
Distributed Meta-Management for Self-Protection and Self-Explanation

Catriona M. Kennedy
School of Computer Science, University of Birmingham

Edgbaston, B15 2TT, UK
C.M.Kennedy@cs.bham.ac.uk

Abstract
A non-hierarchical system in which distributed meta-
levels mutually monitor and repair each other can act
collectively as a self-protective system. Such a system
can resist attacks against any part of itself, including its
self-monitoring and self-repair processes. A distributed
self-model is acquired by a process of bootstrapping
where the different components learn by mutually ob-
serving each others’ internal processes. In this paper,
we argue that such a decentralised architecture is also
capable of high level reasoning and self-explanation.
Using some examples, we show how objectively de-
fined interactions between distributed software compo-
nents can be translated into a subjective narrative about
the agent’s own mental states. Furthermore, the global
coordination needed to provide coherent actions and ex-
planations is possible in a decentralised architecture,
provided that the meta-level which is managing the co-
ordination is also subjected to critical monitoring and
modification. An important principle is that the dif-
ferent meta-levels are not necessarily static components
but are best understood as different roles, for which the
same components may be re-used in multiple contexts.

Introduction
In Autonomic Computing (Ganek & Corbi 2003), “self-
protection” is one of the “self*” properties which enables
an autonomous system to recover from faults and intrusions
without external intervention. Such a system requires a
meta-level to recognise and correct problems in its own op-
eration without external intervention. The same applies to
an autonomous robot which must survive in a hostile envi-
ronment.

The simplest design for an autonomous self-protecting
system is hierarchical with a central meta-level ensuring that
the system operates according to requirements. However,
this design is vulnerable because the meta-level cannot mon-
itor its own operation independently.

In earlier work (Kennedy & Sloman 2002; 2003; Kennedy
2003) we developed some implementations in which dis-
tributed meta-levels monitor and repair each other to over-
come the vulnerabilities of a hierarchical system. A dis-
tributed self-model is acquired by a process of bootstrapping

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where the different components learn by mutually observing
each others’ internal processes. However, in these imple-
mentations the higher level cognitive capabilities were not
developed in detail, since the focus was on survival and self-
repair. In this paper, we extend the previous work by show-
ing how distributed meta-levels can be integrated into a full
cognitive architecture required for human-like cognition. In
particular, we argue that distributed meta-level architectures
are also capable of self-explanation as emphasised in (Cox
2007).

The structure of the paper is as follows: we first define a
full cognitive agent with centralised meta-management. We
then extend this basic cognitive agent so that it has multiple
meta-levels which are distributed and mutual. In the third
part, we will show how the distributed meta-levels relate to
the concept of self-explanation, and argue that this is possi-
ble using some examples. Finally, we consider the need for
global coordination which is required for self-explanation
and action.

Related Work
The emergence of collective self-awareness in distributed
systems such as immune systems and ant colonies is dis-
cussed in (Mitchell 2005). Artificial immune systems which
distinguish between “self” and ”nonself” are a major in-
spiration for our work. If our distributed meta-level archi-
tecture were applied to a large number of components, it
may behave globally like an immune system on a high level.
However, such artificial immune systems such as (Hofmeyr
& Forrest 2000) currently do not provide a clearly defined
meta-level and object-level relationship which is necessary
to understand and predict the interactions between the com-
ponents of the system on a microscopic level. Such pre-
dictability and assurance of correct operation is usually re-
quired in autonomic computing. Furthermore, these systems
in their current form are limited in their transparency and
self-explanation capability.

Our architecture is similar to a multi-agent meta-level
control system, such as in (Raja & Lesser 2007). The main
difference is that our system is non-hierarchical, since all
meta-levels also play the role of object-levels. Additionally,
we are primarily interested in a distributed control system
for a single agent. The architecture could be applied to mul-
tiple agents, but they need the ability to access (and modify)

98

each other’s mental states and internal processes. The dif-
ferent meta-levels in our architecture can play a similar role
to the “reflective critics” in the architecture of (Singh 2005),
which are applied to the agent’s mental states.

A Cognitive Architecture with
Meta-management

As a starting point for distributed meta-management, we de-
fine a cognitive agent with a single meta-level, based on
the main features of the H-Cogaff architecture of (Sloman
2001). H-Cogaff has three layers: (a) a reactive layer, which
responds rapidly to events in the environment but with very
little thought, (b) a deliberative layer, which uses its knowl-
edge of the environment to reason about hypothetical sce-
narios and to plan ahead, and (c) a meta-management layer
(Beaudoin 1994; Hansen & Zilberstein 2001; Cardon et al.
2001) which critically evaluates the deliberative layer and
interrupts it if necessary (e.g. if it is not making progress).

Our simplified version of the H-Cogaff architecture is
shown in Figure 1. This shows an agent as a two-layer struc-

External world

Perception and Reasoning
Reacting

internal sensors and
effectors

external sensors and
effectors

self−knowledge knowledge of world
Meta−level (M1) Object−level (O1)

control
Sensing and
acting

S I IE

ES EE

IS I , E
E

EEES
I

I

E

K

K

K K

M1

O1

Figure 1: A cognitive agent with meta-management

ture containing an object-level O1 and a meta-level M1 re-
spectively.

On the object-level, KE represents knowledge of the ex-
ternal world to allow deliberative reasoning. Some of this
can be a predictive model (e.g. involving rules about ex-
pected behaviour of objects). O1 also includes a reactive
layer, which involves immediate reactions to the external
world without the use of a high level representation or hy-
pothetical reasoning (the arrow directly from sensors to ef-
fectors). The dotted vertical arrows within boxes are transla-

tions between levels of abstraction. “Perception” is a trans-
lation from sensor readings to high-level knowledge. Simi-
larly, “control” is a translation from the selected options on
the knowledge level into motor sequences.

Meta-level The meta-level in Figure 1 monitors and crit-
ically evaluates the information states and processes that
the object-level is relying on (e.g. its knowledge and algo-
rithms).

For example, the deliberative layer in O1 could enable the
agent to predict the effect of its own actions using its knowl-
edge KE (e.g. “if I move the red block onto the blue block,
the top of the blue block will be covered”). In contrast, the
meta-level does not rely on KE but can question it. For
example, it might predict the agent’s ability to understand
the relationship between the blocks (e.g. “my knowledge of
‘blocks’ and ‘surfaces’ is limited and I might get confused”).
For humans, the equivalent is reasoning about mental states.

In addition to mental states, the meta-level reasons about
informational entities which refer to entities in the external
world (indicated by single quotes for ‘blocks’ and ‘surfaces’
above). This means that the meta-level also needs to know
the state of the world in which informational processes take
place so that they can be evaluated according to the progress
made towards a goal.

Internal sensors and effectors (SI and EI) are used on
the meta-level to detect and modify object-level states and
processes. Meta-level monitoring requires some form of log
or trace of activity (Cox 2007). Internal effectors can mod-
ify any object-level components or their configurations (e.g.
priorities for sensing) or initiate new learning processes.

The agent’s knowledge about its information processing
is represented in KI , which contains a map of object-level
components, their current states and a model of their nor-
mal behaviour which is learned through a process a self-
familiarisation. A “component” might be a software com-
ponent or executing process or it can be an abstract concept
(e.g. “focus of attention”) used within an ontology of mental
states.

Comparison with Cox and Raja’s “Duality in Reasoning
and Acting”. (Cox & Raja 2007) have defined a meta-
level architecture representing “Duality in reasoning and
acting” which is reproduced in Figure 2. Our architecture

Object
Level

Meta-LevelGround
Level

Doing Reasoning Metareasoning

Action
Selection Control

Perception Monitoring

Figure 2: Duality in reasoning and acting (Cox and Raja,
2007)

can be regarded as a specific instance of this general class of
systems. The object-level in Figure 1 (containing both reac-
tive and deliberative layers) corresponds to the object-level

99

in Figure 2 and the environment in Figure 1 corresponds to
the ground level in Figure 2.

Anomaly Detection
An “anomaly” is an unexpected occurrence that may indi-
cate a problem. In Figure 1, KI contains “self-knowledge”
acquired through earlier self-observation and allows the
meta-level to predict the pattern of reasoning of the object-
level, given a known environmental event. Effectively the
agent anticipates its own mental state.

One kind of anomaly is when the reasoning process does
not follow a desirable pattern, despite events in the world
appearing to be normal. For example, the reasoning may be
focused on irrelevant details. The reason for this problem
might be distraction due to other pressures (e.g. competing
goals).

Another kind of anomaly is when the model of the world
contained in KE predicts a state that does not correspond to
the reality. The recognition of the “strange” nature of the
new situation is an introspective (hence meta-level) function
because it involves questioning whether the agent’s current
knowledge is sufficient for the situation. The diagnosis pro-
cess should determine whether any new learning is required
or whether the anomaly is due to other factors such as a fail-
ure of a sensor interpretation component.

Distributed Meta-Management
In the self-protection context, a hostile environment can at-
tack any part of the system including the failure detection
and recovery components of the meta-level. For example,
the meta-level failure detection code may be illegally modi-
fied, or some of its reasoning components may be prevented
from executing.

A more complex kind of failure is a lack of knowledge or
inaccurate knowledge in the model used by the meta-level to
detect problems in the object-level. The meta-level relies on
its knowledge (KI) of the object-level in the same way as
the object-level relies on its knowledge (KE) of the world.
Questioning its own model requires an additional meta-level
(according to the definition we are using).

Instead of adding an infinite regress of meta-levels (ho-
munculus problem), additional meta-levels can be dis-
tributed so that they can mutually monitor and evaluate each
other. The aim is to critically question and independently
evaluate each reasoning process on all levels. Although in
practice, some gaps in coverage will exist, all components
that are essential for the survival of the agent must be pro-
tected and their reasoning subjected to critical evaluation.

(Cox & Raja 2007) have defined a form of distributed
meta-reasoning as a multi-agent architecture in which the
meta-levels of the respective agents exchange information
in order to coordinate their actions. Cox and Raja’s dia-
gram is reproduced in Figure 3. Our approach is different
from this multi-agent architecture, because we are aiming
for distributed meta-level control (of one agent), where the
inter-meta-level relationship is mutual; in other words, both
meta-levels are also each other’s “object-level”. All meta-
levels are monitored and protected by at least one remaining

Object
Level Meta-Level

Ground
Level

Action
Selection Control

Perception Monitoring

Object
Level Meta-Level

Ground
Level

Doing Reasoning Metareasoning

Action
Selection Control

Perception Monitoring

Object
Level Meta-Level

Ground
Level

Action
Selection Control

Perception Monitoring

Meta-level
Agent
Interaction

Figure 3: Distributed meta-levels (Cox and Raja, 2007)

meta-level to provide full self-protective coverage. One par-
ticular configuration of this is shown in Figure 4. In this

External world

Perception and Reasoning
Reacting

internal sensors and
effectors

external sensors and
effectors

Meta−level (M1, M2) Object−level (O1)
self−knowledge Knowledge of world

control
Sensing and
acting

ES EE

S I IES I IE

IS I , E
E

EEES

I I

E

I

K K

K

O1

M1 M2

K K

Figure 4: Distributed meta-management

case, two meta-levels monitor each other, and both moni-
tor the same object-level. The relation between M2 and M1

has the same nature as that of M1 and O1. The main differ-
ence is that the interaction between M2 and M1 is two-way
(since M1 also monitors M2). The actions, however, need
to be coordinated so that meta-levels do not interfere nega-
tively with each other. This is indicated by dashed arrows
pointing away from the boxes, meaning that the actions are
not always executed (or not immediately).

A different configuration is shown in Figure 5, where
the two object levels are alternative ways of representing

100

and reasoning about the world. The simplest architecture is
where one of them is the “primary” with control over actions
and the other is the “backup” which is ready to take control
if the first one fails (classic fault-tolerance architecture). In
the diagram, the sensors and effectors are separate for each
object-level, but they may be shared.

External world

Perception and Reasoning
Reacting

internal sensors and
effectors

external sensors and
effectors

self−knowledge knowledge of world
Meta−levels (M1, M2) Object−levels (O1, O2))

Sensing and
acting control

S I IES I IE

ES EEES EE

IS I , E
E

EEES

I I

E E

I

K

K

K

K

K K

M1 M2

O1 O2

Figure 5: Distributed meta-management with different
object-levels

Monitoring is concurrent The meta-levels need to be ac-
tive concurrently. To detect problems in M1’s operation, M2

should be able to dynamically adjust its monitoring of M1’s
reasoning in response to any problems that it finds. The
same is true for M1’s monitoring of M2. The alternative is
a situation where the control flow changes sequentially from
object-level reasoning (O1) to M1 (which reasons about O1

and then reasons about M2) to M2 (which reasons about O1

and then reasons about M1) and back. This is inefficient and
not very adaptive because it cannot adjust the monitoring
dynamically in response to observed changes. Most impor-
tantly, it would also be vulnerable: the failure in O1 may be
a failure that shuts down all meta-levels above it (or it simply
refuses to hand over control to the next one). It is important
that each level operates concurrently and its execution does
not depend on other levels.

Mutual and concurrent monitoring is different from mu-
tual and concurrent action. For self-protection, a meta-level
must intervene to modify the operation of other components
(in a meta-level or object-level). In most application do-
mains, however, we expect the actions to be coordinated
and sequential. This is why the actions in the diagrams are
shown as dashed arrows, because they are not expected to be

active without coordination.

Closed Meta-level Networks
Each meta-level uses its internal sensors and predictive
model to monitor the meta-level of the other. The aim is
to ensure that all meta-levels are themselves monitored, and
that the monitoring is sufficiently accurate for the situations
the agent must survive in. We expect that a “closed” archi-
tecture of this kind will be less vulnerable to the failure of
a meta-level, and that important gaps in knowledge that are
causing problems can be detected and overcome.

Meta-level roles Although it is convenient to draw a dia-
gram with separate boxes for object-levels and meta-levels,
they are not necessarily separate components. They are best
thought of as different roles. The same component can be
playing the role of meta-level and object-level simultane-
ously (because of the 2-way relationship).

Concurrent monitoring means that a meta-level role is not
triggered by any event. However, increased meta-level pro-
cessing may be triggered if a meta-level detects an anomaly
in an object-level (or other meta-level). For example, M2

may vary the amount of data that it collects on M1 so that
the trace is more detailed.

Minimising additional complexity In Figure 4 the “hor-
izontal” inter-meta-level relation has the same form as the
vertical relation between meta-level and object-level (the
same kind of arrows are used). The goal is to minimise the
additional features required for distributed meta-level pro-
cessing by using the same mechanisms that are already used
in the meta-object-level relation. These same mechanisms
(e.g. rules or sections of code) are concurrently playing dif-
ferent roles. They are “talking about” different things, but
using the same concepts and methods. This is similar to the
software engineering practice of component re-use in multi-
ple contexts (see for example, (Northrop 2002)).

It is also necessary to limit meta-level complexity in or-
der for the system to become familiar with the correct op-
eration of its meta-levels, which is required for detecting
their failure. We have shown that this is possible in a proof-
of-concept implementation in (Kennedy 2003). In that im-
plementation, the architecture was “multi-agent” and corre-
sponds to a very simplified version of Figure 5, except that
the object-levels are identical copies and the meta-levels did
not directly access or intervene in another agent’s object-
level. However, the basic principles are the same as for Fig-
ure 4 since the meta-levels could access and modify each
other’s processing directly. In the next section, we sum-
marise briefly the scenario and method of learning.

An Example Scenario
In the previous work, we designed a simple virtual world
called “Treasure”, implemented in SimAgent(Sloman &
Poli 1995). An autonomous vehicle collects treasure, while
avoiding ditches and ensuring that its energy supply is regu-
larly recharged. The collected treasure gradually loses value
and must be maintained above a minimal level or the system
“dies”.

101

In addition to simulated threats from the virtual world,
components of the agent controlling the vehicle can fail or be
subverted by an enemy. For example, the perception of the
agent can fail so that it interprets the environment wrongly
(e.g. it does not see a nearby ditch). Its failure detection and
recovery components can also fail or be subverted. Such
faults were artificially injected to test the system. We suc-
cessfully implemented a form of “reactive repair”, where a
faulty component would be detected and “repaired” imme-
diately by replacing it with a trusted backup component.

Traces available to a meta-level In SimAgent, each agent
is implemented as a set of “condition-action” rules, which
is divided up into modules (rulesets). Each module is con-
cerned with sensing, perception, reasoning, acting or other
functions (such as meta-reasoning).

In the Treasure implementation, the meta-level’s model
of expected internal processing (corresponding to KI) is a
set of patterns of rule-firing traces associated with differ-
ent activities. This was learned during a self-observation
phase in a protected environment. During normal opera-
tion in a non-protected environment allowing intrusions, this
model can be used as a guideline for the correct behaviour
of object-level components. The agent can access a trace of
recently fired rules (corresponding to internal sensors). If
the actual rule firing pattern does not fit the model-predicted
pattern, and is accompanied by an unexpected worsening
of the external world (which we called “hostility” detection
(Kennedy & Sloman 2003)), the meta-level decides that a
failure in the affected set of rules has occurred. This is com-
parable to the episodic memory required by (Cox 2007), ex-
cept that the Treasure implementation does not involve a de-
tailed semantic or linguistic interpretation of these traces,
since it is a “shallow” cognitive system.

Mutual bootstrapping of models The model of expected
behaviour was “bootstrapped” by discovering classes of ac-
tivity in rule-firing traces (Kennedy & Sloman 2002). For
an architecture with two meta-levels, we divided the train-
ing into three phases:
Phase 1: Both meta-levels learn about object-level process-
ing:
• Each Mi (where i is 1 or 2) learns about the normal op-

eration of the object level in a protected environment and
builds its initial model KI .

• The object-level interacts with the environment in situa-
tions it has learned previously.

Phase 2: Both meta-levels take turns observing each other
detect and respond to attacks against an object-level in an en-
vironment permitting object-level attacks only. For a meta-
level Mj learning about Mi, this looks as follows:
• Mj detects failure in the object-level and takes corrective

action using KI .
• Mi observes the trace of Mj’s reasoning and activity dur-

ing its error detection and repair of the object-level and
uses these traces to build its model of Mj (part of its KI).

Phase 3: Operational phase with no restriction on hostile
attacks, where a meta-level Mi is repaired by Mj :

• Mj detects failure in Mi using its model of correct oper-
ation of Mi acquired during Phase 2;

In the above, we are assuming that the reasoning processes
and actions of meta-level Mj when detecting a failure in Mi

will be approximately the same as Mj’s processing when de-
tecting a failure in the object-level (which Mi has learned).
Component re-use should make this assumption reasonable.
This is also similar to the kind of assumption made about
training scenarios in general; they should be a good enough
approximation of reality to be useful.

Towards Self-Explanation in a Distributed
Meta-management System

Explanation is often necessary for self-protection. In many
cases, a simple “reactive repair” of a problem (as imple-
mented in the Treasure scenario) will not be sufficient. It
will be necessary to explain the cause of the failure and plan
corrective actions accordingly. In addition, self-explanation
is an important requirement for general meta-cognition (Cox
2007).

It is easy to see how a self-explanation capability can
enhance an agent with a single meta-level. However,
there are problems with self-explanation in a mutual meta-
management system. First, a translation is required from
multiple objectively defined interactions of distributed soft-
ware components into a single subjective narrative about the
agent’s own mental states. Secondly, the global coordination
needed to provide coherent actions and explanations needs
to be reconciled with a decentralised architecture in which
no single component is in control.

We will consider first some examples of meta-levels giv-
ing competing explanations and then go on to show how the
potential problems may be overcome. While discussing each
example in the context of an objectively defined architec-
ture, we will also consider what a natural language explana-
tion might look like from a human meta-cognitive point of
view. In particular, its capability to chain together the dif-
ferent states of the whole system into a coherent and global
narrative is important.

Examples of Competing Meta-level Explanations
To show that it makes sense for meta-levels to reason about
each other and to explain different kinds of failure, we first
consider some examples of a meta-level reasoning about an
object-level and then apply similar examples to one meta-
level reasoning about another. We will refer to Figure 4
throughout, although the examples should also apply to
other configurations. Finally, we consider what problems
arise when mutual meta-levels make conflicting statements
about an object-level or about each other.

Example 1: Explanation involving object-level only
The following are example explanations by M1 about a fail-
ure of the object-level O1, once the problem has been diag-
nosed by M1:

• Example 1.1: Simple failure detection: “O1 failed be-
cause step S was never executed” For example, compo-

102

nent S may be an algorithm that O1 was relying on to
interpret sensor readings.

• Example 1.2: Reasoning about errors and intrusions: “O1

delivered a wrong result because of an error in the reason-
ing at step S”.

• Example 1.3: Detection of lack of knowledge (or incor-
rect knowledge): “O1’s knowledge of the world is insuffi-
cient: its model predictions do not agree with the reality”.

Comparison with human meta-cognition In the case of
Example 1.1, a human-like robot with meta-cognition might
say: “I forgot to do S”. In Example 1.2, it might say: “I
got confused during step S because I was distracted by a
different problem”, which is similar to the hostile intrusion
problem. Another kind of explanation might be: “I made a
mistake during step S because I have a tendency to make this
kind of mistake in these circumstances”. This is similar to a
design error, which can be corrected by further learning or
self-modification. The robot’s self-knowledge (what the “I”
stands for) is in this case focused on M1’s knowledge of O1

only.
A cognitive robot equivalent for Example 1.3 is easier us-

ing a concrete scenario. If a robot intends to lift a tea cup
from a table, its model of the normal properties of tea cups
(part of KE) predicts that it will be lifted easily (because it
is fairly light). If, however, the robot is in an unusual sit-
uation where the cup is stuck to the table, it finds that the
outcome of the lifting operation contradicts the model pre-
dictions. It may explain this by recognising its own lack of
knowledge about the new situation, and that it needs to learn
more. For example, it may decide to explore by attempting
to find out more details about the table surface or the cup
surface. Mini-scenarios of this kind have already been dis-
cussed in (Minsky, Singh, & Sloman 2004).

Example 2: Distributed meta-levels M2 reasoning about
M1 is analogous to M1 reasoning about O1. However, it
is unlikely that each meta-level will only be monitoring the
one below, since it is necessary to understand the context in
which errors occur. Therefore, we assume sensors and ef-
fectors of both meta-levels can access the same object-level
(shown in Figure 4), although this is only one possible con-
figuration. The following are three examples of M2 explain-
ing a failure of M1:

• Example 2.1: “M1 failed to detect the error in O1’s rea-
soning at step S (because of an error in M1’s execution of
step T in its own processing)”. In this case M1 is “fail-
silent” (fails to operate). Note that M2 monitors two dif-
ferent levels and may be able to explain failures on both
levels.

• Example 2.2: “M1 wrongly detected an error in O1 at step
S; the problem is in step U”. This introduces an additional
problem of disagreement between two meta-levels, since
M1 is also reporting a problem. Furthermore, because
of the mutual relationship, M1 may also claim to have
detected an error in M2. We return to this problem below.

• Example 2.3: “M1’s knowledge of O1 needs to be cor-
rected or extended”. The same problem of disagreement

may also occur here.

Distributed meta-levels and human meta-cognition
Distributed meta-levels can also have an equivalent in
human-like meta-cognition. Example 2.1 might be ex-
pressed as: “How did I fail to notice my mistake at step S? I
am not being cautious enough”. This is a criticism of one’s
own meta-management, due to its failure to do anything at
all (“fail-silence”).

Example 2.2 is more complex, but might have the follow-
ing form: “I suspect I made a mistake during step S as it
does not seem to have gone correctly (this is M1’s hypoth-
esis because the trace of step S appears unusual), but I have
to keep open the possibility that it is something different -
maybe step S was correct but actually step U is wrong and
I’m just thinking incorrectly that S was wrong (M2’s critical
questioning of M1’s interpretation)”. Here, the meaning of
the term “I” changes from M1 to O1 and then to M2 in the
course of the sentence. The relationship between the differ-
ent levels and the linguistic self-explanation is made clearer
in Table 1. In this example, a disagreement between two
meta-levels can result in indecision. Example 2.3 is similar,

Part of sentence Meaning of “I”
“I suspect that ..” M1

“I made a mistake .. O1

“but I have to keep open .. ” M2

Table 1: Changing meaning of “I” during self-explanation

and may have the following form “I suspect I’m not under-
standing this because I don’t know very much about concept
C, but it is also possible that my knowledge about C is cor-
rect and I’m just thinking wrongly that I’m not understand-
ing it.” M2’s hypothesis is that M1’s understanding of what
O1 needs to know is wrong. In this case, it may be possible
to explore both competing hypotheses.

Ontologies of Mental States
In the examples above (in particular, 2.2 and 2.3), M2 needs
a different kind of model of O1 than the one used by M1.
Otherwise, it has no grounds for questioning M1’s knowl-
edge (since they would both use the same knowledge and
methods). The two meta-levels may share the same ontol-
ogy of mental states but use different methods or algorithms
for monitoring and reasoning about them, which can lead to
competing beliefs and hypotheses expressed using the same
concepts.

Another possibility is that both meta-levels use different
ontologies because they are focusing on different aspects
of O1’s processing. For example, instead of focusing on
the pattern of reasoning (such as a rule firing trace) M2

may inspect a series of snapshots of the short-term mem-
ory contents associated with both O1 and M1 and how they
changed. Thus M1 might cause a robot to ask: “why did
I choose this action?” (which might be explained in terms
of rules which matched the current state), while M2 causes

103

it to ask “how did my beliefs and goals change over time?”
(which is mainly about the focus of attention). Current re-
search on ontologies of mental states includes (e.g. (Ferrario
& Oltramari 2004).)

The different types of model can be learned using the
mutual bootstrapping process outlined earlier, except that
the detailed methods and representations will be different.
Whether the ontology is centred on rule-firing or memory
content, the relevant traces can be grouped together into
clusters representing different classes or “modes” in which
the agent finds itself while executing various tasks (includ-
ing meta-level tasks).

Coordination of Explanation and Action
Each meta-level can explain a failure from its own point of
view, and such a local explanation can be sufficient for it
to plan a “repair” action. However, many situations require
a sequential coordinated action where the different compo-
nents must cooperate (e.g. in robotics). Furthermore, dis-
agreement can occur between meta-levels about the diagno-
sis and the correct action plan (as in Example 2.2). In such
cases, actions may interfere with each other negatively, thus
blocking any progress. The need for coordinated action is
the same as that for a single coordinated explanation.

Avoiding oscillations and deadlock If different meta-
levels detect different kinds of failure, negative interference
may be prevented by ensuring that the first meta-level to
make a decision on how to act will inhibit all others (e.g. by
broadcasting that it has made a decision). Since the remain-
ing meta-levels cannot evaluate the “winning” meta-level’s
action until it has made some progress, oscillations should
be prevented. Longer term oscillation may of-course still
occur, but for complex real-world problems, human cogni-
tion is also subject to indecisiveness and “false starts”.

Deadlock should also be prevented, since a meta-level can
interrupt another one that is exclusively accessing a resource
(e.g. if there is lack of progress). This means that one of
the four conditions for deadlock (“no preemption”) does not
hold.

In a self-protective scenario in a hostile environment, a
meta-level may contain hostile code and cause rapid dam-
age (not just fail to correct a problem). Avoiding oscillation
is more challenging in this case. A classic fault-tolerance
approach is to use a majority voting system to determine
whether to allow a component to take action. Distributed
agreement is a non-trivial problem, but significant progress
has been made in this field. For an overview, see (Verissimo
& Rodrigues 2001).

Global self-explanation helps coordination For coordi-
nation of action, a single global explanation of the state of
the whole system, which takes into account different meta-
level viewpoints is useful. This is why it is helpful to con-
sider human meta-cognitive explanations, since they seem
to do what is required.

Human-like self-explanation may be provided by a meta-
level that collects information from all other meta-levels and
object-levels and then links their belief states together to

form a coherent narrative. This requires a global and sum-
marised overview of the whole system, such as in “global
workspace” theory (Baars 1988) although the content of the
global workspace may be changing during the course of the
explanation. The implementation in (Singh 2005) includes
a “meta-managerial” critic, which has a similar global func-
tion.

More than one meta-level may participate in constructing
a global narrative. In the same way as for action coordina-
tion, the first meta-level to construct an atomic part of an
explanation (e.g. a sentence) can broadcast its readiness to
act and inhibit all others. Subsequent sentences can be con-
structed by others.

To satisfy the requirement of closed meta-levels (where
all meta-levels are monitored), a meta-level constructing an
explanation must itself be subject to critical evaluation in
the same way as other meta-levels. This would be analo-
gous to human meta-cognition, where it is possible to doubt
one’s own self-explanation and interrupt it. Oscillations are
avoided because interruptions only happen after some delay.
As with all boxes in the diagrams, such a meta-level does not
have to be a static component in the architecture, but instead
an emergent stable coalition of participating components as
in some neuroscience models (e.g. (Koch 2004)).

Cost of Distributed Meta-Management
From the above, it is clear that meta-management has poten-
tial disadvantages due to its added complexity. This cost can
be measured in several ways:

• Processing time: for all meta-level functions (including
monitoring, reasoning, coordination, communication and
action), how much additional computing time is required
when compared to object-level processing on its own?

• Problem-solving cost: how much does the meta-level pro-
cessing interfere with the problem being solved by the
object-level? In particular, for meta-level interventions
and control, how much do incorrect interventions, such as
learning something irrelevant have a detrimental effect on
the object-level task?

For distributed meta-management, the additional costs
may be offset by opportunities for adaptaton and self-
optimisation that would not be possible in a centralised
meta-level system. We discuss these challenges below.

Complexity of self-familiarisation Coordination mecha-
nisms add complexity to the meta-levels, which makes them
in turn more difficult to be monitored. In (Kennedy 2003)
we demonstrated that the mutual bootstrapping method sum-
marised earlier can also be applied to three meta-levels
where each one monitors the remaining two. During train-
ing, the meta-levels must also become familiar with the addi-
tional coordination required for majority voting because this
is part of their correct behaviour. This makes the training
phase more complex because each meta-level has to acti-
vate the reasoning patterns and actions that would be active
in an inter-meta-level coordination system. Although this
worked successfully in a restricted artificial environment, it
remains a significant challenge for large real-world sytems.

104

The self-familiarisation phase would need to take place in
parallel instead of sequentially as in our test scenario.

Connectivity Figure 5 may be generalised to include n
object levels and m meta-levels, each able to monitor and
change the other. Since full connectvity would be inefficient,
only those connections that are the most useful should be
preserved. Unproductive connections between meta-levels
and object-levels may be disabled if a sufficient number of
meta-levels agree that a connection has been unproductive or
detrimental to the object-level task. No additional complex-
ity is required here, other than the mechanisms already in
place for agreement about meta-level interventions. The sys-
tem may eventually stabilise into a configuration that coun-
teracts the overheads of a single meta-level system, where
disruptive operations are not corrected.

Conclusions and Future Work
In the context of autonomic computing or robotics, the ca-
pability of the system to protect itself against faults and in-
trusions requires a non-hierarchical distributed architecture.
However, self-explanation is also important, not only for the
system itself but also to enable humans interacting with it to
understand the reasons for its actions. Reconciling these two
requirements is possible, but requires an integrated, cross-
disciplinary approach to cognitive systems. In addition to
AI methods, research in distributed fault-tolerance, software
engineering and cognitive neuroscience can make a valuable
contribution.

References
Baars, B. J. 1988. A Cognitive Theory of Consciousness.
New York: Cambridge University Press.
Beaudoin, L. P. 1994. Goal Processing in Autonomous
Agents. Ph.D. Dissertation, University of Birmingham.
Cardon, S.; Mouaddib, A.; Zilberstein, S.; and Washing-
ton, R. 2001. Adaptive Control of Acyclic Progressive
Processing Task Structures. In Proceedings of the Seven-
teenth International Joint Conference on Artificial Intelli-
gence (IJCAI-01), 701–706.
Cox, M. T., and Raja, A. 2007. Metareasoning: A Man-
ifesto. Technical Report BBN TM 2028, BBN Technolo-
gies.
Cox, M. T. 2007. Metareasoning, Monitoring, and Self-
Explanation. In Proceedings of the First International
Workshop on Metareasoning in Agent-based Systems at
AAMAS-07, 46–60.
Ferrario, R., and Oltramari, A. 2004. Towards a Compu-
tational Ontology of Mind. In Proceedings of the Inter-
national Conference on Formal Ontology in Information
Systems (FOIS 2004), 287–297. IOS Press Amsterdam.
Ganek, A. G., and Corbi, T. A. 2003. The Dawning of the
Autonomic Computing Era. IBM Systems Journal 42(1):5–
18.
Hansen, E., and Zilberstein, S. 2001. Monitoring and Con-
trol of Anytime Algorithms: A Dynamic Programming Ap-
proach. Artificial Intelligence 126(1-2):139–157.

Hofmeyr, S. A., and Forrest, S. 2000. Architecture for
an Artificial Immune System. Evolutionary Computation
8(4):443–473.
Kennedy, C. M., and Sloman, A. 2002. Acquiring a Self-
Model to Enable Autonomous Recovery from Faults and
Intrusions. Journal of Intelligent Systems 12(1):1–40.
Kennedy, C. M., and Sloman, A. 2003. Autonomous Re-
covery from Hostile Code Insertion using Distributed Re-
flection. Journal of Cognitive Systems Research 4(2):89–
117.
Kennedy, C. M. 2003. Distributed Reflective Architec-
tures for Anomaly Detection and Autonomous Recovery.
Ph.D. Dissertation, University Of Birmingham, Birming-
ham, UK.
Koch, C. 2004. The Quest for Consciousness: A Neuro-
biological Approach. Englewood, Colorado: Roberts and
Company Publishers.
Minsky, M.; Singh, P.; and Sloman, A. 2004. The
St. Thomas Common Sense Symposium: Designing Ar-
chitectures for Human-Level Intelligence. AI Magazine
25(2):113–124.
Mitchell, M. 2005. Self-Awareness and Control in De-
centralized Systems. In Working Papers of the AAAI 2005
Spring Symposium on Metacognition in Computation, 80–
85.
Northrop, L. M. 2002. SEI’s Software Product Line Tenets.
IEEE Software 19(4):32–40.
Raja, A., and Lesser, V. 2007. A Framework for Meta-level
Control in Multi-Agent Systems. Autonomous Agents and
Multi-Agent Systems 15(2):147–196.
Singh, P. 2005. EM-ONE: An Architecture for Reflective
Commonsense Thinking. Ph.D. Dissertation, Artificial In-
telligence Lab, MIT.
Sloman, A., and Poli, R. 1995. SimAgent: A toolkit for
exploring agent designs. In Mike Wooldridge, J. M., and
Tambe, M., eds., Intelligent Agents Vol II, Workshop on
Agent Theories, Architectures, and Languages (ATAL-95)
at IJCAI-95, 392–407. Springer-Verlag.
Sloman, A. 2001. Varieties of Affect and the CogAff Ar-
chitecture Schema. In Symposium on Emotion, Cognition,
and Affective Computing at the AISB’01 Convention, 39–
48.
Verissimo, P., and Rodrigues, L. 2001. Distributed Sys-
tems for System Architects. Dordrecht, The Netherlands:
Kluwer Academic Publishers.

105

