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Abstract

When AI technologies are applied to real-world problems, it
is often difficult for developers to anticipate all the knowledge
needed. Previous research has shown that introspective rea-
soning can be a useful tool for helping to address this problem
in case-based reasoning systems, by enabling them to aug-
ment their routine learning of cases with learning to make
better use of their cases, as problem-solving experience re-
veals deficiencies in their reasoning process. In this paper we
present a new introspective model for autonomously improv-
ing the performance of a CBR system by reasoning about sys-
tem problem solving failures. We illustrate its benefits with
experimental results from tests in an industrial design appli-
cation.

Introduction
The application of AI technologies to real-world problems
has shown that it is difficult for developers to anticipate
all possible eventualities. Especially in long-lived systems,
changing circumstances may require changes not only to do-
main knowledge but also to the reasoning process which
brings it to bear. This requires introspective reasoning,
metareasoning by a system about its own internal reason-
ing processes. This paper investigates applying introspective
reasoning to improve the performance of a case-based rea-
soning system, by guiding learning to improve how a case-
based reasoning system applies its cases.

Case-based reasoning (CBR) is a problem-solving
methodology that exploits prior experiences when solving
new problems, retrieving relevantly similar cases and adapt-
ing them to fit new needs (for an overview and survey, see
Mantaras et al. (2005)). Many CBR systems store each
newly-solved problem and its solution as a new case for fu-
ture use, enabling them to continuously improve their case
knowledge. Nevertheless, the success of a CBR system de-
pends not only on its cases, but also on its ability to use
those cases appropriately in new situations (which depends
on the similarity measure and the case adaptation mecha-
nisms). Consequently, it is desirable for CBR systems to
improve the processes by which they bring their cases to
bear.
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Metareasoning techniques provide a promising basis for
self-improving systems (see (Anderson & Oates 2007; Cox
2005) for recent reviews). As described by Cox and Raja
2007, the metareasoning approach incorporates a meta-
reasoning layer, with monitoring and control capabilities
over the reasoning process, to adjust that reasoning pro-
cess as needed. Previous research on introspective CBR has
shown that metareasoning can enable a CBR system to learn
by refining its own reasoning process. That work has tended
to apply the introspective approach only to a single aspect
of the CBR system, for example, to adjust the indices used
for retrieval. This paper presents research on developing an
introspective reasoning model enabling CBR systems to au-
tonomously learn to improve multiple facets of their reason-
ing processes.

The remainder of this paper describes an approach in
which an introspective reasoner monitors the CBR process
with the goal of adjusting the retrieval and reuse strategies
of the system to improve solution quality. Novel aspects of
this approach, compared to previous work on introspective
reasoning for CBR, include that it applies a unified model
for improving the two main stages of the CBR process, that
a single failure may prompt multiple forms of learning, and
that it performs internal tests to empirically assess the value
of changes proposed by the introspective reasoner, to deter-
mine which ones should be retained.

The next section discusses previous work on introspective
learning for case-based reasoning. The following section
presents a detailed description of our approach and its im-
plementation. The approach has been evaluated on problems
from a fielded industrial application for design of pollution
control equipment, for which we provide results in the next
section. Before concluding the paper, we put in context our
model with respect to the metareasoning models discussed
in (Cox & Raja 2007). In the last section we present the
conclusions and future work.

Related Work
Birnbaum et al. (1991) first proposed the use of self-models
within case-based reasoning. Work by Cox & Ram (1999)
develops a set of general approaches to introspective rea-
soning and learning, automatically selecting the appropri-
ate learning algorithms when reasoning failures arise. This
work defines a taxonomy of causes of reasoning failures and
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proposes a taxonomy of learning goals, used for analyzing
the traces of reasoning failures and responding to them. Here
case-based reasoning is a vehicle for supporting introspec-
tive reasoning: CBR is used to explain reasoning failures
and generate learning goals.

A number of studies apply introspective approaches to im-
prove the performance of CBR systems. Leake (1996) iden-
tifies the knowledge sources a CBR system uses in its rea-
soning process and the required self-knowledge about these
sources, and provides examples of refinement of retrieval
knowledge using model-based reasoning and of acquisition
of adaptation knowledge by search plans. Fox and Leake
(2001) developed a system inspired by Birnbaum et al’s pro-
posal to refine index selection for case-based reasoners. Fox
and Leake’s work develops a declarative model for describ-
ing the expectations for correct reasoning behavior, and ap-
plies that model to detecting and diagnosing reasoning fail-
ures. When the introspective reasoner is able to identify the
feature that caused the failure, the system’s memory is re-
indexed, resulting in significant performance improvement.
The DIAL system (Leake, Kinley, & Wilson 1995) improves
case adaptation using introspection. This research focuses
on improving the performance of the system by storing the
traces of successful adaptation transformations and mem-
ory search paths for future reuse. Likewise, Craw (2006)
proposes an introspective learning approach for acquiring
adaptation knowledge, making it closely related to our work.
However, a key difference is that their learning step uses the
accumulated case base as training data for adaptation learn-
ing, in contrast to our approach of incrementally refining
adaptation knowledge in response to failures for individual
problems.

Arcos (2004) presents a CBR approach for improving so-
lution quality in evolving environments. His work focuses
on improving the quality of solutions for problems which
arise only occasionally, by analyzing how the solutions of
more typical problems change over time. Arcos’s algorithm
improves the performance of the system by exploiting the
neighborhoods in the solution space but, unlike the model
presented in this paper, learns only from success.

The REM reasoning shell (Murdock & Goel 2008)
presents a meta-case-based reasoning technique for self-
adaptation. The goal of REM is the design of agents able to
solve new tasks by adapting their own reasoning processes.
Meta-case-based reasoning is used for generating new task-
method decomposition plans. Because the goal in REM
is the assembly of CBR reasoning components, the meta-
model is focused on describing the components in terms of
their requirements and their effects. In contrast, our model
is focused on describing the expected correct properties of
the components and their possible reasoning failures.

Introspective reasoning to repair problems may also be
seen as related to the use of confidence measures for assess-
ing the quality of the solutions proposed by a CBR system
(Cheetham & Price 2004; Delany et al. 2005). Confidence
measures provide expectations about the appropriateness of
proposed solutions. A high confidence solution that is de-
termined to be erroneous reveals a failure of the reasoning
process used to form the prediction, pointing to the need

to refine the self model. The unexpected success in a low
confidence solution may do so as well. Nevertheless, be-
cause confidence measures provide no explanations of their
assessments, they are not helpful for revealing the origin of
the reasoning failure, making their failures hard to use to
guide repairs.

Introspective Reasoner
The goal of our introspective reasoning system is to de-
tect reasoning failures and to refine the function of reason-
ing mechanisms, to improve system performance for fu-
ture problems. To achieve this goal, the introspective rea-
soner monitors the reasoning process, determines the pos-
sible causes of its failures, and performs actions that will
affect future reasoning processes.

To give our system criteria for evaluating its case-based
reasoning performance, we have created a model of the
correctly-functioning CBR process itself, together with a
taxonomy of reasoning failures. Failures of a CBR system’s
reasoning process are modeled as conflicts between ob-
served system performance and predictions from the model.
These failures, in turn, are related to possible learning goals.
Achieving these goals repairs the underlying cause of the
failure.

As illustrated in the bottom portion of Figure 1, the case-
based reasoning process consists of four steps:

(1) Case retrieval/similarity assessment, which determines
which cases address problems most similar to the current
problem, to identify them as starting points for solving the
new problem,

(2) Case adaptation, which forms a new solution by adapt-
ing/combining solutions of the retrieved problems,

(3) Case revision, which evaluates and adjusts the adapted so-
lution, and

(4) Case retention, in which the system learns from the situ-
ation by storing the result as a new case for future use.

Reasoning failures may be revealed by either of two types
of situation: i) when the retrieval or the adaptation step is
not able to propose a solution, or ii) when the solution pro-
posed by the system differs from the final solution. Failures
of the retrieval or adaptation steps are identified directly by
contrasting their performance with model predictions. The
second type of failure can be detected by monitoring the re-
vision step. In CBR systems, the revision step often involves
interaction with the user to determine the final solution. This
interaction provides a feedback mechanism for assessing the
“real” quality of the solution initially proposed.

For each of the four CBR steps, the model encodes ex-
pectations, and the expectations are associated with learning
goals which are triggered if the expectations are violated.

For example, the expected behavior of the similarity as-
sessment step is to rank the retrieved cases correctly. If they
are ranked incorrectly, the failure may be due to using an
inappropriate weighting when similarity assessments along
different dimensions are aggregated. Consequently, a pos-
sible strategy for solving the failure is to refine the weight
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Figure 1: Introspective reasoner components. The horizon-
tal line divides the CBR process (bottom) and the Introspec-
tive Reasoner (top).

model, and a corresponding learning goal is to learn new
weightings.

Our model is domain independent, i.e., it is focused on the
general case-based reasoning process for retrieval and adap-
tation, rather than on specific details of those processes for
any particular domain. The model deals with three types of
knowledge: indexing knowledge, ranking knowledge, and
adaptation knowledge. To apply the model to any concrete
application, domain-specific retrieval and adaptation mech-
anisms must be linked to the model.

Indexing knowledge determines the sub-space of the case
base considered relevant to a given problem. Ranking
knowledge identifies the features considered most relevant
to determining similarity, given a collection of retrieved
cases. Adaptation knowledge defines transformative and/or
generative operations for fitting previous solutions to a cur-
rent problem.

Our approach is shaped by two working hypotheses. The
first is that the system is initially provided with general re-
trieval and adaptation mechanisms, which apply uniform cri-
teria to problems throughout the problem space. This is a
common property of many case-based reasoning systems,
but experience developing CBR systems has shown that this
uniform processing often results in sub-optimal processing,
in turn resulting in the generation of low quality solutions.
Consequently, one of the focuses of our approach is to ad-
dress this problem: One of the learning goals of the intro-
spective reasoner is to determine the ’real’ scope of cases, to
weight the different ranking criteria, and to refine the adap-
tation model for different problem space regions.

The taxonomy defined for the learning goals partially bor-
rows from the taxonomy of learning goals proposed in (Cox
& Ram 1999). Nevertheless, in our approach the learning
goals are specifically oriented towards refining the CBR pro-
cess. For example, determining the scope of cases is mod-
eled in terms of differentiation/reconciliation goals, whereas
improving the ranking criteria is modeled in terms of refine-

ment/organization goals.
A second working hypothesis is that the CBR system is

able to determine an internal estimate of confidence for the
solution it provides for a new problem. Because this as-
sessment will be domain-specific, it is not part of our gen-
eral model. In the application we consider, the system al-
ways serves in an advisory role to an engineer, who assesses
the system-generated solution before applying it. The engi-
neer’s assessment provides a natural source of feedback for
judging whether the system’s confidence value was appro-
priate.

Because we are not interested in reasoning about numeric
confidence values, we deal with confidence using three lin-
guistic labels: low confidence, medium confidence, and high
confidence. The mapping to the numeric intervals that rep-
resent the linguistic values must be defined in each appli-
cation. For instance, in our chemical application, due to
the important safety constraints in the chemical processes,
a high confidence is considered for values higher that 0.8
and low confidence has the threshold at 0.6.

The system’s introspective reasoning is organized into
five tasks:

(1) the monitoring task, in charge of maintaining a trace of
the CBR process;

(2) the quality assessment task, that analyzes the quality of
the solutions proposed by the system;

(3) the blame assessment task, responsible for identifying the
reasoning failures;

(4) the hypotheses generation task, in charge of proposing
learning goals; and

(5) the hypotheses evaluation task, that assesses the impact of
proposed improvements on solution generation.

Figure 1 depicts the introspective reasoning components.
The horizontal line divides the CBR process (bottom) from
the Introspective Reasoner (top). Rounded boxes repre-
sent inference processes; dashed boxes represent knowledge
generated by inference; dashed lines show knowledge de-
pendencies; black-tipped arrows show inference flows; and
hollow-tipped arrows denote control relationships.

Monitoring
The monitoring task tracks the case-based reasoning pro-
cess. For each problem solved by the CBR system, the moni-
tor generates a trace containing: 1) the cases retrieved, with a
link to the indexing knowledge responsible for the retrieval;
2) the ranking criteria applied to the cases, together with the
values that each criterion produced and the final ranking;
and 3) the adaptation operators which were applied, with
the sources to which they were applied (the cases used) and
the target changes produced (the solution features).

Note that this does not require that the adaptation step
use only a single case, nor that all the retrieved cases must
be involved in all adaptations; any such constraints depend
on specific applications, independent of the general model.
Similarly, our model distinguishes application of indexing
criteria and ranking criteria as two sub-processes involved in
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the retrieval step, but it does not require that they be decou-
pled in the implementation being monitored. For instance,
a K-nearest neighbor approach (Cover & Hart 1967) uses
the value of K to determine the number of cases considered
and uses the distance measure as a ranking criterion. Other
approaches might use crude criteria for indexing and finer-
grained criteria for case ranking.

Quality Assessment
When the user’s final solution is provided to the system,
quality assessment is triggered to determine the ’real’ qual-
ity of the system-generated solution, by analyzing the differ-
ences between the system’s proposed solution and the final
solution. Quality assessment provides a result in qualitative
terms: low quality, medium quality, or high quality.

Given the system’s initial confidence assessment and the
final quality assessment, the introspective reasoner fires
learning mechanisms when there is a mismatch between the
two. There are two main types of possible mismatches.
When the confidence was high but the quality is demon-
strated to be low, the reasoning failure points to the retrieval
stage, because the confidence of a solution has a strong rela-
tionship with the coverage of the retrieved cases (Cheetham
2000).

On the other hand, when the confidence was low but the
quality is demonstrated to be high, the unexpectedness of
success may be either due to low coverage from cases (none
of the system’s cases appeared highly relevant) or due to
bad ranking of the retrieved cases (the most relevant cases
were not considered, due to a failure of the ranking polices
to identify them). When the mismatch between the confi-
dence and the quality assessments is small (i.e. high versus
medium, medium versus high, medium versus low, and low
versus medium) it may suggest a failure in the adaptation
stage.

Blame Assessment
Blame assessment starts by identifying the source of the fail-
ure. It takes as input the differences between the solution
and expected result, and tries to relate the solution differ-
ences to the retrieval or the adaptation mechanisms. The
system searches the taxonomy of reasoning failures and se-
lects those that apply to the observed solution differences.

For instance, when a final solution is radically different
from the solution proposed by the system, the failure may
be caused by the indexing knowledge, i.e. either the relevant
precedents have not been retrieved or too many cases have
been retrieved.

Search for applicable failures in the failure taxonomy uses
the trace generated by the monitoring module. It starts by
analyzing the index failures. There are three types of index
failures: wrong index, broad index, and narrow index. When
none of the retrieved cases have a solution close to the cur-
rent solution, the wrong index failure is selected. A broad
index failure is selected when many cases are retrieved and
their solutions are diverse. On the other hand, when a small
set of cases is retrieved, the narrow index failure is selected.

Ranking failures are identified by comparing the retrieval
rankings with the solution differences they generate. Exam-

Failure Learning Goal
Missing Index Create Index
Broad Index Refine Index
Underestimated Weight Adjust Weighting
Inappropriate interpolation Change shape

Increase slope

Table 1: Examples of types of hypotheses used by the Intro-
spective Reasoner.

ples of ranking failures are inappropriate ranking, overesti-
mated weights, and underestimated weights.

Adaptation failures are identified by linking the solution
differences to the adaptation operators stored in the moni-
toring trace. When adaptation uses interpolation, adaptation
failures originate in inappropriate interpolation policies.

Because the introspective reasoner will often not be
able to determine a unique failure origin, all the possible
causally-supported failures are chosen, resulting in multiple
types of learning goals from a single failure.

Hypothesis Generation
The fourth reasoning stage, Hypothesis Generation, identi-
fies the learning goals related to the reasoning failures se-
lected in the blame assignment stage. Each failure may
be associated with more than one learning goal. For in-
stance, there are multiple ways of solving overestimated
weights. For each learning goal, a set of plausible local re-
trieval/adaptation changes in the active policies is generated,
using a predefined taxonomy.

Table 1 shows some of the types of hypotheses generated
to explain failures in retrieval and adaptation stages. The
changes must be local because their applicability is con-
strained to the neighborhood of the current problem. For
instance, when a refinement goal is selected for the adapta-
tion knowledge, an adaptation is selected from a pre-defined
collection of tuning actions depending on the nature of the
adaptation. Specifically, when adaptations are related to nu-
merical features the tuning actions are types of numerical
interpolations. The two main changes in numerical features
are related to the shape and slope of the interpolation curve.

Hypothesis Evaluation
The fifth reasoning stage, Hypothesis Evaluation, evaluates
the impact of introducing retrieval/adaptation changes. Be-
cause the introspective reasoner does not have a complete
model of the inference process, it is not possible for it to
definitively predict the effects of changes. Consequently,
before altering the CBR system, some empirical evidence
about the impact of the change must be obtained. In our cur-
rent design this is obtained by re-solving the problem, ap-
plying each proposed change and evaluating its impact. Re-
trieval/adaptation changes that improve the quality of the so-
lution are incorporated into the CBR inference mechanisms.

Note that when the introspective reasoner provides a prob-
lem to the CBR system for testing purposes, the case reten-
tion step is deactivated.
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Experiments
We have tested the introspective reasoner as an extension to
a fielded industrial design application. We have developed a
case-based reasoning system for aiding engineers in the de-
sign of gas treatment plants for the control of atmospheric
pollution due to corrosive residual gases which contain va-
pors, mists, and dusts of industrial origin (Arcos 2001). A
central difficulty for designing gas treatment plants is the
lack of a complete model of the chemical reactions involved
in the treatment processes. Consequently, the expertise ac-
quired by engineers with their practical experience is essen-
tial for solving new problems. Engineers have many pref-
erences and deep chemical knowledge, but our interactions
have shown that it is hard for them to determine in advance
(i.e. without a new specific problem at hand) the scope and
applicability of previous cases. They apply some general cri-
teria concerning factors such as cost and safety conditions,
but other criteria depend on specific working conditions of
the treatment process.

On the other hand, because engineers make daily use of
the application system to provide the final solutions to cus-
tomers, the system has the opportunity to compare its pro-
posed solutions with the solutions finally delivered. Thus,
we have the opportunity to assess the impact of the intro-
spective reasoner on the quality of the solutions proposed by
the CBR system.

Applying the CBR process
The inference process in this design application is decom-
posed into three main stages:

(1) selecting the class of chemical process to be realized;
(2) selecting the major equipment to be used; and
(3) determining the values for the parameters for each piece

of equipment.
The quality of proposed solutions is computed automat-

ically, by comparing the proposed solution to the solution
applied by the experts at these three different levels. Mis-
matches at earlier steps are more serious than at later ones.
For example, except in the case of under-specified problems,
a mismatch with the class of the chemical process would in-
dicate a very low quality solution.

The retrieval and adaptation steps have been designed
taking into account the three knowledge sources described
in the previous section: indexing criteria, ranking criteria,
and adaptation operators. Here the problem features are re-
lated to the detected pollutants, the industrial origin of the
pollutants, and working conditions for the pollution-control
equipment (flow, concentrations, temperature). Indexing cri-
teria determine the conditions for retrieving cases. The main
indexing criteria are related to the initially defined chemi-
cal relations among pollutants. Ranking criteria determine
a preference model defined as partial orders. Initially, the
preferences are homogeneous for the whole problem space.
Throughout the experiments, the introspective reasoner au-
tomatically refines the initial model.

Reasoning failures originate from situations in which the
criteria do not properly identify the main pollutants or crit-
ical working conditions. The consequences are manifested

in solutions for which the proposed chemical process is not
correct or there are inappropriate washing liquids, or by mis-
matches on equipment parameters.

Testing Scenario
The design application can solve a broad range of problems.
However, to test the effects of introspective reasoning for
learning to handle novel situations, it is desirable to focus the
evaluation on sets of frequently-occurring problems which
share at least a pollutant (minimal indexing criterion), in or-
der to have reuse. On the other hand, it is necessary to have
sufficient diversity—good performance on quasi-identical
problems can be obtained by case learning alone, so does
not generate opportunities for the introspective reasoner.

We decided to focus the evaluation of the system on prob-
lems with the presence of hydrogen sulphide, a toxic gas
produced by industrial processes such as waste water treat-
ment. From the existing application, we had access to the
510 such solved problems, ordered chronologically. We di-
vided the problems into two sets: 300 initial system cases
and 210 testing problems.

To evaluate the contribution of the introspective reasoner
we performed an ablation study, comparing the performance
of the system when presenting the problems sequentially for
five different reasoning strategies. In addition to testing in-
puts in chronological order, we repeated the experiments ten
times with random orders for the testing problems, to assess
the sensitivity of learning to problem ordering. The tested
reasoning strategies are the following:
• No-Retain, a strategy that solved the problems without

introspective reasoning and without incorporating the solved
cases into the case memory;
• Retain, which solved the problems without introspec-

tive reasoning and incorporating solved cases into the sys-
tem (the only learning normally done by CBR systems);
• Int-Retr, which combined Retain with introspective rea-

soning only for the retrieval refinement;
• Int-Adapt, which combined Retain with introspective

reasoning only for adaptation refinement; and
• Int-Compl, which combined Retain with introspective

reasoning for both retrieval refinement and adaptation re-
finement.

Results
Figure 2 shows the results of the evaluation for chrono-
logical problem presentation (results for random ordering
were similar). Results support that the storage of solved
problems—case learning alone—improves the performance
of the system, but also show that this policy is not suffi-
cient because the number of high confidence solutions is
increased but the number of low quality solutions is not de-
creasing (see second column in Figure 2).

A second conclusion from the results is that the main con-
tribution of using introspection to refine retrieval knowledge
is to reduce the number of low quality solutions (a 36.67
% reduction). In our design application this improvement
is achieved by providing more accurate ranking policies for
determining the chemical process to be realized.
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Figure 2: Average solution quality for all the strategies.

The main contribution of using introspection for refining
adaptation knowledge (see fourth column in Figure 2) is an
increase in the number of high quality solutions (a 12.5 % in-
crement). In our task, learning more appropriate adaptation
policies enables better determination of the different equip-
ment parameters.

Interestingly, when introspection adjusts both retrieval
and adaptation (last column in Figure 2), the improvement
in the retrieval step has an indirect effect on the adaptation
step, increasing the number of high quality solutions. An in-
tuitive explanation is that better retrieval also facilitates the
adaptation process. Thus, using both introspection strate-
gies, the increase in the number of high quality solutions
reaches 15.63 %.

Comparing the number of problems that changed their
quality of solution, 12 % of the solved problems qualita-
tively increased their solution quality. Solution qualities var-
ied, but the use of introspection did not decrease the solution
quality for any problem. Moreover, the reduction in low
quality solutions is statistically significant (ρ < 0.05), even
though the increase of high quality solutions is not statisti-
cally significant. Consequently, we conclude that the num-
ber of problems whose solution quality was improved by the
use of introspection is statistically significant.

Table 2 summarizes the activity inside the Introspective
Reasoner. Results summarize the experiments using both
introspection strategies, reflecting learning goals triggered
from the detection of 135 non-high-confidence solutions.
Most activity was focused on ranking and adaptation fail-
ures, because these are the most difficult tasks. Note that
not all the generated hypotheses were considered useful by
the system (see third and fourth columns): revisions to the
reasoning process were performed for 17 % of the instances
for which learning goals were triggered.

This result illustrates that the introspective reasoner is
dealing with partial understanding of the CBR process and
that the introspective learner’s hypotheses should be tested
before being applied.

It is clear that the incorporation of the introspective rea-
soner entails a computational overhead. However, it does not

Failures Occ. Prop. Inc.
Indexing Knowledge 12 5 3
Ranking Knowledge 83 41 8
Adaptation Knowledge 74 56 12

Table 2: Summary of the number of times learning goals are
triggered. Occ stands for failure occurrences, Prop stands
for hypotheses generated, and Inc stands for changes incor-
porated into the CBR process.

interfere with normal system performance: the introspective
reasoner is triggered only after a problem is solved and is a
background process without user intervention. Most of the
cost of introspective reasoning arises from hypothesis gen-
eration. Table 2 shows that the ratio between failures and
hypotheses generated 0.6, because only failures highly ex-
plained by the model become hypotheses. Consequently, the
number of hypotheses to verify is limited.

A risk of triggering metareasoning in response to individ-
ual reasoning failures is the possibility of treating exceptions
as regular problems. In the current experiments, such situa-
tions did not arise, but in general we assume that the user is
responsible for recognizing the exceptions. In addition, only
taking action in response to clearly identified failures helps
the system to avoid reasoning about exceptions.

Research on humans has shown that introspection may
sometimes have negative consequences. Experiments re-
ported in (Wilson & Schooler 1991) showed that, when peo-
ple is forced to think about the reasons of a given decision,
they focus only on plausible explanations in the specific con-
text of the decision. This introspective process usually gen-
erates non-optimal explanations affecting negatively future
decisions. However, such risks do not apply directly to our
approach. First, only the changes incorporated into the CBR
process are affecting future decisions, i.e. not the explo-
ration of plausible hypotheses. Second, the goal of the hy-
pothesis evaluation process is to verify the effect of candi-
date changes on the system. Third, the changes incorporated
only have a local effects.

Relationship to the Metareasoning Manifesto
Compared to the metareasoning models described by Cox
and Raja (2007), our approach is closely related to the use
of meta-level control to improve the quality of decisions.
Taking as inspiration their ‘Duality in reasoning and acting’
diagram, our approach incorporates some revisions (see Fig-
ure 3).

First at all, at the ground level, our approach adds the
user of the system. The role of the user is twofold: (1)
she presents new problems to the system, and (2) provides
a feedback by revising the solution proposed by the Object
level. This second role is crucial since it allows to the Meta-
level to estimate the performance of the Object level.

In our system, the Meta-level continuously monitors the
Object level (the case-based reasoning process) and assesses
the quality of the solutions proposed by the reasoner (using
the quality assessment module). The user’s final solution is
used to assess the mismatch between system’s expectations
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Figure 3: Relating our model with existing Metareasoning
Models.

for its solution (the solution proposed at the object level) and
the correct solution (the solution obtained from the ground
level).

It is important to note the importance of the hypothesis
evaluation step. Because the introspective reasoner can-
not completely predict the effects of changing the reason-
ing level, the hypothesis evaluation phase acts as an on-line
trainer. Thus, the Meta-level, analogously to ground level,
has the ability to require the Object level to solve new prob-
lems (Top-most query arrow in Figure 3). Moreover, when
the Meta-level is testing the performance of the Object level
it can temporally deactivate the retention step (in our exper-
iments this is achieved by activating the No-Retain policy).

The control of the object level is achieved by acting over
three types of knowledge components used in the reason-
ing process at the object level: indexing knowledge, ranking
knowledge, and adaptation knowledge.

Conclusions
This paper presented a new introspective model for au-
tonomously improving the performance of a CBR system by
reasoning about system problem solving failures. To achieve
this goal, the introspective reasoner monitors the reasoning
process, determines the causes of the failures, and performs
actions that will affect future reasoning processes.

We have created a causal model of the correctly func-
tioning retrieval and adaptation stages of CBR. Failures of
a CBR system’s reasoning process are modeled as conflicts
between observed system performance and predictions from
the causal model. The sources of these conflicts are identi-
fied and associated learning goals are fired, sometimes trig-
gering multiple types of learning. As a result of the process,
the CBR reasoning process is improved for future problem
solving.

We have tested the introspective reasoner in a fielded
industrial design application. Experiments show that the
use of the introspective reasoner improved the performance
of the system. Introspection-based refinements of retrieval
knowledge reduced the number of low quality solutions; re-
finements to adaptation knowledge increased high quality
solutions. Moreover, the combination of both is able to gen-
erate more high quality solutions.

Because our model of the CBR reasoning process is do-
main independent, it can be applied in other domains. The
engineering effort for incorporating the metareasoning com-
ponent to other domains would be concentrated on linking

domain-specific aspects of the CBR reasoning process to the
appropriate parts in the model (retrieval, adaptation, and re-
vision models). The application of the metareasoning com-
ponent to other design domains would provide an opportu-
nity to validate the completeness of the taxonomies of rea-
soning failures and learning goals. Our current work aims at
exploring the generality of our approach.
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