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Abstract

One of the most important elements of agent performance in
multi-agent systems is the ability for an agent to predict how
other agents will behave. In many domains there are often
different modeling systems already available that one could
use to make behavior predictions, but the choice of the best
one for a particular domain and a specific set of agents is of-
ten unclear. To find the best available prediction, we would
like to know which model would perform best in each possi-
ble world state of the domain. However, when we have lim-
ited resources and each prediction query has a cost we may
need to decide which queries to pursue using only estimates
of their benefit and cost: metareasoning. To estimate the ben-
efit of the computation, a metareasoner needs a robust mea-
surement of performance quality. In this work we present a
metareasoning system that relies on a prediction performance
measurement, and we propose a novel model performance
measurement that fulfils this need: Weighted Prediction Di-
vergence.

Introduction
Agent models are internal representations of other agents in
an environment. Agents with models of others can play out
“what-if” scenarios to determine potential responses of tar-
get agents to each of the modeling agent’s possible actions.
This type of reasoning can help the agent choose the best
course of action.

Agent modeling separates the characteristics of an agent
from its environment. When an agent models another, the
modeler’s goal is to either predict future behavior or ex-
plain past behavior by identifying the beliefs of the mod-
eled agent. In this work, we focus specifically on measur-
ing the ability of models to make predictions, in an attempt
to answer the following important metareasoning1 question:
Given a world state and a collection of candidate models,
how can we a-priori select the one which is most likely to
perform the best in that state? When computational cost is
an issue, the answer to this question lies within the answers
to several related questions:

• How do we automatically generate a contextual abstrac-
tion2 of the world state space?

1See (Cox & Raja 2007) for a primer on metareasoning.
2For this work, we define a context to be a collection of world

• How can we estimate a model’s general prediction quality
in a specific context without measuring quality at every
possible world state within that context?

• How do we compare the relative performance of several
heterogenous models’ predictive capabilities in a specific
context?

While the ability to characterize relative performance of
heterogenous models is important for a wide collection of
metareasoning strategies, and is thus the main thrust of this
paper, we must first examine a specific metareasoning strat-
egy such that the desiderata for the relative performance
measurement can be derived. In the next section, we propose
a metareasoning system that could be coupled with a ro-
bust measurement of model prediction performance to yield
a powerful new method of model selection for an agent. Af-
ter reviewing some of the existing methods used for perfor-
mance measurement, we present the main contribution of
the paper - a new method for characterizing model predic-
tion performance. We then introduce one target domain for
our empirical testing of this prediction performance mea-
surement. We discuss empirical results using this method
and conclude with a description of future work required to
realize the overall metareasoning system.

Context-aware Metareasoning for
Prediction-Model Selection

Consider an agent trying to find high-value actions to take in
some world where the value of the action is partially depen-
dent on the behavior of the other agents in the world. We de-
scribe the behaviors of the agents (and the way those behav-
iors affect and are affected by the world) using an extensive-
form game tree where nodes describe world states and edges
describe actions taken by specific agents. The value of a
world state can be estimated by summing the values of its
branches, weighted by the likelihood of the branch (action)
being chosen. This process can be used at each sub-branch
to find the value of the sub-branches recursively. The re-
cursion bottoms out when a branch is terminated at a leaf
node that contains a real-world value. Each node in the tree
may also have an intrinsic value which can be included in
the calculation.
states. Forming a set of contexts from the domain’s world states
requires a method of abstraction.
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The well-known minimax algorithm discussed in (Rus-
sell & Norvig 2003) describes this process when there are
two agents and the game is zero-sum (in every outcome one
player gains exactly the value the other player loses) and
the agents are assumed to have perfect (not bounded) ra-
tionality. Many extensions to minimax such as (Carmel &
Markovitch 1996a; Luckhardt & Irani 1986; Stone, Riley, &
Veloso 2000; Sturtevant, Zinkevich, & Bowling 2006) have
been developed which allow the assumption of perfect ratio-
nality to be relaxed. By replacing the minimizer with an al-
gorithm that predicts the opponent’s behavior at a given node
as in (Carmel & Markovitch 1996a) we obtain an algorithm
which selects actions with the highest value when playing
against a specific modeled opponent. When the model is
estimating the other agent’s probability distribution over ac-
tions, then the quality of the value calculation is dependent
upon how similar the predicted behavior distribution is to
the actual behavior distribution.

If we want to have a metareasoner that makes decisions
about which calculations to carry out using the utility of a
calculation as a criteria, we need to know the cost of the cal-
culation and the value of the calculation (Russell & Wefald
1991). In the setting described above, the relative value of
several candidate calculations (queries of different predic-
tive models) can be estimated by the quality of their predic-
tions at the specified world state. Unfortunately, measuring
the predictive quality of every model at every possible world
state in a branch of the game tree is at least as expensive as
obtaining all the predictions in the first place - thus comput-
ing prediction quality for every node in a branch would not
yield any resource savings. In order for our metareasoner to
be useful, it must be able to estimate the prediction quality
for each node without fully calculating prediction quality.

The metareasoner uses an abstraction3 of the world states
such that every world state belongs to one of a comparatively
smaller number of the contexts in the abstraction. As the
agent makes decisions within the environment, the behav-
ioral predictions made by a model and the resource usage
(CPU load and total time, for example) are monitored by the
metareasoner, and accumulated in the abstract context asso-
ciated with the prediction’s real world state. The metarea-
soner also monitors the target agent’s observed behavior and
accumulates the probability distribution in the abstract con-
text representing the world state the observation was made
in. Whenever the agent needs to determine the value of
a proposed action, the metareasoner first updates the rela-
tive prediction utility of each model in each abstract context
using the collected data from past predictions and observa-
tions. The matrix of estimated prediction utilities (utility for
each model in each context) is then passed to the object-level
action value calculator. The object-level can then choose the
highest-utility models for each prediction node visited dur-
ing the recursive value calculation over sub-branches from
the current world state in the game tree.

3While the method of generating the abstraction is beyond the
scope of this work, there is much existing work on automated
abstraction techniques. For example, see (Gilpin, Sandholm, &
Sorensen 2007)

We now define the architecture of a metareasoning agent
designed to act within the multi-agent environment de-
scribed previously. At the highest level, the system is one in
which the meta-level device is monitoring the performance
of the object-level reasoner and computing the utility of rea-
soning methods, as depicted in Figure 1.

Figure 1: Overview of a Metareasoning-controlled agent.
This diagram originally used in (Cox & Raja 2007)

Figure 2: Object Level. The object’s candidate models ob-
serve the action of other agents and provide predictions to
a prediction engine. The prediction engine is controlled by
metareasoning, based on the meta-level monitoring of the
performance of the candidate models.

We look inside the reasoning object in Figure 2. There are
a number of candidate models which receive input from the
environment (and observe the actions of the other agent4).
We assume that each candidate model is a black-box: it is
opaque to us and it takes inputs and produces outputs in the
form of a probability distribution over the possible actions
the modeled agent could take. Furthermore, we assume that
the models are input-heterogenous but output-homogenous:
each model is trying to predict a distribution of what the
modeled agent will do next, but each may be considering
different information from which to make their predictions.

At the object level, the Strategy Action Generator is at-
tempting to discover fruitful strategies for future behavior
of the agent. In order for the Strategy Action Generator to

4For the sake of linguistic clarity, we will refer to only one
agent being modeled to avoid confusion between the agent and
the multiple candidate models used to predict the actions of that
agent. While not discussed further in this work, the metareasoning
arrangement proposed here can be used to model multiple target
agents.
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choose a high-expected-value future strategy (sequence of
actions and responses by other agents) it may need to con-
sider many “what if” predictions about various events that
could occur in the future in order to evaluate different pos-
sible strategies. These predictions vary, depending on the
abstract context (collection of world states) they occur in.
Depending on the context of the desired prediction, some
models may have better prediction performance than others.
Thus, the selection of a predictive model (or weighted distri-
bution over models) should be context-aware for each pre-
diction. For each prediction-in-context that must be made, it
is the Prediction Engine’s job to generate the overall predic-
tion using the set of available candidate models.

The Prediction Engine’s selection of model(s) is influ-
enced by the metareasoning level. The metalevel shown in
Figure 3 is composed of several modules.

Figure 3: Meta-Level. The metareasoner reviews past pre-
dictions, prediction costs, and observations to yield a utility
measurement for each context. The utility calculation ad-
vises the prediction engine by providing a utility profile for
each model in each context.

The first module, the Context Abstraction is a device
which determines the appropriate abstract context from a
given world state. It provides this context as a tag for the Ac-
tivity Repository for every prediction and observation event.
Whenever a model is queried for a prediction in the object
level, it generates a prediction event. Prediction events con-
tain the predicted distribution over modeled agent actions
and the cost incurred by that model to generate the predic-
tion. Observation events include the observed behavior of
the modeled agent. The Utility Calculation first computes
the distribution of agent behavior in each tagged context.
Then it calculates a prediction quality measurement from
the predictions and observations seen within the context. Fi-
nally it computes the utility for each model in each context
from the prediction quality and the prediction cost. The lat-
est utility profile matrix is then passed to the Prediction En-
gine prior to each prediction.

The remainder of this paper presents and explores one
of the important facets of this metareasoning architecture:
measuring the prediction performance of a model in a
context. Before we discuss our novel and theoretically-

grounded measurement concept, we review the related re-
search in the area.

Related Work
Agent modeling is often used in computational analysis
of an environment to help an agent make decisions. Re-
searchers have examined many domains where agent model-
ing can be useful: competitive economics, national security,
politics, and, of course games (Kott & McEneaney 2007).

Computer science is rich with research on different tech-
niques for how to represent an agent in a model, how to
obtain the information to populate the model, how to use
the model, and how to evaluate the model based on over-
all performance in the domain. While actual performance
within the domain is ultimately the goal for agent, there are
many other factors affecting overall agent performance be-
sides how accurate the agent model is. The structure of the
environment, the prior biases in the behavior of the mod-
eling agent, and the way it uses the information from the
model are a few examples. If we want to determine how
well a model works in order to decide which of several mod-
els is better, we need to measure the accuracy of the models
directly.

While most researchers have provided empirical studies
that compare the overall domain performance of their meth-
ods with other modeling methods or different approaches
(such as Monte-Carlo simulation, game-theoretic equilib-
rium play, or rules-based strategy), few have quantified how
well their models predict the other agents’ behavior directly.

There are several exceptions in which researchers do ex-
amine the accuracy of the model, not just the performance
of the overall system. Carmel and Markovitch examine
the model size and average error versus sample size while
running their domain independent modeling US-L* algo-
rithm (Carmel & Markovitch 1996b), showing that model
size growth slows with more examples while average error
drops. Rogowski expands on this work, providing an al-
gorithm it-us-l* and presents its domain-independent model
quality measure in several experiments: average hold-out-
set prediction accuracy (Rogowski 2004). In robot soccer
games in RoboCup, Riley and Veloso use the probability of
correctly recognizing which play an agent is about to make
to measure their learning algorithm (Riley & Veloso 2002)
but do not provide any other direct model quality measures.
In the plan recognition field researchers have also employed
the measurements of precision and recall (Blaylock & Allen
2005; Cox & Kerkez 2006) when comparing performance of
candidate recognition algorithms.

The majority of the model prediction quality measures in
these efforts rely on extensions to error measurements in-
tended for binary classification (1 point for correct predic-
tion, 0 points for incorrect prediction). While this informa-
tion does provide a basic quality measure, its value dimin-
ishes as the number of possible agent actions per state grows.
In the world described in the previous section, there are no
restrictions on uniformity of the number of actions leading
from a node. Some nodes may have few actions leading
away while others may have many. Under this condition, the
results of a function comprised of binary-based prediction
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quality measurements from multiple heterogenous nodes is
unclear. For the function to be meaningful, the underlying
quality measure must be more universal.

A more detailed representation of general classification
performance (which is applicable to the performance mea-
surement of a model that predicts which action an oppo-
nent will take) is the confusion matrix. A confusion ma-
trix is an M -by-M matrix which represents a classifier’s
distribution of classification labels provided to M different
classes. Column headings hold the model’s predictions and
row headings indicate the true class. Thus, the cells along
the diagonal represent correct classifications and the cells on
the off-diagonal represent incorrect classifications. In addi-
tion to providing accuracy or error rate (computed from the
main diagonal of the matrix), the matrix reveals the number
(or probability) of each type of mistake (off-diagonal cells).
This additional information can be valuable when different
predictive mistakes have different costs. Several agent mod-
eling efforts use the confusion matrix to characterize their
model prediction quality. Davidson uses a confusion matrix
to quantify a neural-network agent model’s ability to predict
whether the opponent will fold, call, or raise under many
different circumstances in poker (Davidson et al. 2000).
Sukthanar and Sycara use a confusion matrix to character-
ize their prediction of which type of breach and enter ma-
neuver the opposing force is about to perform in a simulated
military tactical engagement (Sukthankar & Sycara 2006).

While confusion matrices are a step in the right direction
in that they provide quality assessments beyond basic binary
prediction accuracy, they can quickly become unwieldy if
the space of possible options (M ) is large (or continuous) or
there are multiple stages of predictions that must be made
during the course of an engagement (such as in chess, poker,
and military endeavors). In multiple-stage prediction en-
counters (which can often be characterized as extensive form
games and depicted with game trees) there would need to be
a confusion matrix for every possible agent prediction node.
Sometimes the act of getting to a prediction node is not cer-
tain - the probability depends on which events occurred over
the history of the encounter (the path taken through the game
tree). The probabilities might be co-dependent (depending
on the probabilities of all the agents in the environment). In
these circumstances there may be no clear way in which to
generate a single confusion matrix quantifying the goodness
of a model.

A New Approach For Evaluating Prediction
Performance In Agent Models

Given the difficulty of the problem and the lack of its treat-
ment in the field, we now present a flexible method for char-
acterizing relative prediction quality that is independent of
the agent in which it resides. This quality measurement
does not consider total performance of the agent - only the
model’s ability to predict another agent’s behavior. Before
we present the measurement, let us first take a moment to
list the desiderata of a predictive performance measurement
that is to be used in a metareasoning role.

Given a context (an abstraction of the world state), an ac-

tual behavior distribution (a probability distribution over a
finite number of possible actions5, which describes the be-
havioral choices of the agent in that context) and a predic-
tion of the target’s behavior distribution in the context (as
provided by a predictive model, given the context), we de-
fine prediction divergence (PD(P,Q)) as a scalar measure
of the distance between the actual distribution P and the pre-
dicted distribution Q such that PD(P,Q) has the following
properties:

1. ∀P,Q PD(P,Q) = 0 ⇔ P ≡ Q. The function value
should be zero if and only if the predicted behavior dis-
tribution is the same as the actual behavior distribution.
This is a necessary condition for the function to be used
to measure error or loss.

2. ∀P,Q PD(P,Q) > 0 ⇔ P 6= Q. The function value
should be greater than zero if and only if the behavior dis-
tribution is different than the predicted distribution. This
is a necessary condition for the function to be used to mea-
sure error or loss.

3. ∀P,Q PD(P,Q) = PD(Q, P ). The function is sym-
metric. There is no sensitivity to which distribution rep-
resents the truth and which is the prediction. This is a
necessary condition for the function to be a metric.

4. ∀P,Q,R PD(P,Q) + PD(Q,R) ≤ PD(P,R). The
function obeys the triangle inequality, enforcing the log-
ical understanding of “distance” in metric space. When
combined with the previous three properties, this prop-
erty completes the characterization of the function as a
metric. While not essential for the work presented in this
paper, we require this property to facilitate future work in
the area.

5. ∀P,Q,R, S (PD(P, S) > PD(P,R)) ∧ (PD(P,R) >
PD(P,Q)) ⇒ PD(P, S) > PD(P,Q). The function
values obey the transitive property. Distributions which
are further apart should have a greater function value than
those which are closer together6.

6. Given any extreme7 distribution P and any of its distri-
butional complements8 P−1, PD(P, P−1) = C where
C is a positive constant. The function values should be
bounded by a fixed constant such that any two distribu-

5While we describe a finite number of actions here, the func-
tions presented later are applicable to continuous distributions as
well.

6The notion of “further apart” in distribution terms can be ex-
pressed with an example. Consider a fair coin with distribution
P (heads) = 0.5 and P (tails) = 0.5. This coin’s distribution
is closer to a loaded coin with distribution P (heads) = 0.4 and
P (tails) = 0.6 than it is to one with distribution P (heads) = 0.1
and P (tails) = 0.9.

7An extreme distribution is on in which one of the elements
contains all of the probability mass and the other elements all con-
tain no probability mass.

8We define a distributional complement for an extreme distri-
bution as another extreme distribution where all of the probability
mass is located at a different point than in the original distribution.
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tions which are maximilally far apart9 are bounded. This
enables the function to be scaled by dividing by C such
that the function values lie on the interval [0, 1].

7. ∀ extreme P,Q, and their respective complements
P−1, Q−1 PD(P, P−1) = PD(Q, Q−1). All function
bounds are equal regardless of the width of the underly-
ing distributions. This is a minor extension of the previous
property which allows heterogenous nodes to be weighted
and summed in mathematically meaningful ways. If the
function yielded differing values for distributions of dif-
ferent widths, it would be impossible to compare predic-
tion qualities at two decision nodes where the number of
actions to choose from differed.

Comparing Behavior Models with Real Agent Behav-
ior We now develop the measurement function character-
ized by the desired properties described above. Information
theory provides tools for comparing distributions. Its tools
are backed by proven theory and have been in use for well
over half a century. Relative entropy (also known as the
Kullback-Leibler Distance) between two probability mass
functions (Cover & Thomas 2006) is a very widely used in-
formation theoretic similarity measure. Given two distribu-
tions p and q, relative entropy is defined as:

D(p‖q) =
∑
x∈χ

p(x) log
p(x)
q(x)

(1)

While relative entropy is characterized by certain desir-
able properties such as equality, non-negativity, and tran-
sitivity, unfortunately it is not symmetric (Property 3) or
bounded (Property 6). We instead choose a related, but
lesser known similarity measure which has the additional
properties of being both symmetric and bounded as dis-
cussed in (Fuglede & Topsoe 2004; Topsoe 2000). This
measure is known as Jensen-Shannon Divergence (JSD) and
is sometimes referred to as Capacitory Discrimination. JSD
is calculated between two distributions p and q as:

JSD(p, q) = D

(
p‖ (p + q)

2

)
+ D

(
q‖ (p + q)

2

)
(2)

One can think of JSD as the average relative entropy from
each distribution (p and q) to the distribution that is midway
between them. The further the distributions are apart, the
higher their JSD value. In addition to keeping the desired
properties from relative entropy, the square root of JSD is a
metric (Topsoe 2000), meaning that it covers the first four
properties above and provides additional validity for its use
as a distance measurement. For the remainder of this work
we will use the term Root-JSD to represent the square root of
the value calculated in Equation 2. By letting one of the dis-
tributions represent the predicted behavior distribution pro-
duced by the model and letting the other distribution repre-
sent the observed behavior distribution of the target agent,
we can measure the predictive quality of our model using
Root-JSD.

9A loaded coin with P (heads) = 0, P (tails) = 1 is maxi-
mally far from a loaded coin with P (heads) = 1, P (tails) = 0.

For any given interaction between agents, we may have
many contexts. Each context consists of many pairs of pre-
dicted and observed actual behavior distributions that need
to be compared using Root-JSD. For example, in extensive
form games such as poker, a model might be based on a
portion of the game tree which contains a set of the oppo-
nent’s decision nodes (N ). At each node (n ∈ N ) where
the opponent has an opportunity to decide his next action
there exists a distribution over his possible actions. Some
nodes may be occur more frequently or may be worth more
(in terms of risked utility). When developing a prediction
quality measurement we would like to entertain the concept
of weighting the prediction quality at each decision node by
its importance in our decision-making and then combining
the weighted prediction quality for all the nodes of interest.

In order to measure the overall similarity between the set
of predicted conditional probability distributions (P ) and
the set of observed conditional probability distributions (Q)
in an interaction, we define a function that combines all
of the individual Root-JSD measurements at each agent-
decision node in the set, using a weighting function for each
node. Given a set of opponent decision nodes (N), as-
sociated sets of predicted and true probability distributions
∀k ∈ N, Pk, Qk, and a weighting function for each node
∀k ∈ N, W (k), we define Weighted Prediction Divergence
(WPD) as:

WPD(N) =
∑

k∈N W (k)
√

JSD(Pk, Qk)∑
k∈N W (k)

(3)

Equation 3 yields a value in [0, 1] making it very useful
for comparing overall prediction quality of multiple models
for entire histories of agent interactions. Using this func-
tion, we can also explore subsets of decisions that fit into the
definition of a particular context group as described previ-
ously. We can weight the individual decision nodes within
the context group according to some function of their impor-
tance with respect to the decision problem. Some possible
weighting functions and their rationale for use include:

• Uniform Weighting. When there is no justification for
weighting prediction nodes differently they are all given a
weight of one.

• Frequency Weighting. When decision nodes have dif-
ferent frequencies of appearing in an interaction, it may
make sense to weight the nodes by their frequency of oc-
currence. This makes the quality assessment sensitive to
decisions that have to be made more often.

• Utility Weighting. Some decisions are more valuable than
others: the outcome of a valuable decision leads to more
increase or decrease in utility for the modeling agent. In
these cases it may be desirable to weight the nodes by
a function of the possible utility outcomes (for example,
Umax − Umin).

• Risk (Reward) Weighting. Multiplying the probability of
a node occurring with the utility weight it is characterized
by yields its risk. In this weighting scheme, the higher the
risk, the higher the weight.
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In the next section, we use a modified frequency weighting
scheme to compare the performance of two black-box pre-
dictive models (fixed and learning) in the Texas Hold’em
poker domain.

Experiments
We now show how the predictive performance measure can
be used to differentiate model performance in different con-
texts. While these experiments were conducted outside
of a metareasoning agent, they demonstrate the validity of
the technique described previously for determining which
model is better at making predictions within each of several
contexts. In the remainder of this section we introduce our
target domain and describe the models which we are com-
paring and the protocol for the measurement. We then show
the results of the experiments and discuss the implications
for the feasibility of metareasoning using an automated ver-
sion of this technique.

Texas Hold’em Domain Characteristics
Texas Hold’em poker is a well known zero-sum imperfect
information game. It is a poker variant in which players at-
tempt to make the best set of cards from their private (hole)
cards and several fully visible community cards which are
usable by every player. Each hand consists of multiple
rounds of dealing and betting where players try to win the
pot: the hand ends when either all but one player has folded
(uncontested win) or several players have stayed in the game
until all betting is complete (the showdown). In an uncon-
tested win, the player remaining after all others fold wins the
pot. In the showdown, the player with the highest valued set
of cards wins the pot.

There are four rounds in which players can bet chips
based on the strength of their cards: the pre-flop, flop, turn,
and river. If any player decides to fold before all four bet-
ting rounds have been completed, he forfeits any claim on
the pot and must sit out the remainder of the hand while the
other players finish. If all but one of the players have folded
prior to the completion of the river betting round then the
remaining player wins the pot uncontested and the hand is
terminated without further betting rounds.

Each round has a different set of rules regarding the way
bets are made. On the pre-flop, players bet knowing only the
two private cards they hold since no community cards have
been dealt yet. After the pre-flop betting is over, the dealer
places three community cards on the table and players make
another round of betting during the flop based on the over-
all strength of their private cards and the shared community
cards. After the flop betting is complete, the dealer places
one more community card on the table and another round of
betting occurs during the turn. Next, the dealer places a final
community card on the table and the players bet during the
river. If more than one player remains after the river betting
round is complete then the showdown occurs.

Texas Hold’em uses blinds to offset the information ad-
vantage of players who act later in the pre-flop. Blinds are
compulsory payments from some players to the pot before
any cards are dealt. In general, the player who will act last

in the pre-flop pays a fixed amount of money into the pot
and the player who will act just before him pays 1/2 that
amount. These amounts are known as the big blind and little
blind respectively.

In a heads-up (two player) limit (fixed increment bet)
Texas Hold’em match, we can express each round of betting
in terms of an extensive form game. In this version of Texas
Hold’em there are over 1017 (Billings et al. 2003) possi-
ble game outcomes - making even this simplistic variant of
Texas Hold’em very rich in strategic opportunity.

Opponent Modeling in Poker
There are two types of opponent models for the poker do-
main: fixed and learning. A fixed model is usually based
on either general poker knowledge or an offline-trained
program that reviews previously documented matches and
builds a model from them. The fixed model doesn’t change
its function over time during an encounter with an adver-
sary. A learning model is different from a fixed model in
that it can change its strategy over time as it observes the
behavior of its current adversary during an encounter.

For these experiments we compare the performance of
two black-box models: a fixed strategy opponent model and
a learning opponent model. Each of these models were
part of a larger modeling system in our entry for the 2007
Computer Poker Competition: PokeMinnLimit1. The fixed
strategy model was based on general poker knowledge for
playing limit poker. It uses static parameters for a pot-value
function that predicts the likelihood of the opponent folding,
calling or raising. In competition, our agent uses the fixed
model to provide predictions of opponent behavior before
there are sufficient observations to use the learning model.

In contrast, the learning model has no pre-defined prob-
ability distribution over opponent behavior. Instead, it at-
tempts to make predictions of the opponent’s behavior based
solely on past observations in the current match once at least
one observation has been made at that decision node. At
each node in the game tree where the opponent makes a de-
cision the learning model records the frequencies of the ac-
tions. Then it computes the probability that the opponent
will fold, call or raise in the future based on the accumu-
lated frequencies of each action, conditional on the game
tree node where the agent made the decision. This particu-
lar model makes several assumptions in order to reduce the
number of nodes in the game tree which it must compute:
the model does not consider what cards the opponent may
have; each betting round is considered independent - thus
the model is actually carrying four separate game trees of
information - one for each round. There is no windowing
or time-based decay in this model - all data is gathered and
weighted equally for the entire course of the encounter. This
particular style of model is biased towards learning a station-
ary policy opponent well, at the possible expense of being
mislead by a non-stationary adversary.

Comparing Model Quality
We now show how WPD can be used to compare perfor-
mance between two candidate agent models. We focus on
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the models’ ability to predict the behavior of the top per-
former in the 2007 Computer Poker “Limit Equilibrium”
Competition: Hyperborean07LimitEq1.

The modified frequency weighting function W (n) we use
in these experiments to compute WPD weights each node by
how relevant it is in the poker game tree. We calculate this
relevance recursively: the root-node of a tree has a relevance
of 1. Each child of the root-node has a relevance of 1

|Cr|
where |Cr| is the number of the root-node’s children. Each
child of the root-node’s children Cc is has a relevance of

1
|Cr||Cc| and so forth.

We compared the performance of the fixed model to
the learning model. To compare the prediction quality
of these models we needed data about the true behavior
of our desired opponent. For the test-data set, we re-
trieved all 660 matches (1.98M hands) from the 2007 Com-
puter Poker Competition (Zinkevich 2007) played by Hy-
perborean07LimitEq1. We felt this data was representative
of the true behavior of Hyperborean07LimitEq1 because it
was the largest set of data available to the public and the
data documents Hyperborean07LimitEq1’s behavior against
many different opponents. We scanned all of the test data to
determine the frequency counts for each action at each game
tree node in each round. We declared the resulting probabil-
ity distributions for each node in the game tree as behavioral
truth for Hyperborean07LimitEq1. To determine the learn-

Figure 4: Comparing Learning versus Fixed Strategy models
in each of the four betting rounds in a 3000-hand limit poker
game. The horizontal lines represent the fixed-strategy
model WPD. The darker fluctuating lines represent the learn-
ing model’s WPD values.

ing model’s ability to learn the opponent’s distribution of
behavior, we isolated a training set of 20 matches played be-
tween PokeMinnLimit1 and Hyperborean07LimitEq1. We
trained the learning model using only observations that it
could have made during these 20 matches. We then gath-
ered predictions from the trained model on the hands from
the test set and calculated the WPD between the learning
model’s predictions of Hyperborean07LimitEq1’s behavior
and Hyperborean07LimitEq1’s actual behavior. A similar

procedure (without a training phase) was used to obtain the
WPD for the fixed-strategy model. The aggregate results
for 3000 hands for both models are shown in Figure 4. Be-
cause of the heterogeneous nature of Texas Hold’em poker’s
four betting rounds, we chose to separate the opponent de-
cisions into four context groups: pre-flop, flop, turn, and
river. While we made this decision based on our expertise
of the domain, we expect that there may be better divisions
of contexts that could be made (by pot size, for example)
which might yield even further separation between the dif-
ferent models. The automation of context determination is a
key area for future research in order to make further progress
with the metareasoning system described in this paper.

Discussion
While the learning model quickly becomes better at predict-
ing behavior than the fixed-strategy model during the pre-
flop and flop, the learning model’s prediction quality in the
turn and river grow worse over the course of the game to the
point where the fixed-strategy model would have better pre-
dictive performance after approximately 380 iterations on
the turn (and after approximately 740 iterations on the river).

While the learning model appears to be very useful for
predicting the true opponent’s behavior on the pre-flop and
possibly the flop (at least when compared to the fixed model
we used), its utility is questionable during the turn and river,
where the fixed model’s predictions might be preferred. Al-
though finding the cause of the reduced accuracy of the
learning model during the turn and the river is beyond the
scope of this work, it is important to note that this analy-
sis reveals the flaws in the learning model even when other
performance based methods fail to do so. For example, in a
separate experiment with 100 matches (300,000 hands) we
examined relative performance between two agents in terms
of number of small bet increments won per hand (sb/h). We
noticed that the learning strategy model achieves an aver-
age 0.04 sb/h greater win rate than the fixed strategy model
from hands 500 through 3000 when each played against Hy-
perborean07LimitEq1. If we had relied on just the earnings
performance measure as the method of determining the bet-
ter model (as much of the other research in the field does),
we might not have realized that subcomponents of the learn-
ing model were not performing as well as the same subcom-
ponents in the fixed model.

If the meta-level reasoning system described earlier had
been available at the time of competition and could have
seen the prediction quality difference between the learning
and fixed models in these contexts, it might have been pos-
sible for the recommender to advise the agent to switch to
using the fixed model instead of the learning model in the
turn and river betting rounds. This may have improved the
performance of the agent in the competition. Testing this
hypothesis is reserved for future work.

Conclusion and Future Work
We have shown how prediction quality assessments can
be used to point out strengths and weaknesses in oppo-
nent models that remain hidden under domain-based per-
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formance measurements. We identified the desiderata of a
strong measure of model quality necessary for metalevel rea-
soning in the multi-model agent prediction setting. By bor-
rowing a concept from information theory (Jensen-Shannon
Divergence) we’ve developed a Weighted Prediction Diver-
gence metric and characterized several tailored weighting
schemes. Weighted Prediction Divergence incorporates all
desired properties of our performance measure allowing us
to determine the relative prediction quality between models.
We have shown empirically how Weighted Prediction Di-
vergence values for several models could be used to select
the best model for the current context. These techniques
form one of the foundations of metareasoning, empower-
ing a meta-level reasoner to make real time decisions about
which models to use in certain contexts.

There is at least one additional effort that must be com-
pleted before the metareasoner described in the introduction
can be realized. We must choose a state abstraction method
which can automatically cluster world states into contexts
such that the prediction quality estimation system described
in this work can assess models with fewer computational
resources. While we have shown a meaningful context for
poker in this work, the contexts for the collection of nodes
we used were generated manually. Automating this process
would enable multi-domain applicability for the metarea-
soning technique we present.
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