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The classic minimax search for two-player zero-sum
games such as chess has been thoroughly studied since the
early years of AI; however for more general nonzero-sum
games, minimax is non-optimal, given a player’s knowl-
edge about the opponent. Previously, a few opponent mod-
els and algorithms such asM∗ were introduced to improve
minimax by simulating the opponent’s search, given the op-
ponent’s strategy. Unfortunately, they all assume that one
player knows the other’s strategy but not vice versa, which
is a very special relationship between knowledge and strate-
gies. In this paper, we characterize minimax andM∗ and
show examples where they can be non-optimal. We propose
a new theoretical framework of Knowledge Oriented Players
(KOP ), using the powerful S5 axiom system to model and
reason about players’ knowledge. WithKOP , the general
relationship between knowledge and strategies can be ana-
lyzed, which is not handled by the traditional game theory.
We show how strategies are constrained by knowledge and
present new strategies for various problem settings. We also
show how to achieve desired knowledge update via commu-
nication so that players can achieve the best possible out-
come. With respect to players’ knowledge, our strategies
always dominate minimax and work well for the general
knowledge cases where previous algorithms do not apply.

Introduction
Minimax search on two-player game trees (Shannon 1950)
has been a classic topic and thoroughly studied since the
early years of AI. Assuming players have perfect informa-
tion of game trees and play perfectly, minimax is the opti-
mal strategy in zero-sum games including chess, where both
players use the same evaluation function for all leaf nodes. It
has been one of the bases for the hugely successful computer
chess programs, and eventually IBM Deep Blue defeated the
human world chess champion Kasparov in 1997.

However, minimax is no longer optimal in more general
nonzero-sum games, where players can have different evalu-
ation functions that are not necessarily correlated. For exam-
ple, a leaf good for one player is not necessarily good or bad
for the other. Intuitively if a player knows the opponent’s
evaluation function, he could potentially do better by tak-
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ing into account the opponent’s possible responses. This is
done in the Opponent Models (OM) presented in (Carmel
& Markovitch 1993; Iidaet al. 1993). It is assumed that
playerA uses the evaluation functionEA whileB usesEB ,
andA knows thatB usesEB but not vice versa. SoB plays
minimax usingEB , butA playsOM search, which takes
advantage of knowingB’s exact response to every possible
move byA. Given that assumption,OM search dominates
minimax forA.
M∗ search (Carmel & Markovitch 1993; 1996) is a re-

cursive extension ofOM search, in which each player has
his ownOM of the other butA’s OM strictly containsB’s
OM . For example, bothA andB know the initial strat-
egy of each other butA also knows thatB knowsA’s initial
strategy, soA knows thatB will adjust his strategy to take
advantage ofA’s initial strategy, and thusA will adjust his
initial strategy as well to take advantage ofB’s behavior.
Their opponent models can be nested to any level, butA al-
ways knowsB’s OM so thatA can useM∗ search, which
accurately predictsB’s responses and thus is at least as good
as minimax.

Unfortunately, bothOM search andM∗ search assume
knowledge asymmetry:A’s knowledge strictly subsumes
B’s knowledge; in particular, they assume thatA has cor-
rect knowledge aboutB’s strategy whileB has no knowl-
edge or wrong knowledge aboutA’s strategy, which is a
very strong and “unfair” assumption not necessarily true in
general. These issues were partly addressed in (Donkers
2004), in which the author suggested considering the oppo-
nent models with knowledge symmetry and showed an ex-
ample in chess where with knowledge symmetry two players
could reach a state of common interests, though the notion
of knowledge symmetry was fairly vague.

In this paper, we propose a new theoretical framework
of Knowledge Oriented Players (KOP), capable of mod-
eling both knowledge asymmetry and knowledge symmetry
by the powerfulS5n axiom system. WithKOP , we are able
to define and analyze the general relationship between two
key characteristics of players– knowledge and strategies, in
finite-horizon two-player nonzero-sum games. As an impor-
tant step forward, we show how strategies are constrained by
knowledge. We present new strategies–Mh andHM0Md,
for various problem settings. They dominate minimax with
respect to players’ knowledge and are much more general
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Figure 1: The high level playing processes of a player.

thanM∗ search. We also propose communication schemes
that can achieve desired knowledge update, and show how
they can help players select better strategies.

Figure 1 (Cox & Raja 2007) can be used to illustrate
the high level playing processes of a player in nonzero-sum
games. At the meta-level, the player needs to do metar-
easoning to select his best strategies, based on his knowl-
edge about the possible outcomes, both players’ prefer-
ences of the outcomes, and both players’ knowledge about
each other’s knowledge, etc. At the object level, actions
(moves) are selected for the current game state, based on
the selected strategies. At the ground level, actions (moves)
are executed; the corresponding effects/outcomes are ob-
served and passed to the object level, which are further in-
terpreted/evaluated and passed to the meta-level for knowl-
edge/strategy update.

In the rest of the paper, first we describe minimax and
M∗ and illustrate their differences by example, then we in-
troduce ourKOP framework, new algorithms, communica-
tion schemes and analytical results, and finally we conclude.

Minimax and M
∗ Algorithms

For ease of understanding, we will describe the minimax
(Shannon 1950) and theM∗ (Carmel & Markovitch 1996)
algorithms in a bottom-up fashion, which is equivalent to
the top-down description and can be implemented as depth-
first search. We assume that both players know the game
tree perfectly but have different evaluation functions for the
leaf nodes, which are the possible outcomes of the game.
Throughout this paper we will use the following notations.
Objects:
t: root of a finite game tree, also used to represent the tree.
n: a node oft. At a non-leaf node, we know who moves.
l: a leaf node oft, as a possible outcome of the game.
A: max-player who maximizes the evaluation functionEA.
B: min-player who minimizes the evaluation functionEB .
Function values(references that can be updated):
EA, EB : real-valued evaluations for leaves. Without loss
of generality, we assume that there is a fixed deterministic
tie-break scheme reflected in leaf values, so we have distinct
leaf values:∀l 6= l′, Ei(l) 6= Ei(l

′), i ∈ {A,B}.
C(n): set of pointers to the children ofn.
height(n): height of noden. height(l) = 0 for leaf l;
otherwise,height(n) = 1 + maxc height(c), c ∈ C(n).
next(n): pointer to a child ofn, or null for a leaf.
value(n): value of noden, which is a pair(a, b) wherea
andb are the evaluations toA andB respectively.

Definition 1 A strategyS is an algorithm that given a game
tree t,∀n ∈ t, S computesnext(n) andvalue(n) and main-
tains an invariant for all non-leafn:
(∃c ∈ C(n), next(n) = c) ∧ value(n) = value(next(n))

According to the estimate by a given a strategyS, at node
n the move isnext(n) and the outcome isvalue(n), so the
first move isnext(t) and the final outcome isvalue(t).

The Minimax Algorithm

Algorithm 1 Minimax
minimax(t, EA)
for every leafl
next(l) := null; value(l) := (EA(l), EA(l))

for h = 1 toheight(t)
for every noden with heighth

if A moves atn // to maximize
next(n) := argmaxc value(c).a, c ∈ C(n)

else //B moves, to minimize
next(n) := argminc value(c).a, c ∈ C(n)

value(n) := value(next(n))

Algorithm 1 is minimax, whereA usesEA to maximize
and assumes thatB usesEA to minimize. We assume that
all nodes with the same height can be accessed sequentially.

Definition 2 A play for playersA andB on a game tree
t whereA moves first is a function that maps the input
(t, EA, EB , SA, SB) to a leaf value, whereSA andSB are
strategies forA andB. That is,play(t, EA, EB , SA, SB) =
(a, b), wherea = EA(l), b = EB(l), l ∈ t.

How play works is trivial: starting from the root, at node
n it follows next(n) by SA if A moves otherwisenext(n)
bySB and finally it reaches a leaf and returns the value of it.

In a zero-sum game withEA = EB , it is well-known that
if it is a perfect information game and bothA andB play
perfectly, minimax is optimal in terms of Subgame Perfect
Equilibrium (SPE) in game theory (Kuhn 1953). That means
both players will stay with minimax to get the best outcome.

∀t, EA, SA, play(t, EA, EB ,minimax,minimax).a
≥ play(t, EA, EB , SA,minimax).a (1)

∀t, EA, SB , play(t, EA, EB ,minimax,minimax).b
≤ play(t, EA, EB ,minimax, SB).b (2)

In a nonzero-sum game withEA 6= EB , minimax is no
longer optimal, because it wrongly assumes that both play-
ers use the same evaluation function. Nonetheless,A’s min-
imax does guarantee the worst case outcome forA, because
it proceeds as ifB would always choose the worst possi-
ble moves againstA. Therefore, minimax is used as the
baseline for comparisons in our examples. More generally,
we consider imperfect information nonzero-sum games, in
which players can have incomplete mutual knowledge and
thus SPE does not apply. A player’s best strategy often de-
pends on his knowledge about the opponent, so we describe
theM∗ algorithm for nonzero-sum games next.

TheM∗ Algorithm
Algorithm 2 is equivalent to the recursiveM∗ algorithm de-
scribed in (Carmel & Markovitch 1996). We often refer
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Algorithm 2 M∗

M∗(t, EA, EB , caller, d) // requiresd ≥ 0
if (caller = A) XOR (d is even) // base case:A’s minimax
minimax(t, EA); baseA := true

else // base case:B’s minimax
minimax(t, EB); baseA := false

if d ≥ 1
for every leafl // update leaf values for simulation
value(l) := (EA(l), EB(l))

for i := 1 to d // run alternated simulations forA andB
for h := i to height(t)

for every noden with heighth
if (A moves atn) and (iis odd XORbaseA)
// now at max-node in simulation forA
next(n) := argmaxc value(c).a, c ∈ C(n)

else if (Bmoves atn) and (iis even XORbaseA)
// now at min-node in simulation forB
next(n) := argminc value(c).b, c ∈ C(n)

value(n) := value(next(n))

to M∗(..., d) by Md, OM search byM1 and minimax by
M0. M∗ assumes knowledge asymmetry:A’sOM contains
B’s OM , soA playingMd meansB playingMd−1 and
the outcome isplay(t, EA, EB ,M

d,Md−1). To compute
it, M∗ needs a series of simulations:A’s Md, B’s Md−1,
A’s Md−2, ...,A’s M0 orB’s M0 (depending on the caller
XOR d’s parity). Therefore, algorithm 2 runs alternated
bottom-up simulations fromM0 toMd−1. M∗ tries to take
advantage of the opponent’s strategy, and it dominates min-
imax forA under certain conditions, as stated in (Carmel &
Markovitch 1996), which can be rephrased as:

∀t, EA, EB , d ≥ 1, play(t, EA, EB ,M
d,Md−1).a

≥ play(t, EA, EB ,minimax,M
d−1).a (3)

Limitations of M∗ (I) In essence,M∗ is the same asOM
search, because they all assume thatA knowsB’s strategy
but not vice versa, no matter how complicated the strategy
can be. Therefore inM∗, B’s strategy does not have to be
the recursive form of minimax at all. (II) The assumption
of M∗ is too strong. Proposition 3 does not guarantee any
bound forB, so why wouldB even use such a strategy? In-
stead, it is quite possible forB to use an alternative strategy
that we will show later, which is guaranteed to be at least as
good as minimax according toB’s knowledge.

An Illustrative Example of Nonzero-sum Games

The following example is used to illustrate how minimax
(M0),OM search (M1) andM∗ search work. Both players
know the game tree and their own evaluation functionEA

orEB . We assume thatEA andEB are atomic: either fully
known or unknown, and players useMd, d ≥ 0.

In Figure 2, triangles represent max-nodes where max-
player A moves, inverted triangles represent min-nodes
where min-playerB moves, and squares represent leaves.
A andB have different evaluation functionsEA andEB for
leaves. A leaf is referenced by a pair of itsEA andEB val-
ues, while an internal node is referenced by its label.A’s

R S T 

U V 

X W

EA:   4                     8     2          9                     1 
EB:   7                     9           5          4                     5 
 

EA:                     7          11            5           10           3           1            6           2 
EB:                     4          5              6           3             8           9            7           2   

Y Z 

root (A to move) 

Figure 2: A nonzero-sum game tree. Max-playerA tries to
maximizeEA and min-playerB tries to minimizeEB .

goal is to maximizeEA of the outcome andB’s goal is to
minimizeEB of it. We consider the following scenarios, in
which players have different imperfect mutual knowledge.

(1)A does not knowEB andB does not knowEA. Since
A has no idea ofEB , A uses minimax (M0) against the
worst case, assumingB plays minimax usingEA too (which
is wrong). ByA’s minimax from the root, the R branch
yieldsEA = 4, the S branch yieldsEA ≤ 2, and the T
branch yieldsEA = 1. So A moves to R. At R,B moves to
(4,7), whichB prefers to (8,9). The final outcome is (4,7).

(2)A knowsEB andB does not knowEA. Without idea
of EA,B usesM0 with EB . KnowingEB ,A usesM1 that
takes into accountB’s M0. At the root,A can choose to:

(2.1) move to R.A knows thatB will choose (4,7) at R.
(2.2) move to T.A knows thatB will choose (9,4) at T.
(2.3) move to S. To determineB’s response at S,A sim-

ulatesB’s M0: for B, the values are W–(7,4), X–(10,3),
Y–(8,3), Z–(2,2), U–(7,4), V–(3,8) and S–(7,4). SoA knows
that at SB will move to U, and at UA will move to X be-
causeA knows that if he moves to W thenB will move to
(7,4), not preferred byA. At X, B will move to (10,3).

Considering all three choices,A moves from the root to
S, which is the best forA. The final outcome is (10,3).

(3)A knowsEB andB knowsEA. SinceA’s knowledge
is the same as in (2),A does the same reasoning and still
moves to S. KnowingEA, B now usesM1 (instead ofM0

as in (2)) that takes into accountA’s M0. FromB’s point of
view, according toA’s M0, some node values are Y–(1,9),
Z–(2,2) and V–(2,2). SoB moves from S to V (out of expec-
tation byA in (2)), expecting to reach Z and then (2,2) that
has the bestEB value. At V, however,A moves to Y instead
of Z (out of expectation byB), expecting to reach (3,8), be-
causeA knows if he moves to Z thenB will move to (2,2),
bad forA. At Y, B moves to (3,8), and the final outcome is
(3,8), which is neitherA’s norB’s initial expectation.

(4)A knowsEB ,B knowsEA andA knows thatB knows
EA. AgainA’s knowledge subsumesB’s knowledge, so as
in (2),A can correctly simulate and predictB’s moves. Us-
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ing M2 that takes into accountB’s M1, A knows that if
he moves to S, he will finally reach (3,8) as in (3), instead
of (10,3) in (2); soA moves to T for (9,4), which is the
best achievable outcome givenB’s knowledge. Since at T
B prefers (9,4) to (1,5), the final outcome is (9,4).

Summary of Results and Motivation We use a shorthand
of play(See Definition 2) with only strategy parameters. The
outcomes of the scenarios are: (1)play(M0,M0) = (4, 7);
(2) play(M1,M0) = (10, 3); (3) play(M1,M1) = (3, 8);
(4) play(M0,M0) = (9, 4). The outcome value of (1) by
minimax is the baseline. Scenario (2) and (4) are better than
(1) forA—consistent with proposition 3.

However, scenario (3) is worse than (1) for bothA andB,
even though they have more knowledge in (3) than in (1).
That violates our intuition ”the more knowledge the better
outcome”, becauseM∗ does not guarantee any bound of the
outcomes when there is no strict knowledge asymmetry; yet
we must have working strategies for all the cases and we
must model the complicated knowledge scenarios (including
knowledge about evaluation functions, strategies and knowl-
edge about knowledge, etc.) in a rigorous way that can be
reasoned about. This is our motivation for a new general
framework that models players with knowledge.

The Framework of Knowledge Oriented
Players (KOP)

We propose a new framework of Knowledge Oriented Play-
ers (KOP), which includes all the elements that determine
the outcomes of finite-horizon nonzero-sum game trees and
allows us to reason about knowledge and strategies. We
should emphasize that since the players’ mutual knowl-
edge can be imperfect in general, the notion of SPE for
perfect information games in game theory (Kuhn 1953;
Fudenberg & Tirole 1991) does not apply here in general.

Definition 3 A Knowledge Oriented Player (KOP) P is a
3-tuple(EP , SP ,K(P )), whereEP is the evaluation func-
tion, SP is the strategy andK(P ) is the knowledge ofP
represented by a set of formulas, that is,K(P ) = {ϕ|KPϕ}
(KPϕ is read as “P knowsϕ”). K(P ) is required to be a
maximal consistent set in theS5n axiom system.

The S5n axiom system is sound and complete, whose
main axioms are listed below (withn = 2 andP = A,B).
For more details, please refer to (Halpern & Moses 1992).

A1. All tautologies of the propositional calculus.
A2. (KPϕ ∧KP (ϕ⇒ ψ)) ⇒ KPψ (deduction).
A3. KPϕ⇒ ϕ (the knowledge axiom).
A4. KPϕ⇒ KPKPϕ (positive introspection).
A5. ¬KPϕ⇒ KP¬KPϕ (negative introspection).
We useKPϕ as a proposition for “ϕ∈ K(P )”. We

haveKP true∧¬KP false by axioms. We assume (a) each
playerP is a KOP ; (b) EP and SP are atoms that can
be fully known or unknown:KPEP ↔ ∀t∀l ∈ t∀r ∈
Real, (KP (EP (l) = r)∨KP (EP (l) 6= r))) andKPSP ↔
∀t∀n ∈ t, (C(n) = ∅) ∨ (∀c ∈ C(n),KP (next(n)SP

=
c) ∨KP (next(n)SP

6= c))); (c)KPEP ∧KPSP .
Common knowledge is incorporated inKOP . A formula

ϕ is common knowledge iff everybody knowsϕ, everybody

knows that everybody knowsϕ, and so on (van Benthem,
van Eijck, & Kooi 2005). Any common knowledgeϕ is just
viewed as part of tautologies included in axiom A1.

Definition 4 A formula setF is a core of K(P ) iff F can
be extended to the maximal consistent setK(P ) by using the
axioms ofS5n; cores-K(P ) is the set of all cores ofK(P ).

By definition 4, a potentially infiniteK(P ) can be repre-
sented by itscoreF , which can be small but not necessarily
minimal, thoughK(P ) may have many minimal cores.

Definition 5 A strategyS is t-selfishfor playerP on game
treet, iff ∀n ∈ t whereP moves atn, if P is a max-player
value(n).a = maxcvalue(c).a; otherwisevalue(n).b =
mincvalue(c).b, c ∈ C(n). S is selfishfor P iff ∀t, S is t-
selfish forP ; P is selfishiff P always uses selfish strategies.

Naturally, players are always assumed to beselfishand
they have common knowledge that everybody isselfish. Al-
though we only discuss two-player games in this paper,
KOP works for multi-player games and most of our results
can be extended to multi-player games .

Definition 6 Given selfish playersA,B, a game treet and
n ∈ t, (A,B, t) K-decidesn, iff n is a leaf, orA andB
agree onnext(n) andvalue(n), byK(A) andK(B).

We use “n is decided” as a shorthand for(A,B, t) K-
decidesn. Intuitively, there can be some decided nodes (i.e.
game states) in the game tree such that both players agree
on what will happen afterwards once the game is in one of
these states . Players can reason about decided nodes by
their knowledge. SupposeA moves atn, with leavesl1
and l2 asn’s children. SinceA is selfish,A choosesl1 if
EA(l1) ≥ EA(l2); otherwisel2. So givent andEA, n is de-
cided forA, but whethern is decided forB depends onB’s
knowledge:B will be certain ofA’s choice ifB knowsEA,
i.e.,KBEA. Similarly, considern’s parentpwhereB moves
and has another choicen′ with the same height asn: p is de-
cided if n andn′ are decided plus (1)B knows where to
move atp (trivial for B becauseB just chooses the one with
smallerEB value) and (2)A knows whereB moves atp, so
the necessary knowledge forA is thatA knows thatB knows
thatn andn′ are decided, that is equivalent toKAKBEA.

The same reasoning applies to the nodes all the way up
the tree. Therefore, we can derive the following algorithm.

The Decide Algorithm
Algorithm 3 computes whethern is decided, andnext(n)

andvalue(n) for decidedn, by checking a class of knowl-
edge: ifKAEB ∧KBEA then all the nodes with height one
are decided; ifKAEB ∧KBEA ∧KBKAEB ∧KAKBEA

then all the nodes with height two are decided, and so on.

Levels of Knowledge–f(A, d) Next, we directly construct
such a setf that includes the desired class of formulas in
regular expressions, given a level parameterd ≥ 0:
f(A, 0) = {KAEA,KASA};

f(A, d) = {KA(KBKA)⌊
(d

′
−1)
2 ⌋EB | 1 ≤ d′ ≤ d}

∪ {(KAKB)⌊
d
′

2 ⌋EA| 2 ≤ d′ ≤ d} ∪ f(A, 0) (4)
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Algorithm 3 Decide
decide(A,B, t, n)
// returns true or false, and computesnext(n) andvalue(n)
if height(n) = 0 return true // leaves are don’t cares
if height(n) = 1

if A moves atn ∧KBEA

next(n) := argmaxc value(c).a, c ∈ C(n)
else ifB moves atn ∧KAEB

next(n) := argminc value(c).b, c ∈ C(n)
else return false // negative base case
value(n) := value(next(n))
return true // positive base case

if ∃c ∈ C(n),¬decide(A,B, t, c)
return false // not all children decided

if n has only one childc
next(n) := c; value(n) := value(c)
return true // the only child is decided

if ∀c ∈ C(n),A moves atn ∧KB(decide(A,B, t, c))
next(n) := argmaxc value(c).a, c ∈ C(n)

else if∀c ∈ C(n),B moves atn ∧KA(decide(A,B, t, c))
next(n) := arginc value(c).b, c ∈ C(n)

else return false // negative recursive case
value(n) := value(next(n))
return true // positive recursive case

Similarly f(B, d) can be defined by switchingA andB.
For the different scenarios of the example in Figure 2, the
coresof knowledge can be expressed as follows:

(1)A: f(A, 0) = {KAEA,KASA}
B: f(B, 0) = {KBEB ,KBSB}

(2)A: f(A, 1) = f(A, 0) ∪ {KAEB} ,B: f(B, 0)
(3)A: f(A, 1),B: f(B, 1) = f(B, 0) ∪ {KBEA}
(4)A: f(A, 2) = f(A, 1) ∪ {KAKBEA},B: f(B, 1)
By our construction,f(A, d) has some nice properties, for

examples, the following properties can be verified:∀d ≥ 1,
f(A, d− 1) ⊆ f(A, d) ∧ f(B, d− 1) ⊆ f(B, d) (5)
f(A, d) ⊆ K(A) → f(B, d− 1) ⊆ K(B) (6)
f(A, d) ∈ cores-K(A) → f(A, d− 1) /∈ cores-K(A) (7)
Property 5 is trivial. Property 6 holds because the first

KA of the formulas inf(A, d) can be removed by axiom
A3, then we get formulas inf(B, d − 1). Axiom A1-A5
cannot increase alternations ofK and the largest number al-
ternations ofK in f(A, d) is d: the corresponding formula
cannot be extended fromf(A, d− 1), so property 7 holds.

Using “levels of knowledge”, we are able to give some
formal results of algorithm 3, stated as theorem 1.

Theorem 1 For algorithm 3,∀A,B, t, n ∈ t, d ≥ 1,
1.1 If decide(A,B, t, n) returns true, then(A,B, t)

K-decidesn anddecide(A,B, t, n) computes the
next(n) andvalue(n) thatA andB agree on.

1.2 Iff(A, d) ⊆ K(A)∧f(B, d) ⊆ K(B)∧height(n) ≤ d,
thendecide(A,B, t, n) returns true.

1.3 If (∃d ≥ 1, f(A, d) ∈ cores-K(A)), then
decide(A,B, t, n) returns true iff(A,B, t) K-decidesn.

Proof sketch: By 1.1,decideis sound; this holds because
it exactly follows the reasoning process for decided nodes,

as described before. 1.2 can be proved by mathematical in-
duction: n = 1 is trivial; assume it holds forn = m, for
n = m+ 1, f(P,m+ 1) has one formula withm+ 1 alter-
nations ofK, which makes the knowledge check indecide
true, so it returns true. By 1.3,decideis sound and complete
if f(P, d) is acoreof K(A); this holds because whenA has
no extra knowledge for reasoning, the only nodes thatA and
B can agree on are those decided by the alternations ofK
and those with single decided child, as done indecide.

Definition 7 A strategyS is t-informed for player P on
game treet, iff ∀n ∈ t, if (A,B, t) K-decidesn thenS
computes thenext(n) and value(n) that A andB agree
on. S is informed for P iff ∀t, S is t-informed forP ; P is
informed iff P always uses informed strategies.

Players are always assumed to beinformedand have com-
mon knowledge about that fact. Therefore a player’s strategy
is always constrained by his knowledge, that is, his strategy
has to beselfishandinformedfor him if he is rational.

Definition 8 Given selfish and informed playersA andB,
a game treet whereA moves first, and strategiesS andS′,
S K-dominatesS′ on t for A, iff by K(A) A knows that
play(t, EA, EB , S, SB).a ≥ play(t, EA, EB , S

′, SB).a.
S K-dominatesS′ for A, iff by K(A) A knows thatS K-
dominatesS′ on t for all t whereA moves first.

In definition 8, according toK(A) A knows thatSB is
constrained byK(B) in a way that usingS is better thanS′

for A, in contrast to unconstrainedSB .

The M
h and Hybrid-minimax-M h Algorithms

In this section we will present two algorithms thatK-
dominateminimax, given players’ complete or incomplete
knowledge. Furthermore, we show how communication can
help update knowledge from incomplete to complete for bet-
ter outcomes. The new algorithms work well for the general
knowledge scenarios (e.g., case (3) in Figure 1) whereM∗

does not apply. First we study the case where every node is
decided and thus thedecidealgorithm can be simplified to
theMh algorithm.

TheMh Algorithm

Algorithm 4 Mh

Mh(t, EA, EB) // computes allnext(n) andvalue(n)
for every leafl
next(l) := null; value(l) := (EA(l), EB(l))

for h = 1 toheight(t)
for every noden with heighth

if A moves atn // to maximize
next(n) := argmaxc value(c).a, c ∈ C(n)

else //B moves, to minimize
next(n) := argminc value(c).b, c ∈ C(n)

value(n) := value(next(n))

Compared to minimax,Mh has another parameterEB ,
which enables it to determine the true leaf values forB,
rather than assumingEA = EB . Mh correctly determines
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both player’s optimal moves if they have enough knowledge
about their evaluation functions. We can viewMh as the
nonzero-sum version of minimax orK-minimax:Mh deter-
mines the best outcome forselfishandinformedplayers with
respect to their knowledge.

Theorem 2 Given selfish and informed playersA, B, and
a game tree t,∀n ∈ t, if decide(A,B, t, n) returns true,
then Mh computes the samenext(n) and value(n) as
decide(A,B, t, n).

Proof: TheMh algorithm simplifies thedecidealgorithm
in the way that all the conditions involving knowledge check
are set to true, so they compute the same results.�

By theorem 2, theMh algorithm can be viewed as a spe-
cial case of algorithm 3. However, we must emphasize that
algorithm 3 itself is not astrategy(see definition 1), because
it may not computenext(n) andvalue(n) for every node
n; whileMh is astrategybecause it computesnext(n) and
value(n) for everyn.

Theorem 3 Mh andM∗ computes the same results for all
game trees iffM∗ has the parameterd = ∞.

Proof:M∗ with parameterd = ∞ corresponds to the case
that both players simulate each other for an infinite number
of levels, therefore, for any given depth treet, the simulation
process converges toMh, which can be verified by compar-
ing algorithm 2 and algorithm 4.�

Even thoughM∗ can converge toMh under certain con-
ditions, they are still quite different algorithms in general.

Differences ofM∗ and Mh (I) M∗ requires expensive
recursive simulations whileMh does not; consequently, in
(Carmel & Markovitch 1996) the multi-passM∗ algorithm
needs to evaluate a node multiple times (compared to one
evaluation per node inMh), and the one-passM∗ algorithm
needs to compute vector values (compared to single value
computation inMh). (II) M∗ represents a family of algo-
rithms by parameterd, which relies on special assumptions
about the opponent’s strategies; whileMh does not need
such assumptions. The conditions under whichMh works
will be elaborated in the following theorems.

Definition 9 A leafl of t is theglobal optimumof t, iff
∀l′ ∈ t, (l′ 6= l) → (EA(l) > EA(l′) ∧ EB(l) < EB(l′))

Any game tree has at most oneglobal optimumbecause
of our assumption of distinct leaf values that reflect a fixed
deterministic tie-break scheme, while some game trees may
not have anyglobal optimumat all. It is worth knowing that
when there exists aglobal optimum, whether a strategy al-
ways finds it. Surprisingly, althoughMh can find theglobal
optimum, if there is any, minimax andM∗ are not guaran-
teed to do so, as stated in theorem 4.

Theorem 4 If l ∈ t is the global optimum oft, Mh finds
it: Mh(t, EA, EB) yields value(t) = (EA(l), EB(l));
however, minimax andM∗ do not guaranteevalue(t) =
(EA(l), EB(l)).

Proof: Mh always hasnext(p) = l for l’s parentp no
matter who moves atp becausel is the best choice for both.
Similarly p’s parent has its next pointer top, and so on.

Therefore,value(l) is passed all the way up to the root, that
is, value(t) = value(l). In minimax, one player is not even
aware of the other’s evaluation function, so there is no way
for him to recognize theglobal optimum, let alone to find
it. Similarly, sinceM∗ is a recursive simulation process of
minimax, it is also possible to miss theglobal optimum.�

Corollary 1 If t has a global optimum leafl and both play-
ers useMh, play(t, EA, EB ,M

h,Mh) = (EA(l), EB(l)).

Corollary 1 holds because when both players useMh,
they agree on the final outcomevalue(l), which is the same
global optimum computed byMh.

Corollary 2 If EA and EB are uncorrelated and un-
bounded, in general there does not exist a sound and com-
plete pruning algorithm that does not check every leaf.

Corollary 2 holds because any leaf not checked by a prun-
ing algorithm could be a global optimum, given uncon-
strainedEA andEB . This is a bad news for any general
pruning attempt—to be able to do pruning, one has to as-
sume correlations betweenEA andEB , as done in (Carmel
& Markovitch 1996).

The following theorem reveals the key property ofMh.

Theorem 5 Mh dominates any strategy if the opponent
usesMh: ∀t, EA, EB , SA, play(t, EA, EB ,M

h,Mh).a
≥ play(t, EA, EB , SA,M

h).a (8)
∀t, EA, EB , SB , play(t, EA, EB ,M

h,Mh).b
≤ play(t, EA, EB ,M

h, SB).b (9)

Proof: For (8), letSA 6= Mh, play(t, EA, EB , SA,M
h)

follows a pathp of next pointers from the root to a leaf,
andplay(t, EA, EB ,M

h,Mh) follows another pathq 6= p.
Consider the noden with smallest height wherep deviates
from q, B does not move atn becauseB uses the same
next(n) by Mh for two paths, soA moves atn. Since
next(n) of Mh points ton’s child with best value toA,
it must be thatSA’s next(n) points to a child with worse
value; thusSA can be improved by changing itsnext(n) to
that ofMh for a better outcome. This improving process
can be repeated untilp matchesq, which meansq leads to a
better outcome thanp. Because of symmetry, (9) holds.�

SinceMh can be also viewed as backward induction
(Kuhn 1953), it is not surprising that propositions (8) and
(9) aboutMh are identical to propositions (1) and (2) about
minimax. By theorem 5, usingMh is mutually-enforced by
both players in nonzero-sum games, just like what happens
to using minimax in zero-sum games.

Then it is important to show under what knowledge sce-
nariosMh is the optimal strategy.

Theorem 6 For any game treet whereA moves first, if
height(t) ≤ 1∨ f(A, height(t)− 1) ⊆ K(A), thenMh K-
dominates any other strategy ont for A.

Proof: The base case ofheight(t) ≤ 1 is trivial, because
with Mh A chooses the best move to a leaf according to
EA. Given f(A, height(t) − 1) ⊆ K(A), by property 6
we havef(B, height(t) − 2) ⊆ K(B), and then alln with
height(n) ≤ height(t) − 2 are decided by theorem 1.2.
GivenB is selfish and informed,B’s strategy computes the
samenext(n) andvalue(n) asMh does for everyn with
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height(n) ≤ height(t) − 2; so by theorem 5, for thesen,
A’s strategy has to matchMh or it can be improved. Be-
causeB moves at everyn with height(n) = height(t)− 1,
B’s move is decided forB andA knows that exactly by
K(A); thereforeA knows thatA’s first move at the root has
to match that ofMh too, or it can be improved. OverallA’s
strategy has to matchMh, or it can be improved.�

By theorem 6, if a player has “enough” knowledge then he
knows thatMh is the optimal strategy. Common knowledge
is more than enough, so the following corollary holds.

Corollary 3 If both A and B have common knowledge
aboutEA andEB , that is∀d ≥ 1, f(A, d) ⊆ K(A), then
Mh K-dominates any strategy for bothA andB.

Intuitively the more knowledge a player has the better and
more accurate outcome he can estimate. When the condi-
tions in theorem 6 or in corollary 3 are met, certainlyA will
estimate the outcome byMh. We claim that this estimated
outcome is at least as good as the one estimated by minimax
using onlyEA whenA knows nothing aboutEB .

Theorem 7 For any game treet whereA moves first, let
v1 = value(t) computed byMh(t, EA, EB) and v2 =
value(t) computed byminimax(t, EA), thenv1.a ≥ v2.a.

Proof: At each node whereB moves, minimax (as in al-
gorithm 1) always letB choose the child with smallestEA

value; whereasMh letB choose the child with smallestEB

value. Unless the same child is chosen,Mh always chooses
a child better forA, compared to what minimax chooses, so
Mh yields a better estimated final outcome forA. �

When playerA does not have enough knowledge aboutB,
the outcome estimated byMh can be inaccurate, because
B may not be aware thatB should playMh according to
B’s knowledge. To solve this problem, we introduce the
hybrid-minimax-Mh algorithm (algorithm 5), which works
well with incomplete knowledge.

The Hybrid-minimax-M h Algorithm

Algorithm 5 Hybrid-minimax-Mh

Hybrid-minimax-Mh(t, EA, EB , d) // requiresd ≥ 0
for every leafl
next(l) := null; value(l) := (EA(l), EB(l))

for h = 1 tod
for every noden with heighth

if A moves atn // to maximize
next(n) := argmaxc value(c).a, c ∈ C(n)

else //B moves, to minimize
next(n) := argminc value(c).b, c ∈ C(n)

value(n) := value(next(n))
for h = d+ 1 to height(t)

for every noden with heighth
if max-player moves atn // to maximize
next(n) := argmaxc value(c).a, c ∈ C(n)

else // min-player moves, to minimize
next(n) := argminc value(c).a, c ∈ C(n)

value(n) := value(next(n))

Next we abbreviate Hybrid-minimax-Mh(t, EA, EB , d)
in algorithm 5 asHM0Md. It can be viewed as a combina-
tion of minimax (M0) andMh with parameterd: it reduces
to A’s M0 (ignoring unusedEB) if d = 0; for a givent,
it reduces toMh if d = height(t). In other words,Mh is
applied to the nodes with height at mostd, whileM0 is ap-
plied to the other nodes above. The reason is that, the lower
level nodes are decided by mutual knowledge soMh yields
the best result there; while the higher level nodes are not
decided, so conservative minimax is used to guarantee the
worst case outcome. The following theorem guarantees that
the hybrid strategy is at least as good as minimax, given the
player’s knowledge.

Theorem 8 For any game treet whereA moves first,∀d ≥
1, if f(A, d) ⊆ K(A) thenHM0Md K-dominates minimax
on t for A.

Proof: For anyn with height d, A moves atn or
parent(n), so by theorem 5,Mh K-dominates any strategy
forA in the subtrees rooted by all suchn. SinceHM0Md is
exactly the same as minimax for the nodes with height more
thand,HM0Md is at least as good as minimax overall.�

Extending theorem 7 toHM0Md, we have corollary 4,
which can be proved similarly.

Corollary 4 For any game treet whereA moves first, let
v1 = value(t) by Mh(t, EA, EB), v2 = value(t) by
HM0Md, v3 = value(t) byHM0Md

′

(height(t) ≥ d ≥
d′ ≥ 0), andv4 = value(t) byminimax(t, EA), then for
A: v1.a ≥ v2.a ≥ v3.a ≥ v4.a.

Once again, our intuition is confirmed that the more
knowledge a player has the better outcome he can expect.

Complexity Given t, Mh andHM0Md can be done by
depth-first search (DFS) in O(height(t)) space and O(size(t))
time. These bounds are already optimal for sound and com-
plete strategies that are guaranteed to find the global opti-
mum if there is one, because first, DFS requires O(height(t))
space for backtracking; second, any sound and complete
strategy needs O(size(t)) time, due to the lack of general
pruning algorithms by corollary 2.

Knowledge Update via Communication
By theorem 8 and corollary 4, givenf(A, d) ⊆ K(A),
a strategy dominating minimax forA is HM0Md, which
could be still worse thanMh though; but usingMh requires
enough knowledge that the players may not have. So knowl-
edge update should be used to increase players’ knowledge
to a level that allows them to useMh. We suggest two com-
munication schemes for desired knowledge update, assum-
ing the communication channel is perfect and has no delay.

(I) If d ≥ 1 ∧ f(A, d) ⊆ K(A),A can announce bothEA

andEB toB.
With (I), after A’s announcement,EA andEB become

common knowledge forA andB, soMh becomes the dom-
inant strategy for bothA andB by corollary 3. This would
require the logic with both relativized common knowledge
and public announcements (PAL-RC), and more details can
be found in (van Benthem, van Eijck, & Kooi 2005).
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(II) If d ≥ 2 ∧ f(A, d) ⊆ K(A), A can announce toB
thatA is usingMh.

With (II), given d − 1 ≥ 1 andf(B, d − 1) ⊆ K(B), by
property 6A knows thatKBEA ∈ K(B), and thusA knows
thatB can verify whetherA really usesMh during the play.
By theorem 5Mh is mutually enforced, in that,A cannot
benefit from lying toB that he usesMh, because onceB is
forced to useMh A has to useMh as well for his own best.
Therefore, neitherA norB has the incentive to deviate from
Mh if the opponent appears to be using it.
The Example Revisited withMh andHM0Md For the
example in Figure 2, the baseline value is (4,7), by minimax
in scenarios (1). If communication is available, in scenar-
ios (2)-(4),A will first use the above schemes for desired
knowledge update. ThenA will useMh to forceB to use
Mh too, as explained before, and finally they will reach the
outcome (10,3), which is better thanM∗ in (3) and (4) and
the same in (2).

If communication is not available,A will useHM0Md

(with d = 1 for (2) and (3) andd = 2 for (4)) based onA’s
knowledge in each scenario, which is described right before
theorem 1. Finally, players will reach the outcome (9,4).

With communication or not, both our strategies dominate
minimax in all the scenarios and outperformM∗ in scenario
(3) where players’ knowledge does not subsume each other.

Conclusions and Future Work

This paper is focused on finite-horizon nonzero-sum game
tree search with potentially imperfect mutual knowledge be-
tween the players, which is a topic addressed little by the
traditional game theory. We have proposed a new theoreti-
cal framework of Knowledge Oriented Players, which uses
theS5n axiom system to model and reason about players’
knowledge. The good expressiveness of our framework has
allowed us, for the first time, to analyze the general relation-
ship between knowledge and strategies in such games, in
particular, how strategies are constrained by and can ben-
efit from knowledge. Leveraging this analysis, we have
developed two new algorithms–Mh andHM0Md, which
provably dominate minimax under a class of knowledge sce-
narios that is significantly more general than previous algo-
rithms for such problems. Furthermore, our communication
schemes allow players to achieve desired knowledge update,
so that they can use the mutually-enforcedMh algorithm to
reach the best possible outcome, given their knowledge.

There is plenty room for future work. Players may have
partial knowledge of the opponents’ evaluation functions; so
far we only consider atomic knowledge of evaluation func-
tions, either fully known or unknown. Another direction is to
study other classes of knowledge that can impose constraints
on strategies. Furthermore, knowledge may be not abso-
lutely true but with some probability to hold and how can
uncertainty be incorporated? Finally, can interesting topics
in game theory, such as mixed strategies , be relevant to our
discussions of knowledge under certain circumstances?
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