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The classic minimax search for two-player zero-sum ing into account the opponent’s possible responses. This is
games such as chess has been thoroughly studied since thelone in the Opponent Models (O)\presented in (Carmel
early years of Al; however for more general nonzero-sum & Markovitch 1993; lidaet al. 1993). It is assumed that
games, minimax is non-optimal, given a player's knowl- playerA uses the evaluation functidiiy while B usesE g,
edge about the opponent. Previously, a few opponent mod- and A knows thatB usesE'g but not vice versa. S® plays
els and algorithms such dd* were introduced to improve minimax usingE'g, but A playsOM search, which takes
minimax by simulating the opponent’s search, given the op- advantage of knowing3’s exact response to every possible
ponent’s strategy. Unfortunately, they all assume that one move by A. Given that assumptior) M search dominates
player knows the other’s strategy but not vice versa, which minimax for A.
is a very special relationship between knowledge and strate-  /* search (Carmel & Markovitch 1993; 1996) is a re-
gies. In this paper, we characterize minimax aid and cursive extension of)M search, in which each player has
show examples where they can be non-optimal. We propose his ownOM of the other butd’s OM strictly containsB’s
a new theoretical framework of Knowledge Oriented Players O)/. For example, botd and B know the initial strat-
(KOP), using the powerful S5 axiom system to model and egy of each other but also knows thaB knows A’s initial
reason about players’ knowledge. WO P, the general strategy, sod knows thatB will adjust his strategy to take
relationship between knowledge and strategies can be ana-advantage ofd’s initial strategy, and thus! will adjust his
lyzed, which is not handled by the traditional game theory. initial strategy as well to take advantage Bfs behavior.
We show how strategies are constrained by knowledge and Their opponent models can be nested to any level Aoait
present new strategies for various problem settings. We also ways knowsB’s OM so thatA can useM* search, which

show how to achieve desired knowledge update via commu- accurately predict®’s responses and thus is at least as good
nication so that players can achieve the best possible out- as minimax.

come. With respect to players’ knowledge, our strategies  ynfortunately, bothOM search and\/* search assume
always dominate minimax and work well for the general  ynowledge asymmetry:A's knowledge strictly subsumes
knowledge cases where previous algorithms do notapply.  p's knowledge; in particular, they assume thfihas cor-
] rect knowledge abouB’s strategy whileB has no knowl-

Introduction edge or wrong knowledge about's strategy, which is a
very strong and “unfair” assumption not necessarily true in
general. These issues were partly addressed in (Donkers
2004), in which the author suggested considering the oppo-
nent models with knowledge symmetry and showed an ex-
h ample in chess where with knowledge symmetry two players

players use the same evaluation function for all leaf nodes. It C?Eld relagh a state Otf comm]?rj Ilnterests, though the notion
has been one of the bases for the hugely successful compute®' XNOWIEAGE Symmelry was fairly vague.
chess programs, and eventually IBM Deep Blue defeated the [N this paper, we propose a new theoretical framework
human world chess champion Kasparov in 1997. of Knowledge Oriented Players (K (Pcapable of mod-
However, minimax is no longer optimal in more general €ling both knowledge asymmetry and knowledge symmetry
nonzero-sum games, where players can have different evalu-PY the powerfulss,, axiom system. Wittk O P, we are able
ation functions that are not necessarily correlated. For exam- {0 define and analyze the general relationship between two
ple, a leaf good for one player is not necessarily good or bad Key charqcterlstlcs of players— knowledge and strategies, in
for the other. Intuitively if a player knows the opponent’s  finite-horizon two-player nonzero-sum games. As an impor-
evaluation function, he could potentially do better by tak- tant step forward, we show how strategies are constrained by
knowledge. We present new strategies&hd H MO\ 9,
Copyright © 2008, American Association for Artificial Intelli- for various problem settings. They dominate minimax with
gence (www.aaai.org). All rights reserved. respect to players’ knowledge and are much more general

Minimax search on two-player game trees (Shannon 1950)
has been a classic topic and thoroughly studied since the
early years of Al. Assuming players have perfect informa-
tion of game trees and play perfectly, minimax is the opti-
mal strategy in zero-sum games including chess, where bot
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Action ~ ————— Strategy Definition 1 A strategys is an algorithm that given a game

Selecti Selecti -
cround [ object [ N tree t,Vn € t, S computesiext(n) andvalue(n) and main-
Level | Level | Metarteve tains an invariant for all non-leaf:
Perception J Monitoring’ (3¢ € C(n), next(n) = ¢) A value(n) = value(next(n))
Doing Multistrategy Metareasoning Accordmg to the estimate by a given a stratégyat node
Reasoning n the move isnext(n) and the outcome isalue(n), so the

first move isnext(t) and the final outcome isalue(t).

Figure 1: The high level playing processes of a player. The Minimax Algorithm

o Algorithm 1 Minimax
than M* search. We also propose communication schemes minimaz(t, B4)

that can achieve desired knowledge upda_lte, and show how ¢y, every leafl

they can help players select better strategies. next(l) := null; value(l) := (Ea(l), Ea(]))
Figure 1 (Cox & Raja 2007) can be used to illustrate for 1, = 1 to height(t)

the high level playing processes of a player in nonzero-sum  for every node: with heighth

games. At the meta-level, the player needs to do metar- if Amoves atn  // to maximize
easoning to select his best strategies, based on his knowl- next(n) := argmaz. value(c).a,c € C(n)
edge about the possible outcomes, both players’ prefer- else //B moves, to minimize
ences of the outcomes, and both players’ knowledge about next(n) := argmin. value(c).a,c € C(n)

each other's knowledge, etc. At the object level, actions
(moves) are selected for the current game state, based on
the selected strategies. At the ground level, actions (moves)
are executed; the corresponding effects/outcomes are ob-
served and passed to the object level, which are further in- and assumes that usesE 4 to minimize. We assume that
Lﬁgé%?fggguu?ggtgnd passed to the meta-level for knowl- all nodes with the same height can be accessed sequentially.
In the rest of the paper, first we describe minimax and Definition 2 A play for players A and B on a game tree
M* and illustrate their differences by example, then we in- ¢ Where A moves first is a function that maps the input
troduce outk O P framework, new algorithms, communica- (&, 4, Es, Sa,Sp) to a leaf value, wheré 4 and Sp are
tion schemes and analytical results, and finally we conclude. Strategies ford and B. Thatis,play(t, Ea, Ep, Sa, Sp) =
(a,b), wherea = E4(1),b= Eg(l),l € t.
Minimax and M* Algorithms How play works is trivial: starting from the root, at node
n it follows nexzt(n) by S4 if A moves otherwiseext(n)
by S and finally it reaches a leaf and returns the value of it.
In a zero-sum game with 4 = FEp, itis well-known that
if it is a perfect information game and both and B play
perfectly, minimax is optimal in terms of Subgame Perfect
Equilibrium (SPE) in game theory (Kuhn 1953). That means
both players will stay with minimax to get the best outcome.
Vt, Ea, Sa,play(t, Ea, Eg, minimax, minimax).a

value(n) := value(next(n))

Algorithm 1 is minimax, whered usesFE 4 to maximize

For ease of understanding, we will describe the minimax
(Shannon 1950) and th&* (Carmel & Markovitch 1996)
algorithms in a bottom-up fashion, which is equivalent to
the top-down description and can be implemented as depth-
first search. We assume that both players know the game
tree perfectly but have different evaluation functions for the
leaf nodes, which are the possible outcomes of the game.
Throughout this paper we will use the following notations.

: > play(t, Ea, Ep, Sa, minimax).a (1)
Objects: o Vt, Ea, Sp,play(t, Ea, Ep, minimax, minimazx).b
t: root of a finite game tree, also used to represent the tree. < play(t, Ea, Eg, minimazx, Sp).b 2)
n: anode oft. At a non-leaf node, we know who moves. In a nonz_ero_sum game With 4 7§ FEg, minimax is no
l: aleaf node ot, as a possible outcome of the game. longer optimal, because it wrongly assumes that both play-
A: max-player who maximizes the evaluation function. ers use the same evaluation function. Nonethelé'sanin-
B: min-player who minimizes the evaluation functiéi. imax does guarantee the worst case outcomelfdrecause
Function values(references that can be updated): it proceeds as ifB would always choose the worst possi-

E4, Eg: real-valued evaluations for leaves. Without loss ble moves againsi. Therefore, minimax is used as the
of generality, we assume that there is a fixed deterministic baseline for comparisons in our examples. More generally,
tie-break scheme reflected in leaf values, so we have distinct we consider imperfect information nonzero-sum games, in

leaf values¥! # I', E; (1) # E;(I'),i € {A, B}. which players can have incomplete mutual knowledge and
C(n): set of pointers to the children of thus SPE does not apply. A player’s best strategy often de-
height(n): height of noden. height(l) = 0 for leaf; pends on his knowledge about the opponent, so we describe
otherwise icight(n) = 1 4+ max, height(c),c € C(n). the M* algorithm for nonzero-sum games next.

next(n): pointer to a child of:, or null for a leaf. The M* Algorithm

value(n): value of noden, which is a pair(a,b) wherea Algorithm 2 Is equivalent to the recursivd* algorithm de-
andb are the evaluations td and B respectively. scribed in (Carmel & Markovitch 1996). We often refer
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Algorithm 2 M*
M*(t,Ea, Eg,caller,d) Il requiresd > 0
if (caller = A) XOR (dis even) // base casel’s minimax
minimaz(t, E4); baseA = true
else // base casd3’s minimax
minimaz(t, Eg); baseA := false
ifd>1
for every leafl  // update leaf values for simulation
value(l) := (Ea(l), Eg(l))
fori:=1tod //run alternated simulations fot and B
for h := ¢ to height(t)
for every noden with heighth
if (A moves at) and (iis odd XORbaseA)
/I now at max-node in simulation fot
next(n) := argmax. value(c).a, ¢ € C(n)
else if (Bmoves at) and (iis even XORbase A)
// now at min-node in simulation faB
next(n) := argmin. value(c).b, ¢ € C(n)
value(n) := value(next(n))

to M*(...,d) by M?, OM search byM' and minimax by

MP°. M* assumes knowledge asymmetdjs OM contains

B’s OM, so A playing M¢ meansB playing M<~! and

the outcome iwlay(t, B4, Eg, M4, M9~1). To compute

it, M* needs a series of simulationd’s M9, B's M91,

A's M2, .., A's M° or B's M° (depending on the caller

XOR d's parity). Therefore, algorithm 2 runs alternated

bottom-up simulations from/° to M1, M* tries to take

advantage of the opponent’s strategy, and it dominates min-

imax for A under certain conditions, as stated in (Carmel &

Markovitch 1996), which can be rephrased as:
Vt,Ea, Ep,d > 1,play(t, E4, Eg, M%, M9 1).qa
> play(t, Ea, Eg, minimaz, M9~ 1).a

3

Limitations of AM* (I) In essenceM* is the same a® M
search, because they all assume thanows B’s strategy

but not vice versa, no matter how complicated the strategy
can be. Therefore id/*, B’s strategy does not have to be
the recursive form of minimax at all. (II) The assumption
of M* is too strong. Proposition 3 does not guarantee any
bound forB, so why wouldB even use such a strategy? In-
stead, it is quite possible fds to use an alternative strategy
that we will show later, which is guaranteed to be at least as
good as minimax according #8's knowledge.

An lllustrative Example of Nonzero-sum Games

The following example is used to illustrate how minimax
(M°®), OM search (M) andM* search work. Both players
know the game tree and their own evaluation function

or Eg. We assume that 4, andE'g are atomic: either fully
known or unknown, and players usé?, d > 0.

In Figure 2, triangles represent max-nodes where max-
player A moves, inverted triangles represent min-nodes
where min-playerB moves, and squares represent leaves.
A and B have different evaluation functiods, andEg for
leaves. A leaf is referenced by a pair of Hs and F'; val-
ues, while an internal node is referenced by its labék
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Figure 2: A nonzero-sum game tree. Max-playetries to
maximize £ 4 and min-playelB tries to minimizeEs.

goal is to maximizel' 4 of the outcome and’s goal is to
minimize E'g of it. We consider the following scenarios, in
which players have different imperfect mutual knowledge.

(1) A does not knowE'z and B does not knowt 4. Since
A has no idea of£z, A uses minimax (1Y) against the
worst case, assuming plays minimax usingv 4 too (which
is wrong). By A’s minimax from the root, the R branch
yields E4 = 4, the S branch yield#4 < 2, and the T
branch yields£ 4 = 1. So A moves to R. At RB moves to
(4,7), whichB prefers to (8,9). The final outcome is (4,7).

(2) A knowsEp and B does not knowF 4. Without idea
of B4, B usesM? with Ez. Knowing E, A usesM! that
takes into accounB’s M. At the root,A can choose to:

(2.1) move to RA knows thatB will choose (4,7) at R.

(2.2) move to T.A knows thatB will choose (9,4) at T.

(2.3) move to S. To determinB’s response at S4 sim-
ulatesB’s MY: for B, the values are W—(7,4), X—(10,3),
Y—(8,3), Z—(2,2), U-(7,4), V-(3,8) and S—(7,4). Aknows
that at SB will move to U, and at UA will move to X be-
causeA knows that if he moves to W theB will move to
(7,4), not preferred byl. At X, B will move to (10,3).

Considering all three choicesl moves from the root to
S, which is the best fad. The final outcome is (10,3).

(3) A knowsE i and B knowsE 4. SinceA’s knowledge
is the same as in (2)4 does the same reasoning and still
moves to S. KnowingZ4, B now usesM ! (instead ofd/°
as in (2)) that takes into accounts M°. From B’s point of
view, according tad’s M°, some node values are Y—(1,9),
Z—(2,2) and V—(2,2). S® moves from S to V (out of expec-
tation by A in (2)), expecting to reach Z and then (2,2) that
has the besE i value. At V, however4d moves to Y instead
of Z (out of expectation by3), expecting to reach (3,8), be-
causeA knows if he moves to Z the® will move to (2,2),
bad for A. AtY, B moves to (3,8), and the final outcome is
(3,8), which is neither’s nor B’s initial expectation.

(4) AknowsE g, B knowsFE 4 and A knows thatB knows
E4. Again A’s knowledge subsumeB’s knowledge, so as
in (2), A can correctly simulate and prediBts moves. Us-



ing M? that takes into accourB’s M!, A knows that if

he moves to S, he will finally reach (3,8) as in (3), instead
of (10,3) in (2); soA moves to T for (9,4), which is the
best achievable outcome givétis knowledge. Since at T
B prefers (9,4) to (1,5), the final outcome is (9,4).

Summary of Results and Motivation We use a shorthand

of play (See Definition 2) with only strategy parameters. The
outcomes of the scenarios are: flyy(M°, M°) = (4,7);

(2) play(M", M°) = (10,3); (3) play(M", M") = (3,8);
(4) play(M°, M°) = (9,4). The outcome value of (1) by
minimax is the baseline. Scenario (2) and (4) are better than
(1) for A—consistent with proposition 3.

However, scenario (3) is worse than (1) for betland B,
even though they have more knowledge in (3) than in (1).
That violates our intuition "the more knowledge the better
outcome”, becausg/* does not guarantee any bound of the
outcomes when there is no strict knowledge asymmetry; yet
we must have working strategies for all the cases and we
must model the complicated knowledge scenarios (including
knowledge about evaluation functions, strategies and knowl-
edge about knowledge, etc.) in a rigorous way that can be
reasoned about. This is our motivation for a new general
framework that models players with knowledge.

The Framework of Knowledge Oriented
Players (KOP)

knows that everybody knowg, and so on (van Benthem,
van Eijck, & Kooi 2005). Any common knowledgeis just
viewed as part of tautologies included in axiom Al.

Definition 4 A formula setF is a core of K(P) iff F' can
be extended to the maximal consistenttSg®) by using the
axioms ofS5,,; cores-K P) is the set of all cores df(P).

By definition 4, a potentially infinitdC(P) can be repre-
sented by itgore F', which can be small but not necessarily
minimal, though'C(P) may have many minimal cores.

Definition 5 A strategys is t-selfishfor player P on game
treet, iff Vn € ¢ whereP moves at, if P is a max-player
value(n).a = mazx.value(c).a; otherwisevalue(n).b =
mincvalue(c).b, c € C(n). S is selfishfor P iff V¢, S is t-
selfish forP; P is selfishiff P always uses selfish strategies.

Naturally, players are always assumed tosedfishand
they have common knowledge that everybodgéaHish. Al-
though we only discuss two-player games in this paper,
KO P works for multi-player games and most of our results
can be extended to multi-player games .

Definition 6 Given selfish playersl, B, a game tree and
n € t, (A, B,t) K-decidesn, iff n is a leaf, orA and B
agree omnext(n) andvalue(n), by (A) and (B).

We use “nis decided” as a shorthand fgrl, B,t) K-
decidesr. Intuitively, there can be some decided nodes (i.e.

We propose a new framework of Knowledge Oriented Play- game states) in the game tree such that both players agree
ers (KOB), which includes all the elements that determine on, what will happen afterwards once the game is in one of
the outcomes of finite-horizon nonzero-sum game trees and these states . Players can reason about decided nodes by
allows us to reason about knowledge and strategies. We their knowledge. Supposd moves atn, with leavesl;
should emphasize that since the players’ mutual knowl- anqy, asn’s children. Sinced is selfish, A choosed; if
edge can be imperfect in general, the notion of SPE for EA(ly) > Ea(ly); otherwisel,. So givent andE 4, n is de-
perfect information games in game theory (Kuhn 1953; cided forA, but whethem is decided forB depends oB's
Fudenberg & Tirole 1991) does not apply here in general.  knowledge:B will be certain ofA’s choice if B knowsE 4,
Definition 3 A Knowledge Oriented Player (KOPP is a i.e., KpE 4. Similarly, considen’s parenp whereB moves
3-tuple (Ep, Sp, K(P)), whereEp is the evaluation func- and has another choieé with the same height as p is de-
tion, Sp is the strategy andC(P) is the knowledge of cided if n andn’ are decided plus (1B knows where to
represented by a set of formulas, thath§,P) = {¢| K py} move atp (trivial for B becauseB just chooses the one with
(Kpy is read as “Pknowsy”). K(P)is required to be a ~ smallerEp value) and (2)A knows where3 moves ap, so
maximal consistent set in th#5,, axiom system. the necessary knowledge fdris thatA knows thatB knows
. . thatn andn’ are decided, that is equivalentkos Kg F 4.

The S5,, axiom system is sound and complete, whose Th . lies to th d Il th

main axioms are listed below (with = 2 andP = A, B). € same reasoning applies 1o the noges afl the way up

For more details, please refer to (Halpern & Moses 1992). the tree. Therefore, we can derive the following algorithm.

Al. All tautologies of the propositional calculus.

A2. (Kpp A Kp(p = ¢)) = Kpty (deduction).

A3. Kpy = ¢ (the knowledge axiom).

Ad. Kpyp = KpKpyp (positive introspection).

A5. - Kpyp = Kp—Kpyp (negative introspection).

We useKpp as a proposition for “pe K(P)". We
haveK ptrue A =K p false by axioms. We assume (a) each
player P is a KOP; (b) Ep and Sp are atoms that can
be fully known or unknown: KpFEp <« ViVl € tVr €
Real, (Kp(Ep(l) =1)V Kp(Ep(l) #1))) andKpSp <
Vivn € t,(C(n) = 0) vV (Ve € C(n), Kp(next(n)s, =
C) V Kp(next(n)sp 7£ C))); (C) KpEp ANKpSp.

Common knowledge is incorporated 00 P. A formula
 is common knowledge iff everybody knows everybody

The Decide Algorithm

Algorithm 3 computes whetheris decided, andext(n)
andwvalue(n) for decidedn, by checking a class of knowl-
edge: ifK 4 EFg N KpE 4 then all the nodes with height one
are decided; iIK,Eg AN KpEANKgKAsEg N KAKgE 4
then all the nodes with height two are decided, and so on.

Levels of Knowledge—fA,d) Next, we directly construct
such a setf that includes the desired class of formulas in
regular expressions, given a level parameter 0:

f(Aa 0) = {KAEAv KASA}!

F(Ad) = {Ka(KpK) "5 Ep|1 < d' < d)

U{(KaKp) 51EA| 2 < d' < d} U £(A,0)

(4)
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Algorithm 3 Decide as described before. 1.2 can be proved by mathematical in-

decide(A, B, t,n) duction: n = 1 is trivial; assume it holds fon = m, for
Il returns true or false, and computesct(n) andvalue(n) n=m+1, f(P,m+ 1) has one formula with: + 1 alter-
if height(n) =0 returntrue // leaves are don’t cares nations of X', which makes the knowledge checkdecide
if height(n) = 1 true, so it returns true. By 1.8gcideis sound and complete
if Amoves atn A KpE4 if f(P,d)isacoreof IC(A); this holds because whehhas
next(n) := argmaz. value(c).a,c € C(n) no extra knowledge for reasoning, the only nodes thahd
else if B moves atv A KaEp B can agree on are those decided by the alternatiors of
next(n) := argmin. value(c).b,c € C(n) and those with single decided child, as dondégide.

else return false // negative base case
value(n) := value(next(n))
return true // positive base case
if 3c € C(n), ~decide(A, B,t,c)
return false // not all children decided
if n has only one child

Definition 7 A strategy.S is t-informed for player P on
game treet, iff Vn € t, if (A, B,t) K-decidesn then S
computes therext(n) and value(n) that A and B agree
on. S is informed for P iff Vt, S is t-informed forP; P is
informed iff P always uses informed strategies.

neat(n) := ¢; value(n) := value(c) Players are always assumed tdifermedand have com-
return true  // the only child is decided mon knowledge about that fact. Therefore a player’s strategy
if Ve € C(n), A moves an A Kp(decide(A, B,t,¢)) is always constrained by his knowledge, that is, his strategy
neat(n) := argmaz, value(c).a,c € C(n) has to beselfishandinformedfor him if he is rational.
else ifve € C(n), B moves at A K 4(decide(A, B, t,c)) Definition 8 Given selfish and informed playersand B,
next(n) := argin. value(c).b,c € C(n) a game tre¢ where A moves first, and strategiesand S’,
else return false // negative recursive case S K-dominatesS’ on t for A, iff by K(A) A knows that
value(n) := value(next(n)) - play(t,Ea, Ep,S,Sg).a > play(t,Ea, Ep,S’, Sp).a.
returntrue  // positive recursive case S K-dominatesS’ for A, iff by K(A) A knows thatS K-

dominatesS’ ont for all t whereA moves first.

In definition 8, according t&C(A4) A knows thatSg is
constrained byC(B) in a way that using' is better thart’
for A, in contrast to unconstrainefls.

Similarly f(B, d) can be defined by switchind and B.
For the different scenarios of the example in Figure 2, the

Co(ri’;sif: k}](of‘{"'g)dg:e {CI?Z Eb?i ef’ggj?ed as follows: The M" and Hybrid-minimax-M " Algorithms
B: f(B:O) _ {KBEB:KBSB} In this section we will present two algorithms  thég-

(2) A: f(A,1) = f(A,0)U{K4Eg}, B: f(B,0) dominateminimax, given players’ complete or mpomplete
(3) A: f(A,1), B: f(B,1) = f(B,0) U{KpE4} knowledge. Furthermore, we show how communication can
(@) Az F(A,2) = f(A, 1) U{KsKpEA}, B: f(B,1) help update knowledge from incomplete to complete for bet-
By our constructionf (A, d) has some nice properties, for ter outcomes. The_new algorithms quk vyell for the general

examples, the following properties can be verifigd:> 1, knowledge scenarios (e.g., case (3) in Figure 1) whére
F(A,d—1) C f(A,d) A f(B,d—1) C f(B,d) (5) does not apply. First we study the case where every node is
F(A,d) C K(A) — f(B,d—1) C K(B) 6 decided and thus th@ecidealgorithm can be simplified to

. .
f(A,d) € cores-K[A) — f(A,d—1) ¢ cores-K[A) (7) the M™ algorithm.
Property 5 is trivial. Property 6 holds because the first h ;

K 4 of the formulas inf(A, d) can be removed by axiom The M™ Algorithm

A3, then we get formulas iff (B,d — 1). Axiom A1-A5 i -

cannot increase alternationsisfand the largest number al- ~ Algorithm 4 A/

ternations ofK in f(A, d) is d: the corresponding formula ~ M"(t, Ea, Ep) Il computes alhext(n) andvalue(n)

cannot be extended froif{ A, d — 1), so property 7 holds. for every leafl
Using “levels of knowledge”, we are able to give some  next(l) := null; value(l) := (Ex(l), Ep(1))
formal results of algorithm 3, stated as theorem 1. for h =1 toheight(t)

for every noden with heighth
if Amoves atv // to maximize
next(n) := argmax. value(c).a,c € C(n)
else //B moves, to minimize
next(n) := argmin, value(c).b,c € C(n)
value(n) := value(next(n))

Theorem 1 For algorithm 3,VA, B,t,n € t,d > 1,

1.1 Ifdecide(A, B,t,n) returns true, ther{ 4, B, t)
K-decides: anddecide(A, B, t,n) computes the
next(n) andvalue(n) that A and B agree on.

1.21ff(A,d) C K(A)A f(B,d) C K(B)Aheight(n) < d,
thendecide(A, B, t,n) returns true.

1.31f(3d > 1, f(A,d) € cores-K[A)), then

decide(A, B,t,n) returns true iff(A, B, t) K-decides. Compared to minimax)/" has another parametéfs,
Proof sketch: By 1.1decideis sound; this holds because  which enables it to determine the true leaf values Br
it exactly follows the reasoning process for decided nodes, rather than assuming, = Ep. M" correctly determines
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both player’s optimal moves if they have enough knowledge
about their evaluation functions. We can vieW” as the
nonzero-sum version of minimax &f-minimax: M " deter-
mines the best outcome feelfishandinformedplayers with
respect to their knowledge.

Theorem 2 Given selfish and informed players B, and
a game tree tyn € t, if decide(A, B,t,n) returns true,
then M" computes the sameezt(n) and value(n) as
decide(A, B, t,n).

Proof: TheM" algorithm simplifies thelecidealgorithm
in the way that all the conditions involving knowledge check
are set to true, so they compute the same redillts.

By theorem 2, thél/" algorithm can be viewed as a spe-
cial case of algorithm 3. However, we must emphasize that
algorithm 3 itself is not &trategy(see definition 1), because
it may not computenext(n) andvalue(n) for every node
n; while M" is astrategybecause it computes:zt(n) and
value(n) for everyn.

Theorem 3 M" and M* computes the same results for all
game trees iffi/* has the parametef = co.

Proof: M* with parametet! = oo corresponds to the case
that both players simulate each other for an infinite number
of levels, therefore, for any given depth trie¢he simulation
process converges fd, which can be verified by compar-
ing algorithm 2 and algorithm 4]

Even thoughM/* can converge ta/" under certain con-
ditions, they are still quite different algorithms in general.

Differences of M* and M" (I) M* requires expensive
recursive simulations whild/” does not; consequently, in
(Carmel & Markovitch 1996) the multi-pasg/* algorithm

Thereforepalue(l) is passed all the way up to the root, that
is, value(t) = value(l). In minimax, one player is not even
aware of the other’s evaluation function, so there is no way
for him to recognize thglobal optimum, let alone to find

it. Similarly, sinceM ™ is a recursive simulation process of
minimayx, it is also possible to miss tigéobal optimum[

Corollary 1 If ¢ has a global optimum ledfand both play-
ers useM”, play(t, Ea, Eg, M", M") = (E4(1), Eg(1)).

Corollary 1 holds because when both players nge,
they agree on the final outcomelue(l), which is the same
global optimum computed by/".

Corollary 2 If F4 and Ep are uncorrelated and un-
bounded, in general there does not exist a sound and com-
plete pruning algorithm that does not check every leaf.

Corollary 2 holds because any leaf not checked by a prun-
ing algorithm could be a global optimum, given uncon-
strainedE 4 and Eg. This is a bad news for any general
pruning attempt—to be able to do pruning, one has to as-
sume correlations betwedn, and Ez, as done in (Carmel
& Markovitch 1996).

The following theorem reveals the key propertydf:.

Theorem 5 M dominates any strategy if the opponent
usesM™: Vt,EA,EB,SA,play(t,EA,EB,Mh,Mh).a

2 play(tv EA7 E37 SAa Mh)‘a’ (8)
Vta EAvEBa SB7play(t? EA7 EB7 Mh7 ]\/[h)b
Splay(t,EA,EB,Mh,SB).b (9)

Proof: For (8), letSy # M", play(t, Ea, Eg, Sa, M")
follows a pathp of next pointers from the root to a leaf,
andplay(t, E4, Eg, M", M") follows another patly # p.
Consider the node with smallest height wherg deviates

needs to evaluate a node multiple times (compared to one from ¢, B does not move at becauseB uses the same

evaluation per node in/"), and the one-pasi/* algorithm

next(n) by M" for two paths, soA moves atn. Since

needs to compute vector values (compared to single value next(n) of M" points ton’s child with best value taA,

computation inM"). (1) M* represents a family of algo-
rithms by parameted, which relies on special assumptions
about the opponent’s strategies; whilé” does not need
such assumptions. The conditions under whi¢h works
will be elaborated in the following theorems.

Definition 9 A leafl of t is theglobal optimumof ¢, iff
Vi'et,(I' 21) — (Ea(l) > E4A(I') NEg(l) < Eg(l"))

Any game tree has at most ogbal optimumbecause
of our assumption of distinct leaf values that reflect a fixed

it must be thatS4’s next(n) points to a child with worse
value; thusS,4 can be improved by changing itext(n) to
that of A" for a better outcome. This improving process
can be repeated ungilmatches;, which meang leads to a
better outcome thap Because of symmetry, (9) holds.

Since M" can be also viewed as backward induction
(Kuhn 1953), it is not surprising that propositions (8) and
(9) aboutM™ are identical to propositions (1) and (2) about
minimax. By theorem 5, using/" is mutually-enforced by
both players in nonzero-sum games, just like what happens

deterministic tie-break scheme, while some game trees may to using minimax in zero-sum games.

not have anyglobal optimumat all. It is worth knowing that
when there exists global optimum, whether a strategy al-
ways finds it. Surprisingly, although/” can find theglobal
optimum, if there is any, minimax and* are not guaran-
teed to do so, as stated in theorem 4.

Theorem 4 If [ € t is the global optimum of, M" finds
it M"(t,E4, Eg) yields value(t) = (Ea(l), Eg(l));
however, minimax and/* do not guaranteaalue(t) =
(Ea(l), Ep(1))-

Proof: M" always haswext(p) = [ for I's parentp no
matter who moves at becausé is the best choice for both.
Similarly p’s parent has its next pointer t@ and so on.
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Then it is important to show under what knowledge sce-
nariosM" is the optimal strategy.

Theorem 6 For any game tre¢ where A moves first, if
height(t) < 1V f(A, height(t) —1) C K(A), thenM™" K-
dominates any other strategy offor A.

Proof: The base case bkight(t) < 1is trivial, because
with M" A chooses the best move to a leaf according to
E,4. Given f(A, height(t) — 1) C K(A), by property 6
we havef (B, height(t) — 2) C K(B), and then alk with
height(n) < height(t) — 2 are decided by theorem 1.2.
Given B is selfish and informedB’s strategy computes the
samenext(n) andvalue(n) as M" does for everyn with



height(n) < height(t) — 2; so by theorem 5, for these
A’s strategy has to match/” or it can be improved. Be-
causeB moves at every, with height(n) = height(t) — 1,
B’s move is decided foB and A knows that exactly by
KC(A); thereforeA knows thatA'’s first move at the root has
to match that of\/* too, or it can be improved. Overall’s
strategy has to match/", or it can be improved]

By theorem 6, if a player has “enough” knowledge then he
knows that)/" is the optimal strategy. Common knowledge
is more than enough, so the following corollary holds.

Corollary 3 If both A and B have common knowledge
aboutE4 and E'g, thatisVd > 1, f(A,d) C K(A), then
M" K-dominates any strategy for bothand B.

Intuitively the more knowledge a player has the better and
more accurate outcome he can estimate. When the condi-
tions in theorem 6 or in corollary 3 are met, certaidlwill
estimate the outcome by/". We claim that this estimated

Next we abbreviate Hybrid-minimax-Mt, E4, Ep, d)
in algorithm 5 as M° M. It can be viewed as a combina-
tion of minimax (M) and A" with parametet!: it reduces
to A’s MY (ignoring unusedEg) if d = 0; for a givent,
it reduces taM" if d = height(t). In other wordsM™" is
applied to the nodes with height at mastwhile M° is ap-
plied to the other nodes above. The reason is that, the lower
level nodes are decided by mutual knowledge\sb yields
the best result there; while the higher level nodes are not
decided, so conservative minimax is used to guarantee the
worst case outcome. The following theorem guarantees that
the hybrid strategy is at least as good as minimax, given the
player's knowledge.

Theorem 8 For any game tree where A moves firstyd >
1,if f(A,d) C K(A) thenHM° M9 K-dominates minimax
ont for A.

Proof: For anyn with heightd, A moves atn or

outcome is at least as good as the one estimated by minimaxparent(n), so by theorem 5)/" K-dominates any strategy

using onlyE' 4 when A knows nothing abouk's.

Theorem 7 For any game tre¢ where A moves first, let
1 value(t) computed byM"(t, E4, Eg) and vy
value(t) computed byninimaz(t, E4), thenvy.a > vs.a.

Proof: At each node wher8 moves, minimax (as in al-
gorithm 1) always lefB choose the child with smalledt 4
value; wheread/" let B choose the child with smalle#ts
value. Unless the same child is chosgf* always chooses
a child better forA, compared to what minimax chooses, so
M" yields a better estimated final outcome far(]

When playerd does not have enough knowledge ahBut
the outcome estimated by/" can be inaccurate, because
B may not be aware tha should playM” according to
B’s knowledge. To solve this problem, we introduce the
hybrid-minimax-1/* algorithm (algorithm 5), which works
well with incomplete knowledge.

The Hybrid-minimax-M " Algorithm

Algorithm 5 Hybrid-minimax-A/*
Hybrid-minimax-M*(t, E4, Eg, d) Il requiresd > 0
for every leafl
next(l) := null; value(l) == (Ea(l), Eg(l))
for h=1tod
for every noden with heighth
if Amoves at: //to maximize
next(n) := argmazx. value(c).a,c € C(n)
else //B moves, to minimize
next(n) := argmin, value(c).b,c € C(n)
value(n) := value(next(n))
for h =d + 1 to height(t)
for every noden with heighth
if max-player moves at  // to maximize
next(n) := argmaz. value(c).a,c € C(n)
else // min-player moves, to minimize
next(n) := argmin, value(c).a,c € C(n)
value(n) := value(next(n))
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for A in the subtrees rooted by all suehSinceH M° M is
exactly the same as minimax for the nodes with height more
thand, HM°M¢ is at least as good as minimax overall.

Extending theorem 7 té/ MM ?, we have corollary 4,
which can be proved similarly.

Corollary 4 For any game tree¢ where A moves first, let
vy = wvalue(t) by M"(t,E4, Eg), v2 value(t) by
HMOM?, v3 = value(t) by HMOM® (height(t) > d >
d’ > 0), andvy = value(t) by minimax(t, E4), then for
A: vi.a > vo.a > v3.a > v4.q.

Once again, our intuition is confirmed that the more
knowledge a player has the better outcome he can expect.

Complexity Givent, M" and HM°M¢ can be done by
depth-first search (DFS) in O(height(t)) space and O(size(t))
time. These bounds are already optimal for sound and com-
plete strategies that are guaranteed to find the global opti-
mum if there is one, because first, DFS requires O(height(t))
space for backtracking; second, any sound and complete
strategy needs O(size(t)) time, due to the lack of general
pruning algorithms by corollary 2.

Knowledge Update via Communication

By theorem 8 and corollary 4, givefi(4,d) C K(A),

a strategy dominating minimax fot is HM°M¢?, which
could be still worse than/” though; but using/” requires
enough knowledge that the players may not have. So knowl-
edge update should be used to increase players’ knowledge
to a level that allows them to use€”. We suggest two com-
munication schemes for desired knowledge update, assum-
ing the communication channel is perfect and has no delay.

NI d>1Af(A,d) CK(A), Acanannounce both 4
andEg to B.

With (1), after A’s announcementE4, and Eg become
common knowledge fod and B, soM" becomes the dom-
inant strategy for bottd and B by corollary 3. This would
require the logic with both relativized common knowledge
and public announcements (PAL-RC), and more details can
be found in (van Benthem, van Eijck, & Kooi 2005).



mid=>=2n f(A,d) C K(A), A can announce t®
that A is usingM".

With (Il), givend — 1 > 1andf(B,d — 1) C K(B), by
property 64 knows thatk s E4 € K(B), and thus4 knows
that B can verify whether really uses\/* during the play.
By theorem 5M™" is mutually enforced, in thatd cannot
benefit from lying toB that he used/", because oncB is
forced to useV/" A has to use\/" as well for his own best.
Therefore, neithed nor B has the incentive to deviate from
M™" if the opponent appears to be using it.

The Example Revisited withA/" and HM°M?  For the
example in Figure 2, the baseline value is (4,7), by minimax
in scenarios (1). If communication is available, in scenar-
ios (2)-(4), A will first use the above schemes for desired
knowledge update. Thea will use M" to force B to use
M" too, as explained before, and finally they will reach the
outcome (10,3), which is better thad* in (3) and (4) and
the same in (2).

If communication is not availabled will use HM°M?
(with d = 1 for (2) and (3) andl = 2 for (4)) based oM’s
knowledge in each scenario, which is described right before
theorem 1. Finally, players will reach the outcome (9,4).

With communication or not, both our strategies dominate
minimax in all the scenarios and outperfoifi* in scenario
(3) where players’ knowledge does not subsume each other.

Conclusions and Future Work

This paper is focused on finite-horizon nonzero-sum game
tree search with potentially imperfect mutual knowledge be-
tween the players, which is a topic addressed little by the
traditional game theory. We have proposed a new theoreti-
cal framework of Knowledge Oriented Players, which uses
the S5,, axiom system to model and reason about players’
knowledge. The good expressiveness of our framework has
allowed us, for the first time, to analyze the general relation-
ship between knowledge and strategies in such games, in
particular, how strategies are constrained by and can ben-
efit from knowledge. Leveraging this analysis, we have
developed two new algorithms—AMand HM°M?, which
provably dominate minimax under a class of knowledge sce-
narios that is significantly more general than previous algo-
rithms for such problems. Furthermore, our communication
schemes allow players to achieve desired knowledge update,
so that they can use the mutually-enfor@gd algorithm to
reach the best possible outcome, given their knowledge.

There is plenty room for future work. Players may have
partial knowledge of the opponents’ evaluation functions; so
far we only consider atomic knowledge of evaluation func-
tions, either fully known or unknown. Another direction is to
study other classes of knowledge that can impose constraints
on strategies. Furthermore, knowledge may be not abso-
lutely true but with some probability to hold and how can
uncertainty be incorporated? Finally, can interesting topics
in game theory, such as mixed strategies , be relevant to our
discussions of knowledge under certain circumstances?
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