
Retrospective Self-Adaptation of an Agent’s Domain Knowledge:
Perceptually-Grounded Semantics for Structural Credit Assignment

Joshua Jones & Ashok K. Goel
Design Intelligence Laboratory, School of Interactive Computing

Georgia Institute of Technology, Atlanta, USA 30332
{jkj, goel}@cc.gatech.edu

Abstract

AI research on meta-reasoning for agent self-adaptation has
generally focused on modifying the agent’s reasoning pro-
cesses. In this paper, we describe the use of meta-reasoning
for retrospective adaptation of the agent’s domain knowl-
edge. In particular, we consider the use of meta-knowledge
for structural credit assignment in a classification hierarchy
when the classifier makes an incorrect prediction. We present
a scheme in which the semantics of the intermediate abstrac-
tions in the classification hierarchy are grounded in percepts
in the world, and show that this scheme enables self-diagnosis
and self-repair of knowledge contents at intermediate nodes
in the hierarchy. We also discuss the implications of this
scheme for an architecture for meta-reasoning.

Introduction
It is generally agreed in AI that the capability of meta-
reasoning is essential for achieving human-level intelligence
(Brachman 2002) (Minsky 1995) (Minsky, Singh, and Slo-
man 2004). Past AI research has shown that meta-reasoning
is useful for control of reasoning (Davis 1980) (Stefik 1981)
(Hayes-Roth and Larsson 1996) (Hansen and Zilberstein
2001) (Raja and Lesser 2007), bounding of computations
(Horvitz, Cooper, and Heckerman 1989) (Russell 1991)
(Horvitz 2001), revision of conclusions (Doyle 1979), selec-
tion of learning strategies (Cox and Ram 1999), revision of
reasoning processes (Stroulia and Goel 1995) (Leake 1996)
(Murdock and Goel 2008), refinement of indices (Fox and
Leake 2001), self-explanation (Goel and Murdock 1996),
self-monitoring (Ganek and Corbi 2003), and guiding of re-
inforcement learning (Ulam et al. 2005) (Anderson et al.
2006). (Cox 2005) provides a useful review of some AI re-
search on meta-reasoning.

AI research on meta-reasoning for agent self-adaptation
has generally focused on modifying the agent’s reasoning
processes. The need for self-adaptation of course arises be-
cause intelligent agents typically operate in dynamic task
environments. It is useful to make a few distinctions here.
Firstly, adaptations to an agent can be retrospective (i.e.,
when the agent fails to achieve a goal in its given environ-
ment; (Genesereth 1983) (Birnbaum et al. 1990) (Strou-
lia and Goel 1996) (Stroulia and Goel 1997) (Murdock and

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Goel 2008) (Leake 1996), or proactive (i.e., when the agent
is asked to operate in a new task environment; e.g., (Mur-
dock and Goel 2008), (Murdock and Goel 2003) (Murdock
and Goel 2008). Secondly, adaptations can be either to the
deliberative element in the agent architecture (Genesereth
1983) (Birnbaum et al. 1990) (Stroulia and Goel 1995)
(Leake 1996) (Murdock and Goel 2008), or the reactive ele-
ment (Stroulia and Goel 1999), or both. Thirdly, adaptations
to the deliberative element may be modifications to its rea-
soning process (i.e., to its task structure, selection of meth-
ods, or control of reasoning; e.g., (Birnbaum et al. 1990)
(Stroulia and Goel 1995) (Leake 1996) (Murdock and Goel
2008), or to its domain knowledge (i.e., the content, repre-
sentation and organization of its knowledge), or both.

A core and longstanding problem in self-adaptation is
that of credit (or blame) assignment (Samuel 1959) (Min-
sky 1995). It is useful to distinguish between two kinds
of credit assignment problems: temporal and structural. In
temporal credit assignment, given a sequence of many ac-
tions by an agent that leads to a failure, the task is to iden-
tify the actions(s) responsible for the failure. Reinforcement
learning is one method for addressing the temporal credit
assignment problem (Sutton and Barto 1998). In structural
credit assignment, given an agent composed of many knowl-
edge and reasoning elements that fails to achieve a goal, the
task is to identify the element(s) responsible for the fail-
ure. Meta-reasoning for self-adaptation typically addresses
the problem of structural credit assignment, though this can
also be used to guide reinforcement learning (Ulam et al.
2005) (Anderson et al. 2006). It is useful to note the close
relationship between agent self-adaptation and agent learn-
ing: the use of meta-reasoning for self-adaptation views
learning as a deliberative, knowledge-based process of self-
diagnosis and self-repair. In this sense, research on self-
adaptation via meta-reasoning can be viewed as a bridge be-
tween knowledge-based AI and machine learning.

Our past work on addressing the structural credit assign-
ment over reasoning processes has investigated the hypoth-
esis that a declarative self-model that captures the teleology
of the agent’s design (i.e., its functions and the mechanisms
that result in the accomplishment of the functions) may en-
able localization, if not also identification, of the elements in
the reasoning process responsible for a given behavior. Put
another way, our work has explored teleology as a central or-

76



Figure 1: Model of a Metareasoning Agent Adapted From
(Cox and Raja 2007)

ganizing principle of self-adaptation of reasoning processes.

Current Work
As indicated above, AI research on meta-reasoning for self-
adaption, including our own work, has generally focused on
modifying the agent’s reasoning processes. In this paper, we
describe our ongoing work on the equally important prob-
lem of using meta-reasoning for modifying the agent’s do-
main knowledge. Since classification is a ubiquitous task in
AI, we consider the problem of using meta-knowledge for
repairing classification knowledge when the classifier sup-
plies an incorrect class label. This problem arises when the
meta-level monitoring process in an agent like that depicted
in figure 1 detects an error that is localized to a classifier.
More specifically, we consider the subclass of classification
problems that can be decomposed into a hierarchical set of
smaller classification problems; alternatively, problems in
which features describing the world are progressively ag-
gregated and abstracted into higher-level abstractions until
a class label is produced at the root node. This subclass of
classification problems are recognized as capturing a com-
mon pattern of classification (e.g., (Bylander, Johnson, and
Goel 1991) (Russell 1988)). We will call this classification
task compositional classification, and the hierarchy of ab-
stractions an abstraction network.

In particular, we consider the problem of retrospective
adaptation of the content of the intermediate abstractions in
the abstraction network (and not its structure) when the clas-
sifier makes an incorrect classification. Note that once again
structural credit assignment becomes a core problem: given
the error at the root node, the structural credit assignment
problem now is to identify the intermediate abstractions in
the abstraction network responsible for the error. Note also
that the hypothesis about using teleological knowledge that
works so well for adapting reasoning processes is not useful
in this setting because there is no complex reasoning process
to model here.

Instead, in this paper we propose and explore an alterna-
tive hypothesis for using meta-reasoning for self-adaptation
of domain knowledge: if the semantics of domain concepts
can be grounded in predictions about percepts in the world,
then meta-knowledge in the form of verification procedures
associated with the domain concepts is useful for addressing
the structural credit assignment problem. Meta-reasoning
can then use verification procedures associated with domain
concepts to verify the predictions made by those concepts.

In the case of compositional classification, this means that
intermediate abstractions in the abstraction network are cho-
sen such that each abstraction corresponds to a prediction
about percepts in the world, meta-knowledge comes in the
form of verification procedures associated with the abstrac-
tions, and meta-reasoning invokes the appropriate verifica-
tion procedures to perform structural credit assignment and
then adapt the abstractions. The verification procedures ex-
plicitly encode the grounding of intermediate abstractions in
percepts from the environment. Below we illustrate, formal-
ize and evaluate these ideas, and briefly discuss the implica-
tions of this scheme for a meta-reasoning architecture.

Task Models
To make the problem concrete, we will present an ex-
ample from the turn-based strategy game called FreeCiv
(www.freeciv.org). Figure 2 depicts an example of a par-
tially expanded process model for an agent that plays the
game. This model is expressed in a teleological model-
ing language, Task-Method Knowledge Language (TMKL)
(Murdock and Goel 2008). TMKL models of software sys-
tems are expressed in terms of tasks, methods, and knowl-
edge. A task describes user intent in terms of a computa-
tional goal producing a specific result. Tasks encode func-
tional information – the production of the intended result is
the function of a computation. It is for this reason that the
models specified in TMKL are teleological – the purpose of
computational units is explicitly represented. A method is
a unit of computation that produces a result in a specified
manner. The knowledge portion of the model describes the
different concepts and relations that tasks and methods in the
model can use and affect as well as logical axioms and other
inferencing information involving those concepts and rela-
tions. TMKL has been shown to be more expressive than
Hierarchical Task Networks (HTNs) (Erol, Hendler, and
Nau 1994), as TMKL enables explicit representation of sub-
goals and multiple plans for achieving a goal. Hoang, Lee-
Urban and Munoz-Avila (Hoang, Lee-Urban, and Muñoz-
Avila 2005) designed a game-playing agent in both TMKL
and HTN and noted that TMKL provided control structures
and other features beyond those available in HTN, and that
TMKL provides strictly more expressive power than HTNs.
Figure 2 displays only the tasks (rectangles) and methods
(rounded rectangles) of the FreeCiv playing agent.

On each turn in a game of FreeCiv, the agent depicted in
figure 2 must select a compound action that consists of set-
ting various parameters and moving units such as military
units and ”worker” units, called settlers, that can improve
terrain or build new cities. Building new cities on the game
map is a crucial action, as each city produces resources on
subsequent turns that can then be used by the player to fur-
ther advance their civilization. The quantity of resources
produced by a city on each turn is based on various factors,
including the terrain and special resources surrounding the
city’s location on the map, and the skill with which the city’s
operations are managed. The agent modeled in figure 2 han-
dles decisions about moving units to build cities in the sub-
task Select Build City Action. Consider what happens when
meta-level monitoring detects that the game playing agent

77



Figure 2: FreeCiv Agent Process Model

has made some error, perhaps failing in its overall goal of
winning a game. At this point, a diagnostic procedure like
that implemented in REM (Murdock and Goel 2008) is en-
gaged, and the agent reasons over its self-model of object
level processing in order to localize the cause for failure.
In some situations, this process of self-diagnosis may lead
to the identification of some primitive task in the process
model as a cause for failure. Primitive tasks are those that
are directly achievable by applying some knowledge and/or
taking some action in the world. Frequently, these prim-
itive tasks may fundamentally be compositional classifica-
tion tasks. In this paper, we consider the self-diagnosis and
self-repair problem that arises when the agent identifies a
task such as the Select Build City Action primitive task as
the cause of a failure. We address this problem by providing
the agent not only with a model of its own processing but
also of the knowledge used in that processing. Then, when a
primitive task is identified as responsible for some failure at
the process level, self-diagnosis can operate over the model
of the knowledge used by that primitive task and enable the
repair of that knowledge. In the work described here, we
have not actually implemented the integration of the self-
diagnosis and repair of knowledge with the self-diagnosis
of process provided by REM; rather, we experiment with a
compositional classifier operating independently and inter-
acting directly with the environment. However, our intent is

that this procedure could be integrated with a system such
as REM to form a unified metareasoning-based approach to
self-diagnosis and repair over both object-level process and
knowledge.

To return to our running example, when our agent selects
the action for a unit that is to build a city, a crucial decision
is whether the location on the game map currently occupied
by the unit is suitable for the placement of the new city. We
will judge the quality of a potential city location based upon
the quantity of resources that we expect a city built in that
location to produce over time. This decision is an example
of a compositional classification task. Figure 3 illustrates a
knowledge hierarchy for this task used by our FreeCiv game-
playing agent.

Compositional Classification
To more formally describe compositional classification, let
T be a discrete random variable representing the class la-
bel. Let S = {s : s is empirically determinable and
h[T ] > h[T |s]}, where h[x] denotes the entropy of x. S
is a set of discrete random variables that have nonzero mu-
tual information with the class label and are empirically de-
terminable, meaning that there is some way to interact with
the environment to determine which value has been taken
by each member of S. Each member s of S represents a re-
lated set of equivalence classes, where each value taken by

78



Figure 3: City Estimate Knowledge Hierarchy

s is a unique equivalence class. In the case of our running
FreeCiv example, things like the future population growth
of the potential city and the amount of food provided by ter-
rain squares around the city location constitute S. A task in-
stance is generated by jointly sampling the variables in S∪T .
In FreeCiv, the game engine handles this for us by randomly
generating a game map and managing game dynamics that
govern the relationships among the variables in S.

Empirical determinability captures the notion of percep-
tual grounding of concepts, indicating that each equivalence
class represents some verifiable statement about the world.
In the simplest case, empirical determinability means that
the value taken by the variable in a given task instance is di-
rectly observable at some later time after classification has
occurred. In general, some experiment may need to be per-
formed in order to observe the value of some s ∈ S. In
FreeCiv, all of the values can be directly observed, though
some only after classification has occurred. This is because
in order to be useful, the prediction of city resource produc-
tion must be made before the city is actually constructed and
its resource production rate and the values of the intermedi-
ate nodes in the hierarchy can be observed. However, we can
obtain the true values later in order to perform self-diagnosis
over the knowledge structure used for the classification. We
call the problem of predicting T in such a setting composi-
tional classification. In order to make such predictions, our
agent will make use of a structured knowledge representa-
tion called an abstraction network, defined in the next sec-
tion. This representation will capture knowledge about the

relationships between variables in S. Knowledge repair will
be required if the distributions P(s|K), s ∈ S ∪ T, K ⊆ S
are not always accurately known by the agent, but must in-
stead be inferred from experience.

Abstraction Networks
Representation
Here we formally define the knowledge representation used
at the object level for the compositional classification task.
This representation is annotated with meta-knowledge used
by meta-level reasoning process for self-diagnosis. We call
this diagnostic self-knowledge empirical verification proce-
dures, described in more detail below.

The knowledge structure contains a node for each s ∈
S ∪ T . These nodes are connected in a hierarchy reflect-
ing direct dependence relationships organized according to
background knowledge. Each node will handle the subprob-
lem of predicting the value of the variable with which it is
associated given the values of its children.

Definition 1 A supervised classification learner (SCL) is a
tuple < I,O, F, U >, where I is a set of input strings
(input space), O is a set of output symbols (output space),
F is a function from I to O, and U is a function from
(i, o) : i ∈ I, o ∈ O to the set of SCLs that share the same
input & output spaces I & O.

Definition 2 An empirical verification procedure (EVP) is a
tuple < E, O > where O is a set of output symbols (output

79



space) and E is an arbitrary, possibly branching sequence
of actions in the environment and observations from the en-
vironment concluding with the selection of an o ∈ O.

Any output space O of an empirical verification procedure
is an empirically determinable set of equivalence classes.
So, a set of equivalence classes is empirically determinable
if an empirical verification procedure can be defined with an
output space equal to that set of classes.

Definition 3 An Abstraction Network (AN) is a tuple
< N, O,L, P >, where N is a (possibly empty) set of
ANs, O is a set of output symbols, L is an SCL, and P is an
empirical verification procedure. Let I be the set of strings
formable by imposing a fixed order on the members of N
and choosing exactly one output symbol from each n ∈ N
according to this order. The SCL L has input space I and
output space O, and the empirical verification procedure P
has output space O.

When N is empty, L is trivial and has no use as the input
space is empty. In these cases (the leaves of the AN), a value
determination must always be made by invoking P . Thus,
EVP execution must be possible before classification in the
case of AN leaves, though it is never possible until some
time after classification for non-leaf nodes.

Object-level Reasoning
In a given task instance, the values of the leaf nodes are fixed
by observation. Each node with fixed inputs then produces
its prediction. This is repeated until the value of the class
label is predicted by the root of the hierarchy.

begin AN-reasoning(a)
1. If a.N = ∅, execute a.P and return the result.
2. Else, recursively execute this procedure for each n ∈

N to generate an input string i for a.L, then return
a.L.F (i) and store this value and i for the purpose
of the self-diagnosis procedure (called a.last value and
a.last input below).

end

Meta-level Diagnosis and Repair
At some time after classification, the true value of the class
label is obtained by the monitoring process. If the value
produced by object-level reasoning was correct, no further
action is taken. If the value is found to be incorrect, the
following self-diagnosis and repair procedure is followed:

begin AN-diagnose-and-repair(a)
1. If a.P == a.last value then return true.
2. ∀n ∈ a.N , call AN-diagnose-and-repair(n). If ∃n ∈

a.N s.t. AN-diagnose-and-repair(n) == false then re-
turn false.

3. a.L < −a.L.U((a.last input, a.P )), return false.
end

This procedure has a base case when the leaves are
reached, as their true values were obtained before classifi-
cation, and thus cannot be found to be incorrect.

Notice that an AN abstracts in two ways. One is apparent
in the object-level reasoning procedure; information is pro-
gressively lost at each node in the hierarchy during reason-
ing as information is aggregated into equivalence classes, so
abstraction takes place during inference. The second source
of abstraction becomes clear in the self-diagnosis and repair
procedure. The EVPs explicitly encode a process of abstrac-
tion from raw state to the equivalence classes produced at
nodes in the AN.

Formal Justification of Self-Diagnosis
Technique

In this section, we sketch a proof that the self-diagnosis tech-
nique used for AN self-diagnosis is optimal with respect to
maximizing expected decrease in diagnostic search space
entropy with each probe (where a probe is an EVP execu-
tion), under assumptions outlined below. Here, the diagnos-
tic search space consists of all possible error conditions that
lead to an error observed at the root of the AN, under the
following provisions:
• A value produced at a node is wrong only if it is both ob-

jectively wrong (wrong according to the associated EVP)
and subjectively wrong (recursively, leads to the produc-
tion of an erroneous value at the parent). In the lan-
guage of diagnosis, this amounts to ignoring compensat-
ing faults.

• Without loss of generality, we assume that each node pro-
duces values in a way that is actually dependent on the
values of child nodes.
A diagnostic search space for a given failure thus con-

sists of all possible contiguous sets of nodes that include the
root. A given diagnosis is correct for a given failure situa-
tion if it is the maximal such set for which all nodes in the
set produced incorrect values during the related inference.
The set represents the nodes that produced erroneous values
during the failure, and adaptation within nodes will occur
at the fringe of the set, as per the self-diagnosis and repair
procedure described earlier. Note that this diagnostic search
space is distinct from the hypothesis space searched by the
self-diagnosis and repair procedure operating across a se-
quence of examples; this search space is not concerned with
any specific knowledge stored at the nodes, but only with ex-
plaining the fault location(s) that lead to a particular failure
instance.

For any given node in the AN x, define X to be the en-
tropy left in the diagnostic search space if x is probed (as-
sociated EVP executed) and found to have produced a good
value, and¬X the entropy left if x is found to have produced
a bad value. Then, the expected remaining entropy if x is
probed is given by X · P (X) + ¬X · P (¬X), where P (X)
and P (¬X) represent the a priori probabilities that x will be
found to be either good or bad, respectively, if probed.

Lemma 1 For any pair of unprobed nodes a, b in an AN
such that a is a (possibly indirect) ancestor of b:

1. B ≥ A

2. ¬B ≥ A

3. ¬A ≤ B + ¬B − 2 ·A

80



To see that (1) & (2) are correct, notice that if a is probed
and found to have produced a correct value, all diagnoses
consistent with this observation are consistent with either
result of probing b; that is, the set of consistent diagnoses re-
maining if b is probed and found to have produced a correct
value is a subset of the diagnoses consistent with a having
been found to be correct, and likewise for b being found in-
correct. The intuition behind this proof lies here. Since we
do not know whether node b’s status is important until we
probe node a, it is more fruitful to probe at a first. (3) is a
related inequality, and is based on the observation that if b
is a direct descendant of a, the diagnoses consistent with b
being shown correct are those diagnoses consistent with a
being shown correct, plus some fraction of those consistent
with a being shown incorrect. Likewise for b being shown
incorrect. Since there is no diagnosis consistent with nei-
ther b being shown correct nor b being shown incorrect, and
there is no diagnosis consistent with a being shown incor-
rect, b being shown correct and b being shown incorrect, we
arrive at a variant of (3) with an equality rather than an in-
equality. Now notice that if b is an indirect descendant of a,
B and ¬B will not only be duplicating coverage of A, but
will also be duplicating coverage of some portions of ¬A
that are consistent with correct values having been produced
by some nodes on the path from b to a. This leaves us with
(3) as presented above, since the RHS may exceed the LHS
due to this duplication.

Theorem 1 For any two unprobed nodes a and b within an
AN, where a is a (potentially indirect) ancestor of b, the ex-
pected remaining entropy in the diagnostic search space is
less at a, making a a more desirable probe point.

To briefly sketch the proof, let us assume that b consti-
tutes a better next probe point than a, on the basis of ex-
pected remaining entropy in the diagnostic search space.
Then B·P (B)+¬B·P (¬B) < A·P (A)+¬A·P (¬A). Sub-
stituting using our lemma and simplifying yields P (A) > 1,
a contradiction.

Moving from this result to our AN self-diagnosis proce-
dure is straightforward; it is preferable to probe nodes with
ancestors that have been probed (and found incorrect, of
course). Further, the order of probing among such nodes is
arbitrary since the probing of any node with this character-
istic cannot remove the characteristic from any other node,
and no such nodes can remain when a diagnosis is uniquely
selected.

FreeCiv Experiment
We have experimented in the FreeCiv domain using the AN
depicted in figure 3. This AN was used to produce outputs
from a set containing three values, corresponding to poor,
moderate and good city resource production. These values
indicate predictions about the resource production expected
from a city built on a considered map location. Specifically,
the values correspond to an expected degree and direction of
deviation from a logarithmic baseline resource production
function that was manually tuned to reflect roughly average
city resource production. Each of the intermediate nodes
in the AN has an output set consisting of 5 values in this

experiment. The empirical verification procedures simply
discretize observed game features. We placed a very sim-
ple rote learner within each node in the AN. These simple
learners offer no generalization power of their own, so this
experiment relies on the power of the AN representation it-
self rather than on powerful learners within nodes. The con-
tent of each rote learner was initialized arbitrarily in a way
that was known to be incorrect in some cases for each of the
learners. Because we expect resource production from cities
built on various kinds of map locations to potentially differ
qualitatively as games progress, we trained 3 separate AN-
based learners, with one of each learning to make predic-
tions about resource production in the early, middle or late
stages of the game. Results reported are cumulative across
all three learners of the appropriate type.

To test our self-diagnosis and self-repair procedure, we
ran 60 independent trials, each consisting of a sequence of
49 games played by an agent using the AN of figure 3. Re-
sults reported in this section are an average across these tri-
als. Each game played used a separate randomly generated
map, with no opponents. The agent always builds a city on
the first occupied square, after making an estimate of the
square’s quality. Building in the first randomly generated
occupied square ensures that the agent will have opportuni-
ties to test its knowledge in a variety of states. We evaluated
the result of our self-diagnosis and self-repair procedure by
comparing the average performance of the agent during the
first 7 games to the average performance during the last 7
games. Making this comparison, we observed an average
52% decrease in the error rate of the learner. This improve-
ment in performance is evidence that the meta-level process
has been successful in repairing faulty knowledge at the ob-
ject level. We have also experimented with the AN self-
diagnosis and self-repair procedure in other domains such
as prediction of the direction of the Dow Jones Index (Jones
and Goel 2007) and in synthetic settings, with similarly pos-
itive results.

Related Research
As we mentioned in the introduction, the use of meta-
reasoning for self-adaptation in intelligent agents is related
to learning: it views learning as deliberative, knowledge-
based self-diagnosis and self-repair. In particular, our work
on use of meta-reasoning for structural credit assignment in
compositional classification is related to past work on tree-
structured bias (TSB) (Russell 1988)(Tadepalli and Russell
1998). In TSB, a concept hierarchy like those represented
by ANs is used to limit the hypothesis space that must be
searched by a learner. However, there are several funda-
mental differences between our work and past work on tree-
structured bias. First, TSB has dealt only with binary classi-
fications at all nodes in the hierarchy, while ANs can deal
with multivalue classifications. Next, TSB research does
not have the concept of EVPs, which encode the meta-
knowledge used in our self-diagnostic procedure, instead re-
lying on carefully constructed queries to the environment to
learn the functions at internal nodes. Thus, rather than us-
ing explicitly represented meta-knowledge to perform self-
diagnosis, TSB has a fixed training procedure that implicitly

81



relies upon a given type of query. This procedure can be
seen as requiring a very specific kind of empirical verifiabil-
ity for internal nodes – thus forcing a particular (and rather
complex) form on the EVPs that a designer would write if
applying TSB procedures within the AN framework. In the
work described here, we take the stance that, in general, a
broader set of queries to the environment may be possible.
If this is the case, it will be more efficient to make use of
the observations that most directly allow us to determine the
value of an internal node when learning. In fact, the mo-
tivating example given by Tadepalli and Russell (Tadepalli
and Russell 1998), concerning a credit-card domain, appears
clearly to have a strong kind of direct empirical verifiability
at internal nodes that could be exploited by an AN using
very simple EVPs. The explicit representation of EVPs by
ANs is also crucial to a major difference between AN re-
search and past work on TSB. EVPs represent an abstrac-
tion from observable quantities to concepts used in an AN
hierarchy. Because the grounding of concepts in observable
quantities is explicitly represented, it becomes fair game to
be operated upon during adaptation. It also means that we
are able to adapt intermediate concepts themselves accord-
ing to their functional roles – recognizing that intermediate
concepts are not set in stone by the environment, but that
they are constructs that exist in order to allow for correct
overall classification.

Relationship to Cox & Raja’s Architecture for
Meta-Reasoning
Figure 1 illustrates Cox & Raja’s (2007) architecture for
meta-reasoning. On one hand, our past and current work
on self-adaptation of an agent’s reasoning processes fits
well with this architecture: we can imagine the teleological
model of the agent’s deliberative reasoning element and the
meta-reasoner using the teleological knowledge for struc-
tural credit assignment over the deliberative reasoning pro-
cesses as residing in the meta-reasoning element in Cox &
Raja’s architecture.

On the other hand, our work also departs from Cox &
Raja’s architecture in several significant ways. Firstly, Cox
& Raja’s architecture asserts (or at least implies) that an
”object-level” reasoning element necessarily mediates be-
tween the ”ground-level” and the ”meta-level” elements.
However, our work on structural credit assignment and self-
adaptation in reactive control agents (Stroulia and Goel
1999) directly applies meta-reasoning over reactive control
without any intermediate object-level element for deliber-
ative reasoning. In principle, we see no particular reason
why deliberative reasoning must necessarily mediate be-
tween ”doing” and meta-reasoning. Secondly, Cox & Raja’s
architecture asserts (or at least implies) that the ground-
, object- and meta-levels are distinct and separate. How-
ever, our work on using meta-reasoning for guiding rein-
forcement learning (Ulam et al. 2005) views the three lev-
els as substantially overlapping. Again, in principle, we see
no particular reason for a complete separation between the
ground-, object- and meta-levels. Thirdly, our current work
described in this paper suggests that some of the actions at
the ground level may be in service of verifying predictions

made by semantics of the domain knowledge at the object
level. Also note that in these cases, meta-knowledge may
take the form of an explicit representation of the connection
between knowledge used at the object level and predictions
about percepts accessible from the ground level. Finally,
this work suggests that meta-knowledge useful for adapt-
ing domain knowledge may be distributed over the domain
concepts in the object level, and not necessarily confined to
Cox & Raja’s meta-level. In general, we believe that while
Cox & Raja’s architecture provides a good starting point for
identifying a common architecture for all meta-reasoning,
meta-reasoning is more dynamic and flexible than their ar-
chitecture seems to imply.

Conclusions
In this paper, we described a scheme for using meta-
reasoning in intelligent agents for self-adaptation of domain
knowledge. In particular, we considered retrospective adap-
tation of the content of intermediate abstractions in an ab-
straction network used for compositional classification when
the classifier makes an incorrect classification. We showed
that if the intermediate abstractions in the abstraction net-
work are organized such that each abstraction corresponds
to a prediction about a percept in the world, then meta-
knowledge comes in the form of verification procedures as-
sociated with the abstractions, and meta-reasoning invokes
the appropriate verification procedures in order to perform
structural credit assignment and then adapt the abstractions.
This provides credence to our hypothesis about the use of
meta-reasoning for self-adaptation of domain knowledge: if
the semantics of domain concepts can be grounded in pre-
dictions about percepts in the world, then meta-knowledge
in the form of verification procedures associated with the do-
main concepts is useful for addressing the structural credit
assignment problem. We note however that whether this hy-
pothesis holds for tasks other than compositional classifica-
tion is an open question.

Acknowledgements
This research is supported by an NSF (SoD) Grant
(#0613744) on Teleological Reasoning in Adaptive Soft-
ware Design.

References
Anderson, M. L.; Oates, T.; Chong, W.; and Perlis, D.
2006. The metacognitive loop i: Enhancing reinforcement
learning with metacognitive monitoring and control for im-
proved perturbation tolerance. J. Exp. Theor. Artif. Intell.
18(3):387–411.
Birnbaum, L.; Collins, G.; Freed, M.; and Krulwich, B.
1990. Model-based diagnosis of planning failures. In Pro-
ceedings of the 8th National Conference on Artificial In-
telligence (AAAI-90), 318–323. Boston, Massachusetts,
USA: AAAI Press/MIT Press.
Brachman, R. J. 2002. Systems that know what they’re
doing. IEEE Intelligent Systems 17(6):67–71.

82



Bylander, T.; Johnson, T. R.; and Goel, A. 1991. Structured
matching: a task-specific technique for making decisions.
Knowl. Acquis. 3(1):1–20.
Cox, M. T., and Raja, A. 2007. Metareasoning: A Man-
ifesto, Technical Report, BBN TM-2028, BBN Technolo-
gies.
Cox, M. T., and Ram, A. 1999. Introspective multistrategy
learning: on the construction of learning strategies. Artif.
Intell. 112(1-2):1–55.
Cox, M. T. 2005. Metacognition in computation: a selected
research review. Artif. Intell. 169(2):104–141.
Davis, R. 1980. Meta-rules: Reasoning about control. Ar-
tif. Intell. 15(3):179–222.
Doyle, J. 1979. A truth maintenance system. Artif. Intell.
12(3):231–272.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In Proceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-94),
volume 2, 1123–1128. Seattle, Washington, USA: AAAI
Press/MIT Press.
Fox, S., and Leake, D. B. 2001. Introspective reasoning for
index refinement in case-based reasoning. J. Exp. Theor.
Artif. Intell. 13(1):63–88.
Ganek, A. G., and Corbi, T. A. 2003. The dawning of the
autonomic computing era. IBM Syst. J. 42(1):5–18.
Genesereth, M. 1983. An overview of meta-level architec-
ture. In Proceedings of the Third National Conference on
Artificial Intelligence 119–123.
Goel, A. K., and Murdock, J. W. 1996. Meta-cases: Ex-
plaining case-based reasoning. EWCBR 150–163.
Hansen, E. A., and Zilberstein, S. 2001. Monitoring and
control of anytime algorithms: A dynamic programming
approach. Artificial Intelligence 126(1-2):139–157.
Hayes-Roth, B., and Larsson, J. E. 1996. A domain-
specific software architecture for a class of intelligent pa-
tient monitoring systems. Journal of Experimental and
Theoretical Artificial Intelligence 8(2):149–171.
Hoang, H.; Lee-Urban, S.; and Muñoz-Avila, H. 2005. Hi-
erarchical plan representations for encoding strategic game
AI. In Young, R. M., and Laird, J. E., eds., AIIDE, 63–68.
AAAI Press.
Horvitz, E. J.; Cooper, G. F.; and Heckerman, D. E. 1989.
Reflection and action under scarce resources: Theoreti-
cal principles and empirical study. In Proceedings of the
Eleventh International Joint Conference on Artificial Intel-
ligence (IJCAI-89), 1121–1127.
Horvitz, E. 2001. Principles and applications of continual
computation. Artificial Intelligence 126(1-2):159–196.
Jones, J., and Goel, A. 2007. Structural credit assign-
ment in hierarchical classification. In Arabnia, H. R.; Yang,
M. Q.; and Yang, J. Y., eds., IC-AI, 378–384. CSREA Press
CSREA Press.
Leake, D. B. 1996. Experience, introspection and exper-
tise: Learning to refine the case-based reasoning process.
J. Exp. Theor. Artif. Intell. 8(3-4):319–339.

Minsky, M.; Singh, P.; and Sloman, A. 2004. The
St. Thomas common sense symposium: Designing ar-
chitectures for human-level intelligence. AI Magazine
25(2):113–124.
Minsky, M. 1995. Steps toward artificial intelligence. 406–
450.
Murdock, J. W., and Goel, A. K. 2003. Localizing
planning with functional process models. In Giunchiglia,
E.; Muscettola, N.; and Nau, D. S., eds., ICAPS, 73–81.
AAAI.
Murdock, J. W., and Goel, A. K. 2008. Meta-case-based
reasoning: self-improvement through self-understanding.
J. Exp. Theor. Artif. Intell. 20(1):1–36.
Raja, A., and Lesser, V. R. 2007. A framework for meta-
level control in multi-agent systems. Autonomous Agents
and Multi-Agent Systems 15(2):147–196.
Russell, S. J. 1988. Tree-structured bias. In AAAI, 641–
645.
Russell, S. 1991. Principles of metareasoning. Artif. Intell.
49(1-3):361–395.
Samuel, A. 1959. Some studies in machine learning using
the game of checkers. IBM Journal 3(3):210–229.
Stefik, M. 1981. Planning and meta-planning (molgen:
Part 2). Artif. Intell. 16(2):141–170.
Stroulia, E., and Goel, A. 1995. Functional representa-
tion and reasoning in reflective systems. Journal of Ap-
plied Intelligence, Special Issue on Functional Reasoning
9(1):101–124.
Stroulia, E., and Goel, A. K. 1996. A model-based ap-
proach to blame assignment: Revising the reasoning steps
of problem solvers. AAAI/IAAI 2:959–964.
Stroulia, E., and Goel, A. K. 1997. Redesigning a problem-
solver’s operations to improve solution quality. IJCAI
1:562–567.
Stroulia, E., and Goel, A. K. 1999. Evaluating PSMs in
evolutionary design: the autognostic experiments. Int. J.
Hum.-Comput. Stud. 51(4):825–847.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.
Tadepalli, P., and Russell, S. 1998. Learning from ex-
amples and membership queries with structured determi-
nations. Mach. Learn. 32(3):245–295.
Ulam, P.; Goel, A.; Jones, J.; and Murdock, W. 2005.
Model-based guidance for reinforcement learning. In Proc.
IJCAI-05 Workshop on Game Playing 107–112.

83




