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Abstract 
Personalization has become a powerful approach for 
constructing more precise and easy to use information 
search and recommendation systems. The quality of the 
personalization is heavily dependent on the accuracy of the 
user models created by the system and it is very important 
to incorporate content information of the working domain in 
order to enrich these models. This paper proposes a content 
based movie recommendation algorithm to make 
recommendations for the target user through building 
content based user models from collaborative-based user 
models and characteristics of the movie domain. 
Constructed user models are fine-tuned through “highly 
liked”, “highly not liked”, and “don’t care” flags. The user 
models are presented to the users in terms of the most 
important features and dimensions in their profile. This 
makes explicit the users’ implicit and unknown preferences 
of the movie domain. The system is evaluated and the 
results are presented using decision-support metrics.  

Introduction 

Recommendation systems have become an important 
technology for helping users to understand and navigate 
complex product spaces. Most recommendation systems 
use three approaches for building a user profile and 
computing recommendations (Adomavicius and Tuzhilin 
2005): collaborative filtering, content-based filtering, and 
hybrid approaches. Collaborative filtering recommends 
items to a user by matching the user’s taste to that of other 
users in the system. On the other hand, content-based 
systems recommend items based on the content of the item 
rather than other users’ ratings. Hybrid approaches exploit 
both content-based and collaborative filtering facilities.  
 In this paper, we propose a framework for a content-
based film recommendation system, OpenMore. We have 
focused on enhancing user models from collaborative 
filtering recommenders where a vector of explicit ratings 
on a set of objects is provided by the user (Herlocker et al. 
1999) to the content based user model, represented as a list 
of preferences (Morita and Shinoda 1994) of different 
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movie features. In (Berkovsky, Kuflik, and Ricci 2006) 
content-based user models are constructed from 
collaborative-based user models. We also build content-
based user models from collaborative-based user models 
but with a different construction and optimization 
approach. We do not use collaborative filtering in the sense 
of finding the like-minded users; however, we use 
collaborative-based user models in order to find best values 
of the defined thresholds that are used for the optimization 
of the content-based user models. The proposed approach 
constructs user models that facilitate the identification of 
commonalities in positively or negatively rated objects as 
derived by the collaborative user models. Movie profiles 
are kept as a vector of feature weights. Features that exist 
in each movie are collected from the IMDb database (The 
Internet Movie Database, http://www.imdb.com). Feature 
weights are calculated prior to the start of the 
recommendation process, and weights are assigned to the 
features according to the degree of how well they can 
discriminate one movie from another, considering the 
characteristics of the whole movie domain. Therefore, 
feature weights are not kept in binary as in the approach 
described in (Berkovsky, Kuflik, and Ricci 2006). These 
feature weights and collaboratively built user models are 
used to find a weighted list of features that are liked or 
disliked by the user. Therefore the user preferences, 
interests and needs are modeled, using only the 
collaborative-based user model and item profiles. Users are 
enabled to view their proposed models. This enables them 
to be aware of their implicit or unknown preferences.  
 The proposed mechanism was implemented, and its 
accuracy was evaluated using the MovieLens million 
rating dataset (http://www.grouplens.org), which is a 
publicly available movie ratings dataset. As mentioned 
before, the IMDb database was exploited for extracting 
features of the rated movies for the casting, genre, year, 
director, writer, runtime, country, language, and color 
dimensions. The collaborative ratings provided in the 
dataset and the movie profiles formed after calculating 
each feature’s weight in the whole domain, are used to 
construct a weighted list of liked and disliked features that 
will be used to test the proposed approach. The 
construction of user models in this manner was based on 
the assumption that a user’s rating of a movie steadily 
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reflects his preferences concerning the features of the 
movies. Finally, the generated user models served as a 
basis for generating content-based recommendations. In 
this first phase of the evaluation process, we have 
completed two experiments. The first one was carried out 
to fine-tune the prediction generation and to find the best 
values for some threshold degrees kept in the system. The 
second one actually evaluated the accuracy of the 
predictions through the well known accuracy metrics, 
precision and recall (Herlocker et al. 1999). The second 
phase of the evaluation process is done by 30 active users, 
who evaluate the system’s open user profile facility. 
Experimental results demonstrate the usefulness of the 
constructed content-based user models and the interest of 
the users towards the open user profile facility. 
 The remainder of the paper is organized as follows. 
First, we overview the related works, then we present the 
overview of our proposed approach in detail. Details of the 
experimental evaluation process are described next, and its 
results are discussed. Finally, the concluding remarks are 
offered and topics for further research are mentioned.   

Related Work 

When the movie domain is considered, the major 
approaches reported so far use collaborative filtering 
(Herlocker, Konstan, and Riedl 2000) and content-based 
filtering techniques (Tang, Winoto, and Chan 2003) 
(Melville, Mooney, and Nagarajan 2002) (Schein et al. 
2002). A feature-weighted user-model generation is 
described in (Symeonidis et al. 2007). The well-known 
film recommender MovieLens (http://movielens.umn.edu) 
is provided by the GroupLens research project. It is based 
on collaborative filtering, which requires a sufficiently 
large number of ratings in order to achieve an appropriate 
recommendation. 
 There are few examples of open user profiles (Schafer, 
Konstan, and Reidl 2002) and almost no reported studies of 
open profiles that combine automated profile construction 
mechanism with transparency for the movies domain. 
MetaLens, a movie recommender system where user 
feedback is taken for different dimensions, is investigated 
in (Schafer, Konstan, and Reidl 2002). They take values 
for  user preferences for different dimensions, but they do 
not enhance the user models implicitly using domain 
knowledge. 
 The incremental-critiquing approach at (McCarthy et al. 
2005) describes a system where the user has the option of 
directly updating the candidates’ selection query. However, 
the system builds the implicit user models incrementally 
through taking user feedback, and it does not include an 
automated user profile construction mechanism through 
item similarities, which is a desirable feature for end-user 
satisfaction.  
 In recommender systems, many works related to hybrid 
recommendation techniques (Balabanovic and Shoham 
1997) (Jin, Zhou, and Mobasher 2005) (Salter and 
Antonopoulos 2006) tried to integrate multiple approaches 

in the prediction generation process (Burke 2002). 
MovieMagician (Grant and McCalla 2001) is a hybrid 
system that provides a rating prediction when requested. 
The features of a movie (kind, actors, and directors) are 
captured in a generic granularity hierarchy that is 
independent of a particular film and any specific movie is 
an instantiation of this hierarchy and the degree to which 
the instantiation hierarchies of two movies overlap defines 
their similarity. As a result, the features of a film can be 
used to find cliques, filter out irrelevant movies, annotate 
preferences about various features and generate 
explanations for a movie.   
 Hybrid recommenders usually combine two or more 
recommendation techniques, but they are not concerned 
with the conversion of user models between different 
techniques. In (Basu, Hirsh, and Cohen 1998), the authors 
extract content-based user models from collaborative user 
models and use both of these models for generating 
predictions. However, our approach focuses on the 
generation of pure content-based predictions, based solely 
on user models that are converted from collaborative user 
models with the efficient usage of domain knowledge. A 
content based user model generation is proposed in 
(Berkovsky, Kuflik, and Ricci 2006), which converts 
collaborative user models to content-based user models. 
However, they kept movie items as a set of features where 
all the features’ weights are the same: 0 if a feature does 
not exist, 1 otherwise (in item profiles). In addition, we 
have used three main fine-tuning mechanisms, which 
results in higher precision than that of standard content 
based user models where movie item profiles are kept in 
binary.  

System Description 

Collaborative filtering is one of the most popular 
recommendation techniques which use cross-user 
correlations to generate predictions by weighing the 
opinions of similar users (Herlocker et al. 1999). The input 
to a standard collaborative filtering system is a matrix of 
users’ ratings on a set of items, where each row represents 
the ratings of a single user and each column represents 
ratings on a single item. Thus, collaborative filtering user 
models are represented as a vector of pair of ratings ik:rk, 
which  corresponds to a real rating rk provided by the user 
on an item ik.  
 Content-based filtering (Morita and Shinoda 1994) 
builds personalized recommendations by taking the 
features of items that have been rated by the user, and the 
set C of available items, not yet rated by the user, i.e., as 
input. The output of the system will be a subset of C, 
containing the items whose features match the features of 
the items that are liked by the user. Content-based 
recommenders generate predictions based on the set of 
features weighed according to a predefined scale. 
Therefore, the resulting user models can be represented as 
a vector of the pair of ratings fk:wk, where fk denotes one of 
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the domain features and wk is the level of the user’s 
preference regarding this feature. 
 In addition to the user profiles, we keep item profiles in 
the system as a vector of pairs of fi:wi, where fi denotes one 
of the features in a movie and wi denotes its corresponding 
weight. The weight wi is equal for all the features fi, 
regardless of individual movies.  
 In the following subsections, we first describe the idea 
behind constructing item profiles and their construction 
algorithm. Then the user model construction algorithm is 
described. Finally, the recommendation generation step is 
discussed in detail. 

Item Profile Construction 
We consider each movie as a combination of dimensions 
where each dimension has a set of features. We base our 
item profile construction algorithm on the idea that the 
importance of each of the features in the domain should not 
be the same when we consider the degree of how well one 
discriminates a movie from the others; more specifically, 
(1) the ratio of the number the movies that has feature fi to 
the total number of the movies in the database, (2) the 
number of the possible features in each dimension that 
feature fi belongs to.  
 We propose that a feature fi will be more discriminative 
if fewer movies in the whole movie domain have it. For 
instance, consider the following scenario: we have 10 
ratings for a user, where in 5 of them actor a1 acts, and the 
remaining 5 have country c2. Moreover, the user ratings 
for these movies are all the same. In addition, we have a 
total of 3500 movies in the domain and in 20 of them actor 
a1 acted. Furthermore, there are a total of 600 films that 
have country c2. In this scenario, a1 gives more clues 
about the user model, although both a1 and c2 exist in the 
same number of movies that has same ratings provided by 
the user. Although a1 is not a very common feature in the 
domain, our user has rated movies in which a1 exists. 
However, nearly 17% of all movies have the feature c2 and 
it is more probable that the user has no consciousness of c2 
since it is a very common feature in the whole movie 
domain.  
 Our second hypothesis for the item profile construction 
process is that a feature will be more discriminative if the 
size of its dimension set is large. For instance, almost all 
movies have values from the genre and casting dimensions 
(except, possibly, animation movies). Therefore every 
movie has a set of features from each of these dimensions. 
If the size of the dimension set of a feature fi is larger than 
another’s, then the probability that the latter exists in any 
movie is smaller, which makes it a more descriptive 
feature. Consider again, for instance, the casting and genre 
dimensions. In our current database that we built for 
evaluation, there are 23 genres and 8409 actors/actresses in 
total.  If an actor/actress acted in most of the movies that a 
user rated highly, this is more valuable information for us 
than knowing that a genre exists in most of the movies that 
the user rated highly. 

 In order to model our hypotheses, we used the Inverse 
Document Frequency (Sebastiani 2002) theory. We 
calculate the item feature weight (IFW) of each feature fi 
with the following formula: 
 

 
 
 

 
Here, |M| is the size of the set of all movies in the domain, 
|Mfi| is the total number of movies that has feature fi,and 
|Dj| is the size of the dimension that fi belongs to.  
 In order to create user models, we use the collaborative 
user models and domain specific knowledge for the movies 
that we gather from the IMDb movie database. IMDB 
provided information in several dimensions; however for 
the sake of simplicity, we use 10 feature categories which 
we believe to be the most important ones for user 
preferences in our work: genre, casting, language, year, 
country, rating, director, writer, runtime and color. After 
this data is collected, we calculate IFW values for all the 
features in the domain and store each movie as pairs of 
fi:wi for each of the features  fi in each movie, where wi is 
the IFW value of fi. 

Construction of Content-Based User Models 
We form content-based user models by using the 
collaborative user models and item profiles. We keep three 
weights for each feature fi: neg_weight_fi, pos_weight_fi, 
total_weight_fi. neg_weight_fi corresponds to the weight 
of fi that is collected from negatively rated movies, and 
pos_weight_fi corresponds to the weight of fi collected 
from positively rated movies. (The reason behind keeping 
these weights separate is described in the Rating 
Estimation section). The total weight of a feature in the 
user model is kept in total_weight_fi, which is the sum of 
neg_weight_fi and pos_weight_fi.  
 For each movie rating provided in a collaborative user 
model, we have a list of a movie’s features and their 
corresponding IFW values. We form the weights of each fi 

in the user model by using the ratings of the movie that has 
fi  in its profile and its corresponding IFW value. Both the 
ratings used in OpenMore and the MovieLens dataset use a 
[1-5] scale. Ratings greater than 3 are taken as positive, 
and less than 4 as negative in almost all of the studies 
reported so far that use the MovieLens dataset. In order to 
highlight the negativity of the scores, we subtract 3 from 
each of the ratings. However, to stress the small negativity 
in rating 3, we do not take rating 3 as 3-3=0; we give -0.1 
to highlight this effect and differentiate the features that 
occurred only in the movies that were rated with rating 3 
from the ones that do not exist in the user model (does not 
exist in any of the rated movies). 
 The weights of the features in the user model are 
updated according to the rating of the movie, and the IFW 
values. In other words, the result of the multiplication of 
the rating of the movie with the corresponding IFW value 
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was added to the positive weights of all the movie genres, 
actors and directors involved in the movie, and similarly 
for all the remaining dimensions, if the rating for that 
movie is greater than 3. If the rating is smaller than 4, then 
negative weights of the features are updated in the same 
manner. In addition to this, the numbers of occurrences for 
each feature in negatively and positively rated movies 
having that feature are stored in the system (which will be 
used in the Rating Estimation). 
 For example, consider the rating “The Usual 
Suspects”:4 in the collaborative user model of one user. 
According to the IMDb, “Stephan Baldwin” and “Kevin 
Spacey” had roles in this movie. The user rated this movie 
positively; therefore the pos_weight_fi and total_weight_fi 
of these features are increased by the result of the 
multiplication of 1(4-3) with the IFW values of these 
features. The weights of other features that exist in this 
movie are updated accordingly. In addition to this, the 
number of occurrences in positively rated movies for these 
features is increased by 1.  
 We conclude the ideas behind the generation of a 
content-based user model below: 

1. User models are kept as a vector of 
fi:(neg_weight_fi, pos_weight_fi, total_weight_fi) 
values, where each fi exists in one of the rated 
movies of the user. 

2. neg_weight_fi for fi is calculated by the following 
formula, where c_neg_fi is the number of 
occurrences of fi in negatively rated movies: 

 
    neg_weight_fi= IFW(fi)× c_neg_fi 

         
3. pos_weight_fi for fi is calculated by the following 

formula, where c_pos_fi is the number of 
occurrences of fi in positively rated movies: 

 
    pos_weight_fi= IFW(fi)× c_pos_fi 

 
4. total_weight_ fi for fi is the sum of neg_weight_fi  

and pos_weight_ fi. 
5. For each fi, we keep the number of occurrences of 

fi in positively rated movies and negatively rated 
movies. 

Optimizing Content-Based User Models 
Considering the working domain, we use the following 
mechanisms in order to fine-tune the constructed content-
based user models: 

“Don’t Care” Features 

Content-based user models typically store features to 
which the user is indifferent. For instance, consider the 
following scenario: we have a user who sees only 
American movies, that is, he never prefers movies 
produced in any other country. Almost all of the movies he 
has rated have feature “American” for the country 
dimension. This shows us that the feature “American” has 

no effect on the preferences of the movies for that user, and 
the reason behind liking/not liking these movies that have 
the “American” feature are the other features except this 
feature; therefore this feature is identified as a  “don’t 
care” feature for the target user.   
 “Don’t care” features are identified by the number of 
occurrences of that feature in the rated movies and the total 
number of movies that the user has rated.  Identifying these 
features and removing them from the prediction generation 
step increases the accuracy of the results, because the 
recommender will base its decisions only on the 
differentiating features. 
 To filter these “don’t care” features, a threshold is 
defined: “TH_DONT_CARE”. Features that have the value 
((c_pos_fi+ c_neg_fi)/total_rated_movies)  greater than 
“TH_DONT_CARE” are set to “don’t care” and the 
prediction mechanism is designed and implemented such 
that only those features that are not “don’t care” are used 
in the generation of the recommendation scores. 

“Highly Positive” Features 

When the movie domain is considered, there can be some 
features that the user prefers, and the user likes (has rated 
with high scores) all the movies that have that feature, 
regardless of other properties of those movies. For 
instance, consider a user who is a fan of “Stephen 
Spielberg” and likes all the movies directed by “Stephen 
Spielberg”, regardless of other features in those movies. 
Therefore, if there is a movie directed by “Stephen 
Spielberg” that the user has not yet seen, there is a high 
probability that the user will like that movie, regardless of 
the features in casting, genre or other dimensions.  As a 
result of this, we can identify these features as “highly-
positive” features and promote them in the prediction score 
generation. After such features are identified, the 
prediction generation step uses the pos_weights of the 
features that exist in any movie together with a “highly 
positive” feature, in order to be sure to come up with a 
positive score for such movies. However, if there are two 
or more movies with a “highly positive” feature, the one 
with the highest cumulated pos_weights of its features 
beats the others.  
 To identify “highly positive” features, two thresholds are 
defined: “TH_HIGH_RATIO”, 
“TH_HIGH_TOP_COUNT”. First the candidate’s “highly 
positive” features are identified, which are the ones that 
have a (c_pos_fi/( c_pos_fi+ c_neg_fi)) value greater than 
“TH_HIGH_RATIO”. Then these features are sorted 
according to their pos_weights and the top 
“TH_HIGH_TOP_COUNT” candidate’s “highly positive” 
features that have the highest pos_weights are set to 
“highly positive”. Therefore, we first eliminate the features 
that can not be “highly positive” by using only their 
number of occurrences in the positively and negatively 
rated films. Then we choose only those with the highest 
pos_weights. Therefore, we use the ratings provided for the 
movies that have those candidate “highly positive” features 
and their IFW values, in order to make second elimination.  
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“Highly Negative” Features 

The idea behind “highly negative” features is the same as 
the idea behind “highly positive” features. With “highly 
negative” features, we try to identify which features always 
result in bad scores and use this valuable knowledge to 
fine-tune the constructed user models.  
 For instance, a user may dislike “horror” movies and 
never likes them regardless of other features that exist in a 
candidate movie that has the genre “horror”.  We identify 
“highly negative” features by using the same thresholds 
with the “highly positive” case. However, for the “highly 
negative” case, first elimination takes only the features that 
have a (c_neg_fi/( c_pos_fi+ c_neg_fi)) value greater than 
“TH_HIGH_RATIO”. Then these features are sorted 
according to their neg_weights in order to take only the top   
“TH_HIGH_TOP_COUNT” ones that have highest 
neg_weights to “highly negative”. 

Further Details about Optimization of User Models 

During optimization, we first identify the “don’t care” 
features. Then the “highly positive” and the “highly 
negative” features are identified from the ones that have 
not already been set to “don’t care”. Therefore, a feature 
can never be set to both “don’t care” and “highly positive” 
or “highly negative”.  
 One more optimization is done on the remaining features 
that were not set to any of these values: if a feature fi exists 
in negatively rated movies, and all those negatively rated 
movies have a “highly negative” feature, we set the 
neg_weight of that feature to 0, and we increase the 
total_weight accordingly (total_weight is set to 
pos_weight). The idea behind this optimization is that, the 
user did not like those negatively rated movies because of 
the “highly negative” features, not because of feature fi. If 
this optimization results in features that have a 
total_weight equal to 0, then these features are removed 
from the user-model.  
 The same case does not hold for the features that exist in 
positively rated movies where all movies have a “highly-
positive” feature. This was tested during the evaluation 
phase and resulted in a decrease in precision. So no 
optimization is done for this case. 

Prediction Generation 

The prediction generation process takes a content-based 
user model um and a set of candidate movies MC. It 
generates a list of recommended movies that are sorted 
according to their calculated recommendation score.  
 The prediction generation process produces scores for 
three distinct subsets of MC where each one is ordered in 
itself according to the produced score: 

1. List_Pos: For the candidate movies in MC which 
have a feature that exists in um and is “highly 
positive”. 

2. List_N: For the candidate movies in MC which 
have no feature that exists in um and is “highly 
positive” or “highly negative”. 

3. List_Neg: For the candidate movies in MC which 
have a feature that exists in um and is “highly 
negative”. 

  
 The resulting recommendation list has the candidates in 
List_Pos at the top. Then the candidates in List_N, and 
finally, the candidates in List_Neg exist in the 
recommendation list. The pseudo-codes for the generation 
of these lists are given below: 
 
Gen_List_Pos(User-Mod um, candidate_movie_set MC ) 
 list_pos={} 

rec_score=0 
    high_feature_exists=false 

for each mc∈MC 
{ 

fSet(mc)=get feature set of mc 
for each f ∈ fSet(mc) 
{ 
 if ( f ∈ fSet(um) and is_dont_care(f,um)=false) 
    { 

if(is_highly-pos(f,um)=true) 
      high_feature_exists=true  

    rec_score=rec_score+pos_weight(f) 
         } 

} 
if (high_feature_exists=true)  

add mc to list_pos together with rec_score   
    rec_score=0 } 
 

Gen_List_N(User-Mod um, candidate_movie_set MC ) 
 list_N={} 

rec_score=0 
    high_feature_exists=false 

for each mc∈MC 
{ 

fSet(mc)=get feature set of mc 
for each f ∈ fSet(mc) 
{ 
 if (  f ∈ fSet(um) and  

  is_dont_care(f,um)=false and 
is_highly-neg(f,um)=false and 
is_highly-pos(f,um)=false 

) 
     {  

    rec_score=rec_score+total_weight(f) 
          } 
   else  
   { 
    high_feature_exists=true  
    exit for LOOP  
   } 

} 
if (high_feature_exists=false)  

add mc to list_N together with rec_score   
    rec_score=0 } 
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Gen_List_Neg(User-Mod um, candidate_movie_set MC ) 
 list_neg={} 

rec_score=0 
high_feature_exists=false 
for each mc∈MC 
{ 

fSet(mc)=get feature set of mc 
for each f ∈ fSet(mc) 
{ 
 if ( f ∈ fSet(um) and is_dont_care(f,um)=false) 
    { 

if(is_highly-neg(f,um)=true) 
      high_feature_exists=true  

    rec_score=rec_score+neg_weight(f) 
         } 

} 
if (high_feature_exists=true)  

add mc to list_neg together with rec_score   
    rec_score=0 } 

Current Implementation 

A content-based movie recommender, OpenMore is 
developed in order to evaluate the ideas presented in this 
paper. Since the proposed approach is tested using the 
MovieLens 1 million rating dataset, OpenMore retrieves all 
the content information from the IMDb database for the 
movies that exist in the dataset.  
As described in the Evaluation section, we performed 
evaluation in two phases: (1) an automated evaluation of 
the proposed approach using the collaborative user models 
formed from the MovieLens dataset is performed in order 
to determine the best values for the thresholds, and (2) a 
user study is performed (after the first phase of the 
evaluation is completed) using the same movies.  
 The users’ interaction with OpenMore starts after the 
login phase. Users login to the system using their username 
and password. They have to rate at least 15 movies in order 
to start taking recommendations from the system. Users 
evaluate films that they have seen on a 5-point scale (5: 
masterpiece to 1: bad film). When they have rated (at least) 
15 movies, user models are created in the system. Based on 
these models, a recommendation list is created as  
described in the previous section. A list of 
recommendations, sorted according to their prediction 
scores, is presented to the user. The movie with the highest 
prediction score is at the top of the list. Movies with 
positive prediction scores and movies with negative 
prediction scores are both presented to the user, together 
with their scores (which are normalized so that users view 
scores between -100 and 100). 
 Constructed user models are presented to the users in 2 
main screens: 

1. Dimension Screen: Dimensions are listed according 
to the total weight of the features in the user model 
that are summed up for each dimension. For 
instance, for the genre dimension, total_weights of 

all the genre features in the user model are summed 
up, and a genre dimension is assigned to that score. 
Every dimension is then listed in the order of this 
score in the Dimension Screen. 

2. Feature Screen: When a dimension name in the 
Dimension Screen is clicked, the following sets of 
features are listed for the sets of features belonging 
to that chosen dimension.  

a. “don’t care” system_set: features set by the 
system to “don’t care” 

b.  “highly positive” set: features set by the 
system to “highly positive”. 

c. “highly negative” set: features set by the 
system to “highly negative”. 

d. 10% of the features that exist in the user 
model with the highest total_weight 
values. These are the features that do not 
belong to the system constructed sets 
mentioned above. 

 
Examples of the Dimension Screen and Feature Screen 
(for the language dimension) are displayed in Figure 1 and 
Figure 2 respectively. 

Users can observe their constructed profiles and become 
conscious of their possibly unknown preferences for 
certain features of the movies through the Dimension 
Screen and the Feature Screen.  This can also give them a 
reasoning mechanism for the predicted ratings, since the 
most important and effective features are listed in their 
user models.  

Experimental Evaluation 

In this section, we describe the experimental methodology 
and metrics we used to test our approach; and present the 
results of our experiments. 

Data Set 
Our experiments use the MovieLens million rating dataset, 
which is a collaborative filtering dataset storing ratings by 
6040 users of 3952 movies. Ratings are provided on a scale 
of 1 to 5, 5 being excellent and 1 being terrible. Based on 
the rating guidelines presented to the users of MovieLens, 
we identified ratings of 4 and 5 to signify “good” movies 
(McLaughlin and Herlocker 2004). These are the movies 
that would make good recommendations.  

As mentioned in the readme file of the dataset, a number 
of movieIDs do not correspond to any movie, due to some 
accidental duplicate entries and inconsistencies. As we are 
doing content-based filtering, we processed all the movies 
used in the dataset (in order to collect information from the 
IMDb database) and the inconsistent movie entries and 
their corresponding rating data are removed from the 
OpenMore database. Our resulting database has 3881 
movie items, 6040 users and 1000187 ratings. 
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Figure 1: Dimension Screen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Feature Screen (for language dimension) 
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We applied 5-fold cross-validation to the dataset of the 
ratings by splitting the set of ratings using a 20%-80% 
ratio and doing this split 5 times for each user. For each of 
the 5 splits, we designate a 20% part of the initial dataset 
the evaluation dataset and the remaining 80% of the 
dataset was designated the training dataset. We repeat our 
experiments with every training set and test set for each of 
the users selected for evaluation, and after this phase is 
completed we average their results. We generate each 
testing set by taking a random sample (Basu, Hirsh, and 
Cohen 1998) of the data as follows: 

• For every user, we separate and group his 
movie/rating pairs into intervals defined by 
ratings. 

• From each interval, we take the same number of 
movie/rating pairs (when possible, since 
sometimes the number of items is not divided 
evenly by 5), and adjust the distribution in order 
to have a 20% distribution of movie/rating pairs 
each time. 

As a result of this procedure, each of the testing sets is 
more representative of the distribution of ratings for the 
entire data set than would have been the case with simple 
random sampling. 

In our experiments, we select 2872 users whose 
variance of ratings is not 0 (i.e., the ratings are not 
identical). Table 1 shows the distribution of the number of 
rated movies among the users in the dataset. 

Evaluation Metrics 

There are several performance metrics that are commonly 
used to evaluate the performance of recommender 
systems, such as the mean absolute error (MAE), mean 
squared error (MSE), precision, recall, and F-measure 
(Mooney 1999) (Herlocker et al. 1999). Moreover, 
(Herlocker et al. 1999) classifies these metrics into 
statistical accuracy and decision-support accuracy 
metrics. The statistical accuracy metrics compare the 
predicted ratings against the actual user ratings on the test 
data. The MAE measure is a representative example of a 
statistical accuracy measure. The decision-support 
accuracy metrics, like precision, recall, and F-measure, 
measure how well a recommender system can predict 
which of a set of unknown items will be highly rated.  

Moreover, although both types of measures are 
important, it has been argued in the literature (Herlocker 
et al. 1999) that decision-support metrics are better suited 
for recommender systems, because they focus on 
recommending high-quality items, which is the primary 
target of recommender systems. Therefore we used 
precision and recall metrics in our evaluation. Precision is 
defined as the fraction of positive examples classified as 
positive that are actually positive. Recall is defined as the 
fraction of positive examples classified as positive.  
 

 
number of rated movies number of users 

0 to 25 492 
26 to 50 1301 
51 to 75 785 

76 to 100 553 
101 to 125 480 
126 to 150 345 
151 to 175 306 
176 to 200 200 
201 to 225 207 
226 to 250 148 
251 to 300 268 
301 to 500 559 
over 500 396 

 
Table 1: Distribution of ratings among the users in the dataset 

 

Evaluation Phases 
We completed the evaluation process in two phases:  
 
(1) Automated Evaluation Using MovieLens Dataset: 
The first phase of the experiment is accomplished using 
the MovieLens collaborative filtering dataset. The 
collaborative user models in the dataset are transformed to 
content-based user models and two sets of experiments 
are performed.  

First Set of Experiments 

The first set of experiments was designed to fine-tune the 
prediction mechanism by selecting the most appropriate 
values for the TH_DONT_CARE, 
TH_HIGH_TOP_COUNT and TH_HIGH_RATIO 
thresholds. To accomplish this, we set two of the 
thresholds to a constant, while the values of the remaining 
ones are gradually modified. For each value of the 
modified threshold, a subset of 500 users that rated at 
least 100 movies is selected, and for each user, we 
performed a 5-fold cross-validation on his rating data. In 
this way we completed 5 test runs for each user, which 
makes a total of 2500 test runs. Results of the predictions 
are evaluated using the metrics mentioned in the 
Evaluation Metrics section. 

1. Evaluation for TH_DONT_CARE 

To find the most appropriate value of TH_DONT_CARE, 
TH_HIGH_TOP_COUNT and TH_HIGH_RATIO 
thresholds are set to 0.80. The values of 
TH_DONT_CARE are increased from 0.70 to 0.95 by 0.5. 
Table 2 illustrates the results of the experiments. 
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TH_DONT_CARE Precision Recall 
0.70 64.6% 59.2% 
0.75 66.0% 59.4% 
0.80 72.2% 66.6% 
0.85 73.1% 72.8% 
0.90 69.6% 78.7% 
0.95 67.2% 80.6% 

 
Table 2: Results of evaluation for TH_DONT_CARE 

 
As can be seen, precision increases with increased 
TH_DONT_CARE value up to 0.85 and decreases 
afterwards. The increase can be explained by the 
identification of more “don’t care” features incorrectly 
with small values of TH_DONT_CARE. However, with 
values higher than 0.85, precision decreases, which will 
be the influence of missing some “don’t care” features 
because of high TH_DONT_CARE. As expected, recall 
behaves in a similar manner; however, its value increases 
up to 0.90. By taking a weighted average of precision and 
recall, TH_DONT_CARE = 0.85 is taken as an optimal 
value. 

2. Evaluation for TH_HIGH_TOP_COUNT 

After determining the value for TH_DONT_CARE, it is 
used to choose an optimal value for 
TH_HIGH_TOP_COUNT. The TH_HIGH_RATIO 
remains as 0.85. Similar to the previous example, the 
values for TH_HIGH_TOP_COUNT are increased from 
0.70 to 0.95 by 0.5. Table 3 illustrates the results of the 
experiments.  
 

TH_HIGH_TOP_COUNT Precision Recall 
0.70 59.7% 66.4% 
0.75 69.2% 69.3% 
0.80 72.0% 71.5% 
0.85 73.7% 72.3% 
0.90 74.1% 73.7% 
0.95 70.2% 73.9% 

 
  Table 3: Results of evaluation for TH_HIGH_TOP_COUNT 

 
 With arguments similar to those used in the first 
experiment, low values of TH_HIGH_TOP_COUNT lead 
to incorrect analysis of “highly positive” features, which 
decreases the precision values. The best results are taken 
when TH_HIGH_TOP_COUNT is set to 0.90. Therefore 
we take 0.90 as an optimal value for 
TH_HIGH_TOP_COUNT. 

3. Evaluation for TH_HIGH_RATIO 

After determining the value for TH_DONT_CARE, 
TH_HIGH_TOP_COUNT, we conducted experiments for 
TH_HIGH_RATIO by setting the other thresholds to their 
observed optimal values. The values for 

TH_HIGH_RATIO were increased from 0.78 to 0.90 by 
0.2. As can be observed from the results in Table 4, we 
achieved the best results with 0.88.   
 

TH_HIGH_RATIO Precision Recall 
0.76 61.2% 63.2% 
0.78 64.2% 63.8% 
0.80 72.6% 65.1% 
0.82 72.9% 66.0% 
0.84 73.8% 68.2% 
0.86 74.0% 72.1% 
0.88 74.5% 73.2% 
0.90 72.5% 72.7% 

 
Table 4: Results of evaluation for TH_HIGH_RATIO 

Second Set of Experiments 

The determined threshold values are applied in the second 
set of experiments. In this step, we try to figure out the 
influence of four optimizations over a purely content-
based user model generation. We performed 5 tests:  

1. Test 1: evaluation of a purely content-based user-
model generation without any optimization. 

2. Test 2: evaluation of the influence of “don’t 
care” features with a purely content-based user 
model generation 

3. Test 3: evaluation of the influence of “highly” 
features (both “highly positive” and “highly 
negative”) with a purely content-based user 
model generation 

4. Test 4: evaluation of the influence of “highly” 
features (both “highly positive” and “highly 
negative”) with a purely content-based user 
model generation and the last hypothesized 
optimization that is, updating the neg_weights of 
features that appear in negatively rated movies 
that all have a “highly negative” feature. 

5. Test 5: evaluation of content-based user-model 
generation with all the optimizations. 

 
For these experiments, 2872 users (selection described in 
Data Set section) are selected and used with 5-fold cross-
validation on the rating data. The results are summarized 
in Table 5.  
 

TEST 
NUMBER 

Precision Recall 

1 70.2% 89.1% 
2 72.9% 73.9% 
3 71.9% 84.3% 
4 72.3% 84.1% 
5 75.2% 73.7% 

 
Table 5: Results of evaluation of the system for determining the 

influences of different optimizations 
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As can be seen from the results, identification of “highly” 
features greatly increased precision when compared to the 
identification of “don’t care” features. Recall decreased 
with “don’t care” feature identification, which is 
expected, since we eliminate a set of features from the 
user-model which results in producing predictions for a 
smaller number of movies. Our results indicate that we 
achieve the highest precision when we integrate all the 
proposed optimizations into the system, although recall 
decreases, which is an expected result.   

In (Christakou and Stafylopatis 2005), the performance 
results for different recommenders are given in terms of 
precision and recall metrics; however, information 
regarding the dataset used in the evaluation and the 
evaluation procedures were not mentioned exactly. The 
results from (Christakou and Stafylopatis 2005) are 
displayed in Table 6 in order to compare the systems’ 
performance with the existing studies. MovieLens, is a 
collaborative filtering recommender and MovieMagician 
(Grant and McCalla 2001) is a hybrid recommender 
system that provides a rating prediction when requested. 
 
 

Methodology Precision (%) Recall (%) 
MovieLens 66 74 

MovieMagician 
Feature-Based 

61 75 

MovieMagician 
Clique-Based 

74 73 

MovieMagician 
Hybrid 

73 56 

OPENMORE 75.2% 73.7% 
 

Table 6: Comparative Performance Results 
 

 As it can be seen from the results, our system’s 
precision values are higher than MovieLens’ and 
MovieMagician’. There is a small difference in recall 
when MovieLens and Feature-Based MovieMagician is 
considered, which can be the effect of the “don’t care” 
features. For instance, the system cannot make predictions 
for the movies that have only “don’t care” features 
common with the constructed user models, which results 
in a decrease in recall.  

The main advantage of our system over collaborative 
systems is that, our system can generate a 
recommendation score for every movie that has common 
feature(s) with the constructed user models that are not 
“don’t care”s. However, most of the collaborative-based 
methods cannot produce predictions for the movies that 
were not rated by any peer users.  
 
(2) Evaluation of Open User Models: A user study was 
performed with 30 students who were willing to use a 
movie recommendation system. This phase of the 

evaluation aimed to observe the influence of the open user 
models on the end user satisfaction. 
 Users were first informed about the system. They were 
told how they should proceed before taking 
recommendations, and how they could view their profiles. 
The experiment took 15 days, and the users were asked to 
complete a questionnaire after the evaluation phase of 
OpenMore was completed. The questions were framed in 
a 5 point Likert scale and involved the following 
statements: 

1. Generally speaking, I like the movie that the 
system recommends. 

2. I find the recommendations useful. 
3. It is easier to decide on which movie to watch 

with OpenMore. 
4. The viewing profile is very useful. 
5. The recommender makes the decision making 

process more efficient through open user models.  
6. It is fun to use OpenMoRe. 
7. All in all, I would like to use OpenMoRe when I 

need to find which movie to watch. 
 

The results of the questionnaire are displayed in Table 7. 
They show that the reactions of the subjects were 
generally supportive regarding proposed 
recommendations, and open user profiles. From Table 7 
we can see that more than 80% of the subjects agreed or 
strongly agreed that the system is useful, and makes the 
decision-making process easier. The open user profile 
feature was mentioned as useful by more than 85% of the 
subjects. Some of the users’ mentioned that it would be 
better to view their profiles on more user-friendly screens. 
In addition, they wanted to see why some features were 
selected as “don’t care”, “highly positive” and “highly 
negative”.  
 
 

Question Number Average Answer 
1 4.1 
2 4.7 
3 4.2 
4 4.8 
5 4.8 
6 3.9 
7 3.8 

 
Table 7: Results of the questionnaire 
 

 Even though these statistical results are from a pilot 
study, at least up to this stage the results encourage further 
work on open user models. If the user models presented in 
this paper are made more understandable and if some 
explanations are provided for the selected “don’t care”, 
“highly positive” and “highly negative” features, this may 
increase end user satisfaction. 
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Conclusions and Future Research 

This paper presents a content-based approach to movie 
recommendation, with open user profiles. The system first 
constructs item profiles by using degrees of 
discriminativeness for features from the whole movie 
domain. It transforms the collaborative user models to 
content-based user models by using rating data provided 
and constructed item profiles. Recommendations are 
generated using the constructed user models. 

The experimental study first focused on determining 
the thresholds that are used in the fine-tuning of content-
based user models. The thresholds were then applied and 
the accuracy of the generated content-based predictions 
was evaluated. The experiments showed that optimization 
mechanisms on the built user models result in better 
recommendations. The next step of our study will be 
focusing on the effect of the whole dimension together 
with the effect of features only. We believe that this will 
significantly improve results.  
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