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Abstract

Metareasoning research often lays out high-level principles,
which are then applied in the context of larger systems. While
this approach has proven quite successful, it sometimes ob-
scures how metareasoning can be seen as a crisp computa-
tional problem in its own right. This alternative view allows
us to apply tools from the theory of algorithms and com-
putational complexity to metareasoning. In this paper, we
consider some known results on how variants of the metarea-
soning problem can be precisely formalized as computational
problems, and shown to be computationally hard to solve to
optimality. We discuss a variety of techniques for addressing
these hardness results.

Introduction

An agent acting in the world generally needs to spend some
time and other resources on deliberation, to assess the qual-
ity of the various plans of action available to it. To find the
absolutely optimal plan, an agent generally needs to perform
a very large amount of deliberation: it has to consider all the
relevant implications of all the relevant facts that it knows
about the world, and, if the agent is able to gather additional
information, it also has to take all relevant information gath-
ering actions (and consider the implications of the resulting
information). This is not always feasible: for example, if the
agent has a deadline for choosing an action, there may not
be enough time for all of this deliberation. Still, the agent
may be able to find a plan of action that is close to optimal.
To do so, the agent needs to focus on the parts of the deliber-
ation (deliberation actions) that have the greatest impact on
the quality of its plan. Determining which deliberation ac-
tions to perform is the metareasoning problem, in which the
agent needs to reason about the reasoning it will perform.
Figure 1, taken from Cox and Raja (Cox and Raja 2007), il-
lustrates the three different levels of doing (plans of action),
reasoning (deliberation actions), and metareasoning.

While this sounds natural, doing it well is far from an easy
problem. For one, the usefulness of one deliberation action
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Figure 1: The three levels of doing, reasoning, and metarea-
soning (Cox and Raja 2007).

may not be seperable from another. For example, if there
is a particularly risky plan that the agent is considering, the
agent may need to rule out two ways in which this plan could
potentially fail. If the agent only manages to rule out one of
the two failure possibilities, and does not deliberate on the
other, then the plan is still too risky and will not be cho-
sen. Hence, the deliberation on the first failure possibility
was a waste of time: the agent does not obtain any benefit
from deliberation unless it considers both failure possibili-
ties. To make things more complicated, the agent generally
has to consider the outcomes of earlier deliberation actions
in choosing the next deliberation action. For instance, in the
above example, if the agent considers the first failure pos-
sibility and realizes that the plan would in fact fail in this
way, then there is no point in considering the other failure
possibility, so the agent should spend its valuable time con-
sidering other options rather than pointlessly figuring out in
exactly how many ways the risky plan would have failed.
Hence, in general, the agent does not merely need to choose
a subset of the deliberation actions; rather, it needs to create
a complete contingency plan for deliberating.

From the above, it should be clear that the metareasoning
problem is nontrivial, and may in fact be computationally
hard. This is an issue of concern, since we want to avoid
the ironic situation in which the agent spends so much time
solving the metareasoning problem that there is no time left
to take any actual deliberation actions! However, even if
the problem does turn out to be computationally hard, this
does not mean that we should abandon the metareasoning
approach altogether: we could still find fast heuristics or ap-
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proximation algorithms that find close-to-optimal solutions
to the metareasoning problem, or algorithms that find the
optimal solution fast under certain conditions.

In the remainder, we first discuss some known re-
sults (Conitzer and Sandholm 2003) that imply that certain
variants of the the metareasoning problem are in fact com-
putationally hard. While these variants by no means cap-
ture all the interesting parts of all metareasoning problems,
they are useful for illustrating some computational difficul-
ties that metareasoning systems must face. As such, these
results set the stage for the remainder of the paper, in which
we discuss what their implications for real metareasoning
systems are.

Variants of the metareasoning problem and
their complexity

Before we can determine whether the metareasoning prob-
lem is computationally hard, we first need to define it as
a computational problem. However, there are many differ-
ent settings in which metareasoning is essential, and each
of these settings leads to a different variant of the metar-
easoning problem. We could try to create a computational
definition of the metareasoning problem that is so general
that it captures every variant that we might reasonably en-
counter. It would not be very surprising if such a general
problem turned out to be computationally hard; moreover, it
is not clear that such a hardness result would tell us anything
very interesting, because it could still be the case that most
reasonable variants are in fact quite easy to solve.

Instead, we will consider definitions of some very restricted
variants of the metareasoning problem that still turn out to
be computationally hard. Such results are much more mean-
ingful, because it seems likely that most real-world metar-
easoning systems need to solve a problem that is at least as
hard as at least one of these problems. We discuss mostly
the results of Conitzer and Sandholm (Conitzer and Sand-
holm 2003). Later in the paper, we discuss the implication
of these results for the design of metareasoning systems.

Variant 1: Deliberation that leads to predictable
improvements

As we mentioned above, one of the main difficulties in
metareasoning is that the outcomes of the deliberation ac-
tions are uncertain, and what deliberation action should be
taken next in general depends on the outcomes of the current
and past deliberation actions. Hence, in general, a solution
to the metareasoning problem consists of a full contingency
plan (at least if we aim to solve the problem to optimality).

In this subsection, however, we consider a simplified variant
of the metareasoning problem in which the outcomes of de-
liberation actions are completely predictable. Specifically,

suppose that the agent has m tasks that it needs to complete.
For each of the tasks, it has a default plan that has some cost;
however, by deliberating on the plan more, the agent can re-
duce this cost. (For example, Conitzer and Sandholm con-
sider a setting where the agent needs to solve m unrelated
vehicle routing problem instances, and it can improve the
quality of its solution for each routing problem instance by
spending more computation on it—that is, it has an anytime
algorithm for the vehicle routing problem.) The agent also
has a deadline T by which it needs to finalize all of its plans.
Finally, we assume that for each task i, there is a function fi,
where fi(ti) is the reduction in the cost of the plan for the ith
task that results from spending ti units of deliberation time
on that task. Of course, in reality, this improvement is not so
perfectly predictable, but these functions are often used as
a modeling simplification. They are called (deterministic)
performance profiles (Horvitz 1987; Boddy and Dean 1994;
Zilberstein and Russell 1996).

The goal is to obtain the maximum total savings given the
time limit. That is, we want to choose the times t1, . . . , tm
to spend on deliberating on the tasks, with the goal of maxi-
mizing

∑m
i=1 fi(ti), under the constraint that

∑m
i=1 ti ≤ T .

Conitzer and Sandholm show that (the decision variant of)
this problem is NP-complete, even if the fi are piecewise
linear. In contrast, if we require that the fi are concave, then
the problem can be solved in polynomial time (Boddy and
Dean 1994). (Similar results based on concavity are com-
mon in metareasoning: see, for example, Horvitz (Horvitz
2001).) However, Conitzer and Sandholm argue that the fi

are generally not concave: for example, anytime algorithms
generally go through distinct phases, and often the end of
one phase does not produce as much improvement as the
beginning of the next phase.

It is quite a negative result that even this simple deterministic
variant of the metareasoning problem is hard. Still, the im-
plications of this hardness result for metareasoning are lim-
ited, because there are variants of the metareasoning prob-
lem that do not include the above problem as a subproblem.
In a sense, in the above problem, the deliberation actions
reveal new plans of action (e.g., vehicle routes). However,
there are many metareasoning settings in which the set of
available plans is known from the beginning, and the only
purpose of deliberation is to discover which plan is best. If
the results of deliberation were perfectly predictable in such
a setting, then we would know from the beginning which
plan is best, and hence there would be no point in doing any
deliberation. That is, the metareasoning problem only makes
sense in this context if the outcomes of the deliberation ac-
tions are uncertain. This is the topic of the next subsection.

Variant 2: Deliberation to evaluate a fixed set of
plans

In this subsection, we consider a different variant of the
metareasoning problem. Suppose there is a fixed set of pos-
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sible plans of action that the agent can choose from. The
agent has some ex ante expected utility for each plan. The
agent can take some deliberation actions on each plan; de-
pending on the outcome of the deliberation action, the ex-
pected utility of that plan changes. (For example, Conitzer
and Sandholm consider a setting in which a robot must
choose a site for digging for precious metals, and before
starting to dig, the robot can perform tests (deliberation ac-
tions) at each site that will change its beliefs about what met-
als may be there.) Each deliberation action requires some
time (the amount of time is not necessarily the same for each
deliberation action), and there is a deadline. Also, we as-
sume that the agent has a probability distribution over how
its beliefs about a plan will change upon taking a delibera-
tion action for that plan. (For instance, in the digging ex-
ample from above, the agent may believe that if it tests at
site A, then with probability .6, after the test it will believe
that there is a probability of .1 that there is gold at A, and
with probability .4, after the test it will believe that there
is a probability of .2 that there is gold at A. This implies
that before the test, it believes that there is a probability of
.6 · .1 + .4 · .2 = .14 that there is gold at A.) At the end of
the deliberation, the agent will choose the plan that currently
has the highest expected utility.

The goal here is to find a deliberation strategy that maxi-
mizes the expected utility of the agent. Conitzer and Sand-
holm show that this problem is NP-hard, even if there is
at most one deliberation action (with only two outcomes)
per plan. They do not prove that the problem is even in
NP; it could be that it is, for example, PSPACE-hard. (A
closely related class of problems that has been receiving at-
tention more recently is that of “budgeted learning” prob-
lems (Madani, Lizotte, and Greiner 2004; Guha and Muna-
gala 2007).)

The problem that we studied in this subsection has the nice
property that each deliberation action only affects the agent’s
beliefs for a single plan, and for each plan there is only a
single deliberation action to choose. In the next subsection,
we consider a variant of the metareasoning problem without
such properties.

Variant 3: Deliberation to disambiguate state

In the final variant of the metareasoning problem that we
consider, the agent knows that the world can be in any one
of several states. To obtain nonzero utility, the agent needs
to determine (by deliberation) the state of the world with
certainty. If the agent succeeds in determining the state of
the world, then the agent’s utility depends on which state it
is. The agent has a set of available deliberation actions; the
outcome of each deliberation action rules out certain states.
The outcome of a deliberation action is not deterministic.
(For example, Conitzer and Sandholm consider a setting in
which a robot is trying to determine the nature of a gap in
the floor in front of it. If it cannot determine the nature of

the gap with certainty, it should be conservative and turn
around, getting utility zero. If it determines the nature of the
gap, it may be able to get past the gap and get some utility,
depending on what kind of gap it is.) The agent can take only
a certain number of deliberation actions (there is a deadline).

Again, the goal for the agent is to find a deliberation strategy
that maximizes its expected utility. Conitzer and Sandholm
show that this problem is PSPACE-hard, making it the hard-
est of the metareasoning problems that we have considered
(unless the previous problem also turns out to be PSPACE-
hard). They also show that the problem remains NP-hard
even if, for every state and every deliberation action, there
is only a single possible outcome for that deliberation ac-
tion when the world is in that state (so that the outcomes of
deliberation actions are deterministic).

Implications for metareasoning systems

What is the relevance of these complexity results to the de-
sign of metareasoning systems? Of course, this depends first
of all on whether the problems that we considered are indeed
(sub)problems that need to be solved in real metareasoning
systems. It seems likely that they are, but we will consider
this question in more detail later in this section. For now, let
us consider metareasoning systems that indeed need to solve
one of the above problems.

We first note that in all of the above problems, the delib-
eration that the agent can perform is limited by a deadline.
So, all the time that the agent spends on the metareasoning
problem (deciding what deliberation actions to take) is time
that can no longer be spent on actual deliberation. If the
metareasoning problem were solvable to optimality in poly-
nomial time, then perhaps the amount of time spent on the
metareasoning problem would always be negligible. But the
hardness results discussed above imply that more than poly-
nomial time will be required on at least some instances of
the metareasoning problem (unless P=PSPACE, or P=NP for
the easier problems). Now, it is certainly possible that these
hard instances do not occur in practice very often. For exam-
ple, we already noted that the first problem that we studied
can be solved in polynomial time if the fi are concave; and
it may well be the case that for a particular application, in
practice, these functions are in fact always concave. If so,
then the hardness result becomes irrelevant (for this partic-
ular application). However, we cannot decide whether this
is the case if we do not know what instances occur in prac-
tice. Moreover, even if the hard metareasoning instances oc-
cur only rarely, we would still like to handle them properly.
So, it might be the case that in practice most metareasoning
instances lie in a class of “easy” instances, and this would
mitigate the problem; but it would not eliminate it.

Once the time spent on the metareasoning problem becomes
a significant fraction of the total time until the deadline, the
agent faces a moving-target problem: the amount of time left
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for deliberation changes as the metareasoning problem is be-
ing solved—but the time left for deliberation is part of the
input of the metareasoning problem. This can be resolved in
various ways. The simplest is to budget some fixed amount
of time B for metareasoning, so that the time for taking de-
liberation actions is T − B, where T was the original dead-
line. T − B is thus the deadline that is used in the input
of the metareasoning problem. This approach requires us to
have a metareasoning algorithm that is guaranteed to give a
reasonable solution in B units of time; this could be an ap-
proximation algorithm with a running time bound of B, or
an anytime algorithm that we can simply interrupt at time B.

Another approach would be to have a metareasoning algo-
rithm that, in the first B1 units of time, finds a solution that
requires T −B1 units of deliberation time; then, in the next
B2 units of time, it finds a solution that requires T−B1−B2

units of deliberation time; etc. At the end of each phase,
we can stop this metareasoning algorithm and use the lat-
est solution it provided. One reasonable termination con-
dition for such a metareasoning algorithm is the following:
stop when the quality of the solution decreased in the latest
phase. One downside to this general approach is that it is not
clear that we can re-use any of the computation performed
in one phase of the metareasoning algorithm in a later phase,
because the phases are effectively solving different problem
instances. Still, there seems to be some hope for such re-
use, because these instances are closely related. Another key
question is how to set the Bi; this may be done dynamically,
based on the solutions found in the earlier phases. This type
of analysis of the metareasoning algorithm is getting us into
meta-metareasoning.

We have implicitly assumed so far that the metareasoning
problem is solved first, and then deliberation starts. This
makes sense in a setting where the results of deliberation are
deterministic, as in the first problem that we studied. How-
ever, if the results of deliberation are not deterministic, then
it may make sense to interleave metareasoning and delib-
eration actions. The results of the deliberation actions will
allow us to prune the search space for metareasoning. For
instance, in the digging example, if we do the metareason-
ing first, then we have to consider both the case where the
test for gold at site A turns out positive, and the case where
it turns out negative. However, if we have already decided
that the first deliberation action should be to test for gold
at A, then we should go ahead and perform this test before
we return to metareasoning: if the test turns out (say) posi-
tive, then we no longer need to consider what we would have
done if the test had turned out negative.

Finally, let us briefly return to the question of whether our
variants of the metareasoning problem were the right ones
to study. One debatable aspect is that each of these variants
has a deadline that limits the amount of deliberation that can
be performed. While having such a deadline is realistic in
many situations, we could also consider a model in which
there is no deadline, but each deliberation action comes at

a cost. Indeed, such models are common in metareason-
ing, for example in the work on using the expected value of
computation to determine when to stop computing (Horvitz,
Cooper, and Heckerman 1989; Horvitz and Breese 1990).
This modification from a deadline-based model to a cost-
based model can affect the complexity of metareasoning.
For example, after this modification, the first problem that
we studied (where the effect of deliberation is determinis-
tic) becomes easy to solve: now, for each task i separately,
we can determine the optimal amount of deliberation t∗i —
that is, t∗i ∈ arg maxti fi(ti) − cti (where c is the cost of a
unit of deliberation time). Effectively, even though the tasks
are in and of themselves unrelated, the deadline caused the
decisions about how much time to spend on each task to be-
come interrelated; if we switch to the cost model, this effect
disappears.

Conclusions

Metareasoning research often lays out high-level principles,
which are then applied in the context of larger systems.
While this approach has proven quite successful, it some-
times obscures how metareasoning can be seen as a crisp
computational problem in its own right. This alternative
view allows us to apply tools from the theory of algorithms
and computational complexity to metareasoning. In this pa-
per, we saw how to formulate variants of the metareasoning
problem as computational problems, and that these compu-
tational problems are generally hard. This approach to the
metareasoning problem has at least the following benefits:

• Crisp computational formulations of the metareasoning
problem make it easier to consider the key variants of the
problem, and to determine what makes the problem hard.

• The hardness results force us to confront the fact that
optimal metareasoning is not computationally feasible
in general, so that we have to consider approximation
algorithms, heuristics, and anytime algorithms for the
metareasoning problem, as well as more involved meta-
metareasoning approaches.

The reader may be disappointed that we have not given a
single, all-encompassing definition of the general metarea-
soning problem. Certainly, it seems difficult to create such a
definition: it seems likely that one would leave out some as-
pect of the problem. Nevertheless, it may well be interesting
to attempt such a definition, even if it is for no other purpose
than to provide a starting point for discussion. However, the
difficulty of giving a truly general definition is not the main
reason that we focused on more restricted variants in this
paper. Rather, the main reason for this is that these simple
variants are already computationally hard. Any fully gen-
eral definition of the metareasoning problem would presum-
ably include all of these variants as special cases. Because
computational problems inherit the hardness of their special
cases, that means that we have already shown that the gen-
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eral metareasoning problem is hard (even without giving its
precise definition!).

The above also casts some doubt on the value of coming up
with a single, general definition of the metareasoning prob-
lem as a formal computational problem. If one were to write
an algorithm to solve such a general problem, it would have
to address a tremendous variety of complexities, including
all the ones studied here as well as, presumably, numerous
others. As long as we are not trying to solve the general
AI problem, it is probably more productive to focus on the
special cases of the metareasoning problem that are impor-
tant for the application at hand, thereby avoiding some of
the irrelevant complexities. This is absolutely not to say that
there is no value in studying and discussing metareasoning
in general: in fact, doing so is vital to help us understand
the relationships among the different variants of the metar-
easoning problem, and will allow for the smooth transfer of
techniques across these variants.

There are still many open questions. For many key variants,
the complexity of the metareasoning problem has not yet
been established (including many variants where there is no
deadline but deliberation is costly). For the variants where
optimal metareasoning has been shown to be hard, there is
still a need for approximation algorithms or inapproximabil-
ity results, as well heuristics and anytime algorithms without
formal guarantees but with good practical performance. Per-
haps more importantly, it is not yet entirely clear what the
best high-level framework is for metareasoning when opti-
mal metareasoning is hard, especially when time is limited
and the metareasoning is using up time that could have been
used for deliberation actions. As discussed above, we run
into the issue that the problem instance becomes a moving
target, because the available time for deliberation is chang-
ing. Moreover, when the results of deliberation are uncer-
tain, it makes sense to interleave metareasoning and delib-
eration, because the outcomes of deliberation actions will
allow us to prune the possibilities that the metareasoning al-
gorithm no longer needs to consider.
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