE value up to 0.85 and decreases
afterwards. The increase can be explained by the
identification of more “don’t care” features incorrectly
with small values of TH_DONT_CARE. However, with
values higher than 0.85, precision decreases, which will
be the influence of missing some “don’t care” features
because of high TH_DONT_CARE. As expected, recall
behaves in a similar manner; however, its value increases
up to 0.90. By taking a weighted average of precision and
recall, TH_DONT_CARE = 0.85 is taken as an optimal
value.

2. Evaluation for TH_HIGH_TOP_COUNT

After determining the value for TH_DONT_CARE, it is
used to choose an optimal value for
TH_HIGH_TOP_COUNT. The TH_HIGH_RATIO
remains as 0.85. Similar to the previous example, the
values for TH_HIGH_TOP_COUNT are increased from
0.70 to 0.95 by 0.5. Table 3 illustrates the results of the
experiments.

TH_HIGH_TOP_COUNT Precision Recall
0.70 59.7% 66.4%
0.75 69.2% 69.3%
0.80 72.0% 71.5%
0.85 73.7% 72.3%
0.90 74.1% 73.7%
0.95 70.2% 73.9%

 Table 3: Results of evaluation for TH_HIGH_TOP_COUNT

 With arguments similar to those used in the first
experiment, low values of TH_HIGH_TOP_COUNT lead
to incorrect analysis of “highly positive” features, which
decreases the precision values. The best results are taken
when TH_HIGH_TOP_COUNT is set to 0.90. Therefore
we take 0.90 as an optimal value for
TH_HIGH_TOP_COUNT.

3. Evaluation for TH_HIGH_RATIO

After determining the value for TH_DONT_CARE,
TH_HIGH_TOP_COUNT, we conducted experiments for
TH_HIGH_RATIO by setting the other thresholds to their
observed optimal values. The values for

TH_HIGH_RATIO were increased from 0.78 to 0.90 by
0.2. As can be observed from the results in Table 4, we
achieved the best results with 0.88.

TH_HIGH_RATIO Precision Recall
0.76 61.2% 63.2%
0.78 64.2% 63.8%
0.80 72.6% 65.1%
0.82 72.9% 66.0%
0.84 73.8% 68.2%
0.86 74.0% 72.1%
0.88 74.5% 73.2%
0.90 72.5% 72.7%

Table 4: Results of evaluation for TH_HIGH_RATIO

Second Set of Experiments

The determined threshold values are applied in the second
set of experiments. In this step, we try to figure out the
influence of four optimizations over a purely content-
based user model generation. We performed 5 tests:

1. Test 1: evaluation of a purely content-based user-
model generation without any optimization.

2. Test 2: evaluation of the influence of “don’t
care” features with a purely content-based user
model generation

3. Test 3: evaluation of the influence of “highly”
features (both “highly positive” and “highly
negative”) with a purely content-based user
model generation

4. Test 4: evaluation of the influence of “highly”
features (both “highly positive” and “highly
negative”) with a purely content-based user
model generation and the last hypothesized
optimization that is, updating the neg_weights of
features that appear in negatively rated movies
that all have a “highly negative” feature.

5. Test 5: evaluation of content-based user-model
generation with all the optimizations.

For these experiments, 2872 users (selection described in
Data Set section) are selected and used with 5-fold cross-
validation on the rating data. The results are summarized
in Table 5.

TEST
NUMBER

Precision Recall

1 70.2% 89.1%
2 72.9% 73.9%
3 71.9% 84.3%
4 72.3% 84.1%
5 75.2% 73.7%

Table 5: Results of evaluation of the system for determining the

influences of different optimizations

86

As can be seen from the results, identification of “highly”
features greatly increased precision when compared to the
identification of “don’t care” features. Recall decreased
with “don’t care” feature identification, which is
expected, since we eliminate a set of features from the
user-model which results in producing predictions for a
smaller number of movies. Our results indicate that we
achieve the highest precision when we integrate all the
proposed optimizations into the system, although recall
decreases, which is an expected result.

In (Christakou and Stafylopatis 2005), the performance
results for different recommenders are given in terms of
precision and recall metrics; however, information
regarding the dataset used in the evaluation and the
evaluation procedures were not mentioned exactly. The
results from (Christakou and Stafylopatis 2005) are
displayed in Table 6 in order to compare the systems’
performance with the existing studies. MovieLens, is a
collaborative filtering recommender and MovieMagician
(Grant and McCalla 2001) is a hybrid recommender
system that provides a rating prediction when requested.

Methodology Precision (%) Recall (%)
MovieLens 66 74

MovieMagician
Feature-Based

61 75

MovieMagician
Clique-Based

74 73

MovieMagician
Hybrid

73 56

OPENMORE 75.2% 73.7%

Table 6: Comparative Performance Results

 As it can be seen from the results, our system’s
precision values are higher than MovieLens’ and
MovieMagician’. There is a small difference in recall
when MovieLens and Feature-Based MovieMagician is
considered, which can be the effect of the “don’t care”
features. For instance, the system cannot make predictions
for the movies that have only “don’t care” features
common with the constructed user models, which results
in a decrease in recall.

The main advantage of our system over collaborative
systems is that, our system can generate a
recommendation score for every movie that has common
feature(s) with the constructed user models that are not
“don’t care”s. However, most of the collaborative-based
methods cannot produce predictions for the movies that
were not rated by any peer users.

(2) Evaluation of Open User Models: A user study was
performed with 30 students who were willing to use a
movie recommendation system. This phase of the

evaluation aimed to observe the influence of the open user
models on the end user satisfaction.
 Users were first informed about the system. They were
told how they should proceed before taking
recommendations, and how they could view their profiles.
The experiment took 15 days, and the users were asked to
complete a questionnaire after the evaluation phase of
OpenMore was completed. The questions were framed in
a 5 point Likert scale and involved the following
statements:

1. Generally speaking, I like the movie that the
system recommends.

2. I find the recommendations useful.
3. It is easier to decide on which movie to watch

with OpenMore.
4. The viewing profile is very useful.
5. The recommender makes the decision making

process more efficient through open user models.
6. It is fun to use OpenMoRe.
7. All in all, I would like to use OpenMoRe when I

need to find which movie to watch.

The results of the questionnaire are displayed in Table 7.
They show that the reactions of the subjects were
generally supportive regarding proposed
recommendations, and open user profiles. From Table 7
we can see that more than 80% of the subjects agreed or
strongly agreed that the system is useful, and makes the
decision-making process easier. The open user profile
feature was mentioned as useful by more than 85% of the
subjects. Some of the users’ mentioned that it would be
better to view their profiles on more user-friendly screens.
In addition, they wanted to see why some features were
selected as “don’t care”, “highly positive” and “highly
negative”.

Question Number Average Answer
1 4.1
2 4.7
3 4.2
4 4.8
5 4.8
6 3.9
7 3.8

Table 7: Results of the questionnaire

 Even though these statistical results are from a pilot
study, at least up to this stage the results encourage further
work on open user models. If the user models presented in
this paper are made more understandable and if some
explanations are provided for the selected “don’t care”,
“highly positive” and “highly negative” features, this may
increase end user satisfaction.

87

Conclusions and Future Research

This paper presents a content-based approach to movie
recommendation, with open user profiles. The system first
constructs item profiles by using degrees of
discriminativeness for features from the whole movie
domain. It transforms the collaborative user models to
content-based user models by using rating data provided
and constructed item profiles. Recommendations are
generated using the constructed user models.

The experimental study first focused on determining
the thresholds that are used in the fine-tuning of content-
based user models. The thresholds were then applied and
the accuracy of the generated content-based predictions
was evaluated. The experiments showed that optimization
mechanisms on the built user models result in better
recommendations. The next step of our study will be
focusing on the effect of the whole dimension together
with the effect of features only. We believe that this will
significantly improve results.

References

Adomavicius, G., and Tuzhilin, A. 2005. Towards the
Next Generation of Recommender Systems: A Survey of
the State-of-the-Art and Possible Extensions. IEEE
Transactions on Knowledge and Data Engineering, 17
(6): 734–749.
Balabanovic, M., and Shoham, Y. 1997. Fab: Content-
based, collaborative recommendation. ACM
Communications, (3):66–72.
Basu, C., Hirsh, H., and Cohen, W. 1998.
Recommendation as classification: Using social and
content-based information in recommendation. In
Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), 714–720.
Berkovsky, S., Kuflik, T., and Ricci, F. 2006. Cross-
Technique Mediation of User Models. In Proceedings of
the International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems, (AH), 21-30.
Burke, R. 2002. Hybrid Recommender Systems: Survey
and Experiments. User Modeling and User-Adapted
Interaction, 12 (4): 331-370.
Christakou, C., and Stafylopatis, A. 2005. A Hybrid
Movie Recommender System Based on Neural Networks.
In Proceedings of the 5th International Conference on
Intelligent Systems Design and Applications, 500-509.
Grant, S., and McCalla, G. I. 2001. A hybrid approach to
making recommendations and its application to the movie
domain. In Proceedings of the Canadian AI Conference
(AI 2001), 257-266.
Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl,
J. 1999. An Algorithmic Framework for Performing
Collaborative Filtering. In Proceedings of SIGIR
Conference, 230-237.

Herlocker, J., Konstan, J., and Riedl, J. 2000. Explaining
Collaborative Filtering Recommendations. In Proceedings
of the ACM 2000 Conference on Computer Supported
Cooperative Work, 241-250.
Jin, X., Zhou, Y., and Mobasher, B. 2005.
A Maximum Entropy Web Recommendation System:
Combining Collaborative and Content Features.
In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD’05).
McCarthy, K., Reilly, J., McGinty, L., and Smyth, B.
2005. An Analysis of Critique Diversity in Case-Based
Recommendation In Proceedings of the Eighteenth
International Florida Artificial Intelligence Reseach
Society Conference (FLAIRS-05), 123-128.
McLaughlin, M.R., and Herlocker, J.L. 2004. A
collaborative filtering algorithm and evaluation metric
that accurately model the user experience. In Proceedings
of the 27th annual international conference on Research
and development in information retrieval (SIGIR 2004),
329-336.
Melville, P., Mooney, R. J., and Nagarajan, R. 2002.
Content-Boosted Collaborative Filtering for Improved
Recommendations. In Proceedings of the AAAI-02, 187-
192.
Mooney, R. J. 1999. Content-based book recommending
using learning for text categorization. In Proceedings of
the SIGIR-99 Workshop on Recommender
Systems:Algorithms and Evaluation.
Morita, M., and Shinoda, Y. 1994. Information Filtering
Based on User Behavior Analysis and Best Match Text
Retrieval. In Proceedings of SIGIR Conference, 272-281.
Schafer, J. B., Konstan, J. A., and Reidl, J. 2002. Meta-
recommender Systems: User-controlled Integration of
Diverse Recommendations. In Proceedings of the ACM
Conference on Information and Knowledge Management
(CIKM-02), 196-204.
Salter, J., and Antonopoulos, N. 2006. Cinemascreen
recommender agent: Combining collaborative and
content-based filtering. Intelligent Systems Magazine,
21(1):35–4.
Schein, A. I., Popescul, A., Ungar, L. H., and Pennock, D.
M. 2002. Methods and Metrics for Cold-Start
Recommendations. In Proceedings of the 25th annual
international ACM SIGIR conference on Research and
development in information retrieval, 253-260.
Sebastiani, F. 2002. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1): 1-47.
Symeonidis, P., Nanopoulos, A., Papadopoulos, A.N., and
Manolopoulos, Y. 2007. Feature-weighted User Model for
Recommender Systems. In Proceedings of the 11th
International Conference on User Modelling (UM 2007).
Tang, Y. T., Winoto, P., and Chan, K. C. C. 2003. On the
Temporal Analysis for Improved Hybrid
Recommendations. IEEE/WIC International Conference
on Web Intelligence, 214-220.

88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

