
Metareasoning as an Integral Part of Commonsense and Autocognitive Reasoning

Fabrizio Morbini and Lenhart Schubert
University of Rochester

Abstract
In this paper we summarize our progress towards building
a self-aware agent based on the definition of explicit self-
awareness. An explicitly self-aware agent is characterized
by 1) being based on an extensive and human-like knowledge
base, 2) being transparent both in its behavior and in how
the knowledge is represented and used, and 3) being able to
communicate in natural language and directly display aware-
ness through its dialogues. We first review the requirements
imposed by explicit self-awareness on the knowledge repre-
sentation and reasoning system and then describe how these
have been realized in the new version of the EPILOG sys-
tem. We argue that meta-level reasoning is very important for
commonsense reasoning and self-awareness, but suggest in
our concluding discussion that viewing agent control struc-
ture in terms of separate object-level and meta-level strata
may not be particularly helpful. Rather, we suggest a “contin-
ual planning” (and execution) control structure wherein the
agent’s meta-level and object-level reasoning steps mingle
seamlessly, just as they do in the question-answering pro-
cesses we have implemented.

Introduction
We report on progress towards building a self-aware agent
based on the EPILOG inference system, an evolving imple-
mentation of the Episodic Logic (EL) knowledge represen-
tation. (Schubert 2005; Morbini & Schubert 2007) laid the
foundations for our approach to self-aware agents; in sum-
mary:
• (Schubert 2005) defined explicit self-awareness (as a goal

in agent design) as requiring
– self-knowledge of human-like scope, encompassing

physical, mental, autobiographical, and contextual
properties;

– encoding of self-knowledge in a form that is exam-
inable (transparent) and usable by general inference
processes; and

– overt display of self-knowledge through communica-
tion.

• (Morbini & Schubert 2007) reported a first proof of con-
cept of the basic ideas behind explicit self-awareness us-
ing EPILOG.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We have extended this preliminary work by strengthening
the knowledge representations and reasoning (KR&R) ca-
pacities of EPILOG in a number of ways. The aspects most
relevant to metareasoning are the handling of attitudes, sub-
stitutional quantification, and recursive self-inquiry; we dis-
cuss these in the following section. In addition we have
undertaken a systematization of various facets of the infer-
ence process such as formula normalization, loop detection,
multiple answer computation, and term evaluation, and dis-
cuss these in the subsequent section on inference in EPILOG.
We will conclude our discussion with some subtle examples
involving metaknowledge, including topical self-knowledge
and time-sensitive (indexical) self-knowledge.

Metareasoning
(Schubert 2005) lists a series of requirements on the KR&R
system to enable explicit self-awareness. We first summa-
rize these requirements, and then describe in some detail
how two of these requirements have been implemented in
EPILOG.
• Logic framework: we require an explicit, transparent rep-

resentation for the agent’s commonsense knowledge and
metaknowledge, amenable to browsing and inferential
manipulation. We chose EL as an extension of first-order
logic (FOL) more fully adapted to the expressive devices
of natural language (NL).

• Events and situations: the agent must be able to refer to
events described by complex sentences (e.g., the event de-
scribed by my (i.e. EPILOG’s) failure to answer a ques-
tion). This capability has always been an integral part of
EL and therefore of EPILOG.

• Generic knowledge: much of everyday knowledge is ex-
pressed using generic or probabilistic adverbs such as
usually or probably. In EPILOG generics are expressed
using probabilities, though this support is very limited and
in need of further development.

• Attitudes and autoepistemic inference: the ability to rea-
son about one’s own knowledge and to represent one’s be-
liefs is fundamental to self-awareness. Our commitment
is to Kaplan’s computational notion of knowing (Kaplan
2000; Kaplan & Schubert 2000). We describe below how
the basic machinery needed for this has been implemented
in EPILOG.

151

• Metasyntactic devices: a self-aware agent needs to be able
to refer in its logical language to the syntax of that lan-
guage itself. How some of these devices have been imple-
mented in EPILOG will be described later in this section.

The following subsections focus on how the last two re-
quirements – those most central to self-awareness and metar-
easoning – have been implemented in EPILOG. As a nota-
tional alert, we should mention that EL uses infix notation
for predication and prefix notation for function application;
e.g., (EL (very expressive)) states that EL is very expressive;
the predicate (very expressive) is infixed, while the predicate
modifier very (a function that maps monadic predicates to
monadic predicates) is prefixed.

Substitutional Quantification and Quasi-Quotation
As motivated and exemplified in (Schubert 2005; Morbini
& Schubert 2007) it is important to be able to refer to syntac-
tic elements of EL in an EL formula itself. For instance, this
allows a formal treatment of axiom schemas, enables EPI-
LOG to classify its own predicates and fromulas, and allows
EPILOG to choose executable procedures for solving certain
kinds of problems deliberately, based on axioms about their
effects. (Some examples will be seen.) To enable this kind of
“syntactic self-awareness”, EPILOG currently supports two
devices: substitutional quantifiers and quasi-quotation.

Their implementation is straightforward and posed no ma-
jor problems. The two main modifications required con-
cerned the following components:

• the parser: we added substitutional quantifiers and
metavariables. A metavariable is a particular type of vari-
able that is bound by a substitutional quantifier. A substi-
tutional quantifier is much like a normal quantifier except
that it quantifies over substitutions of expressions of a par-
ticular category for the metavariable. For example,

(∀wff w (w ⇒ (me Know (that w))))
quantifies over substitutions of EL well-formed formulas
for the variable w. The truth conditions of the formula are
that all instances of the formula are true under the object-
level semantics, when EL well-formed formulas (not con-
taining metavariables) are substituted for w.1

Quasi-quotation, written with a quote sign (apostrophe)
accepts an expression as argument that may contain
metavariables; substitution for such metavariables treats
quasi-quotes as transparent. As an example of the use of
(quasi-)quotation, we can express in EL that the “=” pred-
icate is commutative by writing

(’= (Commutative EL-predicate)),
where Commutative is a predicate modifier and EL-
predicate is a predicate (true of certain syntactic objects).
Other examples that will be seen later are the use of Ap-
pearancePred and AppearanceFactAbout to describe in-
ternal predicates and formulas.

• the unification routines: since we have provided for
metavariables, unification should be able to unify not only

1Of course the omniscience claim expressed by this formula is
absurd.

variables with terms but also metavariables with EL ex-
pressions of the appropriate categories. For example, we
should be able to unify (me Know (that w)) with (me Know
(that (?x Foo))), yielding unifier {(?x Foo)/w}.

Recursive QA
In (Morbini & Schubert 2007) we described the basic prop-
erties a computational notion of knowing should have. We
indicated why knowing is very different from being able to
infer, and referred to Kaplan & Schubert’s algorithmic ASK
mechanism as a basis for knowing. Here we describe how
that notion is supported in EPILOG. The intuitive way to
implement ASK (and thus to answer questions that involve
predicates Know or Believe) is to allow for question-asking
within a question-answering (QA) process, where the sub-
ordinate QA process is guaranteed to terminate relatively
quickly. (If a question requires prolonged reasoning, the
answer is by definition not known.) Answering questions
about nested beliefs thus involves further nesting of QA pro-
cesses. That is the basic idea behind recursive QA.

Again implementing this is straightforward in any system
with a clean and modular implementation of the QA process.
What is needed is that the QA process must work only on
local variables and the same must be true for all systems
on which QA depends (e.g., knowledge base, unification,
inference, normalization, etc).

In addition to having a modular system, one needs a way
to connect inference with the QA process so that this process
can be started whenever it is required by some inference. In
EPILOG this is achieved by using the metasyntactic devices
described in the previous subsection and by providing a sin-
gle special-purpose function, called “APPLY”, that the QA
process knows how to evaluate whenever its arguments are
quoted and metavariable-free. It executes a Lisp function of
the same name for the given arguments. In particular, to im-
plement the ASK mechanism we added the following axiom
to EPILOG’s standard knowledge base; this defines “know-
ing that w” for a formula w containing no free variables as
being true just in case the knownbyme? Lisp function returns
t for argument w:

(∀wff w (’w WithoutFreeVars) ((me Know (that w))
⇔ ((APPLY ’knownbyme? ’w) = ’t))).

In effect knownbyme? implements the ASK mechanism as
a recursive QA-process. Note that EL allows for an optional
restrictor in quantified statements, and here a restrictor (’w
WithoutFreeVars) is present. WithoutFreeVars is a predicate
with one argument denoting an expression, typically speci-
fied using quotation, that is true whenever the argument con-
tains no free variables. To evaluate this predicate EPILOG
will have another axiom in its knowledge base:

(∀subst x ((’x WithoutFreeVars) ⇔
((APPLY ’withoutfreevars? ’x) = ’t))),

where withoutfreevars? is the Lisp function that detects
whether or not an EL expression contains free variables. An
alternative to this approach would be to leave the attachment
of procedures to EL predicates or functions implicit; how-
ever, by using explicit attachment axioms like the above,
EPILOG is able to make its own reflective decisions about
when to employ particular procedures.

152

Currently, all formulas involving APPLY are equivalences
(like the two above) in which the variables are universally
quantified and usually constrained by simple conditions (like
(’w WithoutFreeVars) above). However no constraints are
imposed on the syntax of formulas involving APPLY.

Whenever the QA process encounters a subgoal that con-
tains an equality in which one of the two equated terms
is an APPLY-term, where its arguments are quoted and
metavariable-free, EPILOG evaluates it by executing the
Lisp function specified as the first argument of APPLY, with
the arguments provided for it. The result, which must be a
quoted EL term, will be substituted for the APPLY term in
the original equality.

Inference in EPILOG
In this section we will describe other characteristics of EPI-
LOG’s inference machinery not directly related to metarea-
soning but important to EPILOG’s overall functioning.

Normalization
Because EL uses non-first-order constructs, e.g., substi-
tutional quantification, quotation, lambda abstraction, and
modifiers, the standard FOL normalization to clause form
cannot be used. (Besides, clause form can be exponentially
larger that the original form, for example for a disjunction
of conjunctions.) Normalization for EL is based on term-
rewriting systems, in particular on the following algorithm.
(Think of EL expressions as trees, where the children of a
node are the immediate subexpressions.) The two main parts
of the algorithm are

1. a set of rewriting rules each divided into two parts:
(a) a set of preconditions. Each precondition is defined by

a child identifier and by a function name. The child
identifier extracts one or more descendants (subexpres-
sions) of the EL expression currently being analysed,
and the function name specifies a boolean Lisp function
that takes as argument(s) the descendant(s) specified by
the first part.

(b) a function that defines the effects of the rule. This func-
tion is executed when all preconditions are satisfied.

2. an application procedure that traverses the EL tree check-
ing at each node if a rule applies. If a rule applies, it is ex-
ecuted, and if this modifies the node, control backs up N
levels from the current node and the traversal is restarted
from there. N is the maximum depth of the descendants
used in the preconditions of the normalization rule. For
example, if the rule uses only children then N = 1, while
if some use a grandchild then N = 2, etc.
Currently the normalization process employs a total of 14

rules. They perform such transformations as moving nega-
tions inward, Skolemizing top-level existentials, ordering
the arguments of ANDs and ORs, eliminating simple tau-
tologies, moving quantifiers inward, etc. As in other reason-
ing systems, normalization contributes greatly to reasoning
efficiency by collapsing classes of “obviously” equivalent
formulas into unique (sets of) formulas. As an example, con-
sider the unnormalized form of the statement, “One email in
my inbox contains no message”:

(∃ e0 (e0 AtAbout Now)
((∃ x ((x Email) and (x in MyInbox))

(No y (y Message) (x Contain y))) ** e0)),
where we have simplified my inbox to a constant for simplic-
ity. If this is provided to EPILOG as a fact, then normaliza-
tion introduces Skolem constants for the existentials e0 and
x, narrows the scope of the episode-characterization opera-
tor “**” to exclude atemporal conjuncts, separates implicit
conjunctions, and (if we choose to include a rule mandating
this) replaces (No y φ ψ) with (∀ y φ (not ψ)):

(SK-1 AtAbout Now), (SK-2 Email), (SK-2 in MyInbox)
((∀ z (z Message) (not (SK-2 Contain z)) ** SK-1).
Note that normalization of a goal does not Skolemize ex-

istentials, since these serve as matchable variables. In prov-
ing a goal with a top-level universal, the universal quantifier
may be eliminated and the variable given a unique new name
(which thus can be thought of as the dual of Skolemization).

Inference Graph Handling
EPILOG’s QA is in its simplest form a natural deduction
back-chaining system. It starts with the initial question, then
generates a proof subgoal and a disproof subgoal (i.e. the
negation of the initial question). The QA process maintains
an agenda of subgoals based on an AVL tree that decides
which subgoal to process first. We have not finalized the
method of sorting subgoals on the agenda; some criteria
may be: subgoal complexity, their probability, their level,
etc. More testing is required to decide which combination
of criteria is advantageous in the majority of situations.

Each subgoal is first checked to see if it can be simplified:
• Conjunctions are split into their conjuncts, and each con-

junct is handled independently of its siblings until it is
solved. When a solution to a conjunct is obtained, it is
properly combined with the solutions of the siblings.

• Disjunctions are split for each disjunct by assuming the
negation of the remaining disjuncts. Here we make use
of another feature, namely knowledge base inheritance.
Each question is associated with a knowledge base that
defines what knowledge can be used to answer the ques-
tion. When assumptions are made, they are loaded into
a new knowledge base (to be discarded at the end of the
QA process) that inherits the contents of the knowledge
base used before the addition of the assumptions. Cur-
rently the consistency of the assumptions is not checked,
but problems will be detected from the contradictory an-
swers produced.

• Implications, A ⇒ B, are converted into two subgoals,
(not A) and B assuming A.

• Equivalences are split into conjunctions.
• Universally quantified goals are simplified by generating

a new constant and unifying the universal variable with it.
If the universal quantifier has a restrictor, that is assumed.
When no more simplifications can be applied, goal-

chaining inference is attempted. From each subgoal, one
or more keys are extracted and used to retrieve knowledge.
These keys are the minimal well-formed formulas embed-
ded entirely by extensional operators such as quantifiers and

153

truth-functional connectives. Each subgoal maintains an-
other agenda that decides which key to use first for retrieval.
As in the case of subgoal ordering, we have not yet final-
ized the sorting criterion. Possibilities are preferring keys
that contain more variables, or ones with the least associated
knowledge.

Naturally, if a retrieved fact exactly matches a goal,
then goal-chaining terminates for that goal. In the general
case, goal-chaining inferences can be thought of as being
resolution-like, except that the literals being resolved may
be arbitrarily embedded by extensional operators. As a sim-
ple example, suppose that we have a known fact

(∀ x (x P) ((x Q) and (x R))),
i.e., every P is a Q and an R. If we use this fact in pursuing
a goal of form ((C Q) and φ) (where C is a constant and φ
is some wff), then the derived goal will be ((C P) and φ).
The extensionally embedded literals that were unified were
of course (C Q) in the goal and (x Q) in the given fact. If
one of these were intensionally embedded, for instance by
reification operator “that”, forming an object of an attitu-
dinal predicate, the unification and hence the goal-chaining
inference would not be attempted. (For details, see, e.g.,
(Schubert & Hwang 2000).) For each successful inference
performed for a subgoal together with a retrieved formula, a
child subgoal is attached to this subgoal and the process is
repeated (with termination if the derived subgoal is truth).

The two processes just described (i.e., simplification and
inference) construct an inference tree. However loops and
repetitions can occur, worsening performance or preventing
success altogether (in case the subgoal selection behaves as
a depth-first run-away). Therefore we added two optimiza-
tions, the second of which transforms the inference tree into
an inference graph:

1. Loop detection: a loop is created when the same subgoal
appears twice along an inference branch. In saying that
a new subgoal is the “same” as a previous one, we mean
that it has the same EL formula and is associated with
the same knowledge base, or with a knowledge base that
inherits that of the previous subgoal.

2. To avoid doing the same reasoning multiple times, we
detect when the same node (where “same” is defined
as above) is present on a different branch (therefore not
forming a loop). In this case, we connect the two nodes
and in case the already present node uses the exact same
knowledge base as the new one, we completely stop fur-
ther processing of the new node. If instead the new node
uses a knowledge base that inherits from that of an old
node we continue to process the new node as if the old
didn’t exist (except for adding the connection between the
two nodes).
In case the old node is answered, the answer is propagated
to the new node as well.

Multiple answers
In many cases it is necessary to be able to handle multiple
answers for a given subgoal, for example for wh-questions
(as opposed to yes/no questions), such as “What people do
you know?”

The main capabilities required to support multiple an-
swers are:

• the ability to propagate the answers found (as bindings of
question-variables) from the leaves of the inference graph
up to the initial question. This includes taking care of
merging, or waiting for the answers of sibling nodes in
case they were part of a conjunction or disjunction;2 and
properly handling renaming of variables and the merging
of unifiers.

• the ability to avoid the propagation of duplicated answers.
We consider two answers the same if they use the same
knowledge and produce the same unifiers.

Term Evaluation
Sometimes the answer may contain complex terms, for
example functions, instead of their result as expected by
whomever asked the question. For example, to the ques-
tion “How old are you?” the system could answer with “The
difference in years between 1st of January 1993 and now”
instead of actually computing the difference.

Currently we employ a term evaluation procedure based
on the same QA process. Given a complex ground term τ
the question (∃ x (x = τ)) is posed and the unifications for
x are collected only if these are simpler than τ itself. The
process is recursive, i.e., the unifications collected for x can
be evaluated if they are complex terms. Because the system
uses the same QA process it can detect loops and avoid du-
plication in the evaluation process as previously described in
the subsection on inference graph handling.

However this is not ideal because the evaluation process
is preprogrammed and fixed. Instead, as indicated in (Schu-
bert 2005), we would like the QA process to automatically
look for the correct type of answer as specified by syntactic
constraints that are part of the question itself; if we ask the
age of an individual, the question should probably constrain
the answer to be a decimal integer providing the age in years.

Examples
In this section we describe some of the examples used to test
the features of this system. We will point out how metarea-
soning plays a (major or minor) role in these examples.

In (Morbini & Schubert 2007) we included a preliminary
discussion of the questions “Do pigs have wings?” and “Did
the phone ring (during some particular episode E1)?”. Pre-
viously the examples could only be handled ”socratically”,
leading EPILOG through the proofs step-by-step, whereas
now the questions are solved autonomously, as projected in
that paper. We will not repeat the details here, but we should
reiterate the claim the examples are intended to illustrate;
viz., that much of our commonsense question-answering,
even if not explicitly concerned with meta-level concepts,
tacitly relies on metaknowledge about our own cognitive
functioning. In the case of the question whether pigs have
wings, we claimed that a negative answer depends on the

2In case the siblings are part of a conjunction, the propagation
of the answer of any one of them must wait for a positive answer
from all the siblings, since the answer must satisfy all conjuncts.

154

meta-belief that our “pig knowledge” is complete with re-
spect to pigs’ major bodyparts (especially very visible ones;
for contrast consider the question “Do pigs have tonsils?”).
This autocognitive approach (as we termed it in (Morbini
& Schubert 2007)) is not only more realistic than the usual
default inference approaches, but also more efficient, be-
cause it substitutes fast ASK (self-query) checks for poten-
tially unbounded consistency checks. Similarly the ques-
tion whether the phone rang, in case of a negative answer,
depends on meta-beliefs about how, and under what condi-
tions, we acquire and retain knowledge about audible events
in our environment.

One of the most interesting new questions we have tried
so far is the question “How old are you?”. Though one
can easily imagine simple short-cut methods for answering
such a question, doing so in a principled, knowledge-based
fashion can be non-trivial. The following table shows the
knowledge used for this question:

EPILOG’s birth date is 12 o’clock on the 1st of January
1993
((date 1993 1 1 12 0 0) BirthDateOf Epilog)
If x is the birth date of y then for every event e the age
in years of y at the time of e is the difference in years
between x and the time of e
(∀ y (∀ x (x (be (BirthDateOf y))) (∀ e

((y HasAgeInYears (DiffInYears x (TimeOf e))) @ e))))
Time density axiom
(∀ y (∃ x (x AtAbout y)))
Approximation of the meaning of AtAbout
(∀ x (∀ y (x AtAbout y) ((TimeOf x) = (TimeOf y))))
Symmetry of the predicate AtAbout
(∀ x (∀ y ((x AtAbout y) ⇔ (y AtAbout x))))
Axiom that says how to evaluate the predicate
DiffInYears
(∀term x (∀term y (’y TimePointRep)

(∀term z (’z TimePointRep)
((x = (DiffInYears y z)) ⇔

(’x = (APPLY ’diff-in-years? ’y ’z))))))
Axiom that says how to evaluate the predicate Time-
PointRep
(∀term x ((’x TimePointRep) ⇔

((APPLY ’time-point-rep? ’x) = ’t)))

The question in EL becomes
(∃ x (∃ e (e AtAbout Now)

((Epilog HasAgeInYears x) ** e)))
The answer found is that in the event (FNSK-449 Now)
the age of EPILOG is (DiffInYears (date 1993 1 1 12 0 0)
(TimeOf (FNSK-449 Now))) where FNSK-449 is the Skolem
function derived from the density axiom; so (FNSK-449
Now) identifies an event temporally near the event Now.

Given this answer, the evaluation of (TimeOf (FNSK-449
Now)) using the knowledge that ((FNSK-449 Now) AtAbout
Now) and that

(∀ x (∀ y (x AtAbout y) ((TimeOf x) = (TimeOf y))))
produces (TimeOf Now), which can be evaluated to the cur-
rent time.

It is in the evaluation of (DiffInYears (date 1993 1 1 12

0 0) (TimeOf Now)) that metareasoning comes briefly into
play. EPILOG knows, in virtue of the last two axioms in the
above table, that it can do the evaluation using the Lisp func-
tions diff-in-years? and time-point-rep?. As noted before,
by making EPILOG aware of the procedures at its disposal
and what they accomplish (instead of leaving procedural at-
tachment implicit), we can leave its choices of what proce-
dural knowledge to use at what times to its own deliberate
decision-making. This also opens the door to future work on
learning by self-programming – the creation and purposeful
use of new programs (or plans) aimed at solving specific
problems.

In the current solution, as already said in the subsection
on term evaluation, we explicitly call the term evaluation
routine for each complex ground term returned as answer to
a question.

The next question considered here is “What is your name
(now)?”. Metareasoning enters the process only incidentally
here (we’ll point out where), but to the extent that an agent’s
knowledge makes reference to itself (here, through the
self-referring term Epilog), it indicates its potential for
reflective cognition. The knowledge used is displayed in the
following table:

Epilog-name is a name
(Epilog-name Name)
A name is a thing
(∀ x (x Name) (x Thing))
Now is during event E2
(Now during E2)
The event E2 is characterized by EPILOG having name
Epilog-name
((Epilog Have Epilog-name) ** E2)
Have is a continuous property: if x have y in e then x has
y in all events during e.
(∀ x (∀ y (∀ e ((x Have y) ** e)

(∀ z (z During e) ((x Have y) ** z)))

The question in EL is represented as
(∃ e0 (e0 AtAbout Now)

((∃ z ((z Name) and (Epilog Have z))
(∃ y (y Thing) (y (BE (L x (x = z)))))) ** e0)).

The apparently convoluted form is due to the fact that this
question is automatically generated from the NL input.

After normalization we obtain the simpler question
(∃ e0 (e0 AtAbout Now)

(∃ z ((z Name) and (z Thing)) ((Epilog Have z) ** e0))).
The normalization procedure moves inward the “**” opera-
tor using the knowledge that “Name” and “Thing” are atem-
poral predicates. This knowledge, used by the normalization
procedure, is explicitly asserted in EL. This is the inciden-
tal use of metaknowledge referred to at the beginning of this
example.

In the current reasoning we manually add the fact that
EPILOG’s name is valid in an interval of time that includes
the Now point. However, in future we would like this prop-
erty to be automatically generated by a module in charge of
maintaining the self-model of the system.

The last example shows how the metasyntactic devices

155

could be used to answer topical questions. The question is
“What do you know about the appearance of pigs?”. The
following table contains the knowledge used:

Pigs are thick-bodied.
((K (Plur Pig)) ThickBodied)
ThickBodied is a predicate about the appearance of some-
thing.
(’ThickBodied AppearancePred)
Every formula with structure (x p) in which p is an ap-
pearance predicate is a fact about the appearance of x.
(∀pred p (’p AppearancePred)

(∀ x (x p) ((that (x p)) AppearanceFactAbout x)))

The question in EL becomes
(∃ x (x AppearanceFactAbout (K (Plur Pig)))).

The answer found is “(that ((K (Plur Pig)) ThickBodied))”.
Note that this answer depends on the metainference from the
second and third axioms above that the answer wff is indeed
an appearance-fact about pigs. We are not aware of any other
system capable of deductive topical reasoning of this sort, in
support of descriptive question-anwering.

However, to retrieve more complex knowledge about pigs,
for example that pigs have curly tails, more complex knowl-
edge would have to be used.

Discussion and Further Work
The examples given show the ability of the current system
to handle basic forms of metareasoning, in support of com-
monsense question-answering about the world and about it-
self. To the extent that self-modelling is crucial to self-
assessment and self-improvement – the classical goals of
metareasoning, it is also appropriate here to mention again
our past demonstration of EPILOG’s ability to retain and
make inferences from facts about its own nature, autobiog-
raphy, and recent discourse events (Schubert 2005).

However, there is still much work to be done; some of the
more pressing items are the following:

• Currently we have implemented only an exhaustive re-
trieval mechanism to be able to test the system. Given that
our goal is to build an inference agent able to deal with the
large knowledge base required by commonsense applica-
tions, having an efficient knowledge retrieval mechanism
is crucial. Without an efficient retrieval mechanism the in-
ference engine will only be able to answer questions using
a small knowledge base.
EPILOG already had an indexing scheme designed to be
scalable but some extensions are required, in particular in
these directions: 1) retrieval of knowledge that uses any
of the metasyntactic devices described in this paper, 2)
closing some retrieval gaps, in particular in goal chaining,
and 3) automatically building the type information needed
to efficiently index a formula based on the most restrictive
type that can be inferred for the variables in it.
After this efficient indexing schema is finalized and im-
plemented, we plan to test its scalability using some large
knowledge base (for example, the FOL conversion of
OpenCyc (Ramachandran, Reagan, & Goolsbey 2005)).

In another test we plan to assess the completeness and
efficiency of retrieval and goal chaining, by running for-
ward inference and checking how many of the inferences
produced (and in how much time) can be proved by goal
chaining.

• For solving many commonsense problems it seems nec-
essary to provide the general inference engine with a set
of specialized inference methods. In EPILOG these spe-
cialized reasoning routines are called specialists. In the
previous version of EPILOG these specialists were “un-
consciously” invoked by the general inference engine. We
would like to add knowledge, based on the APPLY func-
tion, to make the inference engine aware of its specialists
and their capabilities.

• Another front that needs work is the refinement of the
ASK mechanism. Currently the ASK mechanism is made
time-bounded simply by means of a hard limit on the
depth of reasoning. (However, the limit can be computed
so that several desirable properties of knowing are main-
tained – e.g., given that EPILOG knows A it also knows A
or B).

Relationship to traditional conceptions of
metareasoning
The traditional conception of the role of metareasoning in an
intelligent agent is diagrammed in the following figure (Cox
& Raja 2007).

The emphasis in this conception is on control and mon-
itoring of object-level reasoning by higher-level reasoning
processes, and in turn, the control of action in the world by
object-level reasoning (e.g., (Cox 2005)).

It is certainly important to be clear about the dis-
tinction between procedural knowledge (e.g., executable
Lisp routines for verbalizing answer formulas in English),
world knowledge (e.g., knowledge about what animals have
wings), and knowledge about the agent’s own internal repre-
sentations (e.g., that being winged or being thick-bodied are
appearance-properties of the creatures with those attributes).

From this one might infer that our agent architecture,
at least at the conceptual level, fits into the diagrammed
schema, with Lisp routines on the left, world knowledge in
the middle, and syntactic metaknowledge on the right. How-
ever, this alignment breaks down for our architecture in a
number of ways.

Most importantly, the diagrammatic schema makes meta-
level reasoning the ultimate arbiter concerning the activi-
ties of the agent: meta-level reasoning controls object-level
reasoning, which in turn controls physical action. We do
not yet have an end-to-end self-motivated agent, only a

156

limited question-answering agent with some signs of self-
awareness. But the overall control scheme we envisage for
a purposive agent is not based on two cascaded levels of
decision-making, but rather on continual modification, eval-
uation, and partial execution of a “life-long” plan. This plan
contains hierarchically structured goals and actions (and var-
ious annotations concerning the purpose of steps, their pre-
requisites, effects, timing, etc.), and the unceasing pursuit of
the planner is to try to improve the expected long-term net
utility of the plan.

Now, certainly this plan will specify physical goals and
actions (especially, for our purposes, “listening” and “speak-
ing”). But it is also perfectly possible for goals or steps to
be reasoning goals or steps (e.g., to confirm or disconfirm
certain propositions, to identify tuples of entities standing in
certain specified relationships, to find a hypothesis account-
ing for given facts, etc.) Thus, one and the same planning
process can select and schedule both physical actions and
reasoning actions.

It might still be argued that when it is doing the former,
it is operating in object-level reasoning mode, and when it
is doing the latter, it is operating in meta-level reasoning
mode. However, recall our approach to accessing proce-
dures using explicit attachment axioms that describe what
a procedure accomplishes. An agent using such axioms to
choose a physical action (e.g., verbalizing a formula in or-
der to convey information) is using metaknowledge in mak-
ing that choice – viz., knowledge that relates the name and
I/O syntax of a procedure to the purposes it can accomplish
under given conditions; thus from our perspective such rea-
soning is metareasoning, not object-level reasoning. Con-
versely, deciding on object-level reasoning goals or actions
may well involve the use of object-level knowledge. For ex-
ample, the decision to try to gain knowledge – a meta-level
goal – by asking the user a question may hinge on whether
or not the user is considered trustworthy – an object-level is-
sue. Thus the reasoning leading to a knowledge-acquisition
action certainly need not be (exclusively) a meta-level activ-
ity.

Not only does our conception of agent control blur the dis-
tinction between control of action and control of reasoning,
it also blurs the distinction between “ground-level” action
(doing) and reasoning. We mentioned actions such as ver-
balizing an answer formula in English in response to a user’s
query, as a possible example of a ground-level action. How-
ever, complex cases of verbalization may involve reasoned
choices “along the way”, such as choices of referring expres-
sions, or prosodic features (e.g., stress in spoken language,
or caps or italics in printed responses) that optimize com-
municative efficacy. Thus doing (on the left) can become
inextricably entangled with object-level and even meta-level
reasoning. Moreover, to the extent that an agent might en-
capsulate certain sequences of reasoning steps as named, ex-
ecutable routines if they have proved effective for certain
types of problems, reasoning itself may become action-like.

So for us, the guiding picture in agent control is a con-
tinual, reward-seeking planner. The distinction between the
action level, the object level, and the meta level lies primar-
ily in the kind of knowledge that happens to be employed

in a particular reasoning or planning step. For example,
one important aspect of planning is the reasoned elabora-
tion of a step of type “achieve subgoal G” into more ex-
plicit actions to achieve G. This may well be done with the
help of axioms such as one stating that “doing action(s) A
brings about G”. Now, is this elaboration step an instance of
object-level or meta-level reasoning? The answer depends
on the syntax and semantics of A and G. If A and G re-
fer exclusively to objects, actions and situations external to
the agent’s mental contents, then the elaboration step could
be regarded as an object-level reasoning step; if instead A
describes a reasoning action (perhaps using attitudinal pred-
icates such as “I try to prove that ...”, or perhaps using ex-
plicit quotation to refer to an executable inference procedure
with known effects), then the elaboration step could be re-
garded as a meta-reasoning step. So in our conception, the
distinction between meta-level and object-level reasoning is
not an explicit architectural one, but rather is “hidden” in the
syntactico-semantic properties of the knowledge involved.
The central architectural challenge, in this view, is the for-
mulation of the requisite planning control structure.

But then, where does that leave the issue of self-
improvement through self-monitoring (the issue already
mentioned above as tightly linked to metareasoning in the
literature)? Given our conception of agent control, self-
improvement is primarily a matter of learning to plan bet-
ter. This, we think, should be a byproduct of the operation
of underlying, fixed processes present from the outset. (In
reasoning as in governing, the buck has to stop somewhere!)
These processes include not only ones for retrieving, syn-
thesizing and executing plans and for using available knowl-
edge to predict consequences of contemplated actions and
their net future utility, but also ones that use the episodic
record of the agent’s experiences to “debug”, improve and
augment the available knowledge about the world, about the
agent itself, about the consequences of actions, and about
their utilities to the agent. This certainly echoes the classical
mantra, but we are not optimistic about its immediate and
full realization. One can at present experiment with param-
eter adjustment as a weak form of learning (e.g., learning to
prefer a given method A to a given method B under certain
conditions); but we think that human-like learning presup-
poses human-like knowledge and human-like reasoning and
planning abilities. We have chosen thus far to focus on the
knowledge and reasoning infrastructure seemingly required
in this formidable enterprise, and hope that what we learn
will eventually shed light on how we learn.

Acknowledgements
This work was supported by NSF grant IIS-0535105 and
by a 2007-2008 gift from Bosch Research and Technology
Center (Palo Alto); the content has benefited significantly
from the thoughtful commentary and justified prodding of
the anonymous referees.

References
Cox, M., and Raja, A. 2007. Metareasoning: A manifesto.
Technical Report BBN TM-2028, BBN Technologies.

157

Cox, M. 2005. Metacognition in computation: A selected
research review. Artificial Intelligence 169(2):104–141.
Kaplan, A. N., and Schubert, L. K. 2000. A computational
model of belief. Artif. Intell. 120(1):119–160.
Kaplan, A. 2000. A Computational Model of Belief. Ph.D.
Dissertation, University of Rochester.
Morbini, F., and Schubert, L. K. 2007. Towards realis-
tic autocognitive inference. In Logical Formalizations of
Commonsense Reasoning, 114–118.
Ramachandran, D.; Reagan, P.; and Goolsbey, K. 2005.
First-orderized researchcyc: Expressivity and efficiency in
a common-sense ontology.
Schubert, L., and Hwang, C. 2000. Episodic logic meets
little red riding hood: A comprehensive, natural repre-
sentation for language understanding. In Iwanska, L.,
and Shapiro, S., eds., Natural Language Processing and
Knowledge Representation: Language for Knowledge and
Knowledge for Language. Menlo Park, CA: MIT/AAAI
Press. 111–174.
Schubert, L. K. 2005. Some knowledge representation and
reasoning requirements for self-awareness. In Metacogni-
tion in Computation, 106–113.

158

