
Expedient Integration of a Laser-Based Feature Detector

David Gustafson and Aaron Chleborad and Andrew King
dag@ksu.edu aaron123@ksu.edu aking@ksu.edu

234 Nichols Hall
Department of Computing and Information Science

Kansas State University

Abstract

For our programming convenience we have implemented an
extensible robotic control framework in the Java program-
ming language. This framework manages some of the tedious
details in robotics programming (sensor - behavior integra-
tion and concurrency issues) as well as enforces a modular
programming style that works well when a team is involved
with robot software development. We discuss how this frame-
work allows for modular software development. As an exam-
ple we show how a laser range data based object detection
algorithm can be implemented as a framework sensor mod-
ule and how information provided by that new module can be
utilization by the planning and mobility modules.

Introduction

We have developed a robotic control framework in the Java
language to expedite robotic control software development
in a team of student or academic researchers. Our obser-
vations of the development process in this environment in-
dicates that developers have an easier time building robotic
software systems when there is a high degree of separation
between the low level details of controling the robot itself
and the abstract specification of high level behaviors.
Robot control systems like ARIA and Playerstage pro-

vide a robust and sensible separation from the low-level de-
tails of robotics programming but developing certain types
of robotic behaviors, such as complex ”event-react” scenar-
ios on those systems can require the developer to build a
clever imperative style solution in a language like C. Stu-
dents end up spending more time fixing concurrency errors
and integrating team member’s code than testing the capa-
bility of their software on the real robot.
We have used this framework to rapidly prototype com-

plex robotic control software such as a system designed to
complete in the Semantic Robot Vision Challenge (where
the robot must navigate an environment safely and visually
identify objects) (Gustafson et al. 2007) and for a robotic
IED detection and disposal platform. Both of these projects
utilized the MobileRobotics Pioneer P3AT robot platform.

����������	
������

��������	
���
�������

���	
�����
�������

���������	

����������	����� 
���! ��� 
���" ����
	��

�������! �������" �������#
�������$

%��	�&

Figure 1: The taxonomy of framework modules and how
information about the world and command directives flow
between them.

High Level Framework
This robotic control framework was designed and built for a
robot software development environment that is comprised
of developers with a wide range of backgrounds and pro-
gramming capability. Many times, whether for a class or re-
search project, the team developing code to drive a robot sys-
tem will be comprised of five or more software engineering
students. Management of the codebase is often made chal-
lenging due to pressure to rapidly create a runnable codebase
where the robot and its codebase can be tested. Towards the
goal of ameliorating code quality challenges in such an en-
vironment, this framework: (1) enforces a strict modularity
(a running system is a collection of Java IModule objects)
where module function is constrained by module type (2)
internally manages inter-module concurrency and commu-
nication, and (3) is implemented in a programming language
with some level of type-safety (Java).
As mentioned above the IModule are constrained in

their function by their type. A operational robot con-
trol system built in this framework would normally consist
of one ICollaborationSpace module, one or more

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5



ISensor modules, one or more IAdviser modules, and
one IArbitermodules.
ICollaborationSpace modules are responsible for

managing the current world knowlege that can be made
available to the other modules in the system. Other modules
can retrieve or post data to an ICollaborationSpace
module via key-value queries.
ISensor modules define data conduits between sensors

(both real and virtual) to the collaboration space. The frame-
work supports two types of ISensors active and pas-
sive. Active sensors will only post data to the collaboration
space if directed by a control module, whereas passive sen-
sors are constantly posting data to the collaboration space.
The framework automatically manages the concurrency and
threading of a passive ISensor
IAdviser modules query the collaboration space and

then emit a plan or task list based on the state of the collab-
oration space. Tasks are generated either by composition of
sub task types the framework automatically provides or by
instantiating a fresh developer programmed task.
IArbitermodules receive tasks that IAdvisermod-

ules have emitted and determine what task will be commit-
ted into action. An IAdviser has access to the collabora-
tion space also.
The ITaskExecutor module executes the Tasks (and

possibly subtasks) that the IArbiter has committed to ac-
tion. An ITaskExecutormanages the ordering and tim-
ing of task execution and completion.
A running system is defined in a configuration file that is

read and loaded at runtime. The framework supports loading
modules from disk, as well as runtime injection of modules
via a network interface if so configured.
The framework includes default implemen-

tations of the ”core” system modules, such as
an ICollaborationSpace, IArbiter, and
ITaskExecutor. An example configuration file is
as follows.

ICollaborationSpace=edu.robotics.DCS
ITaskExecutor=edu.robotics.DfltExecutor
IArbiter=edu.robotics.DfltArbiter
IAdviser=edu.robotics.RandomWalkAdviser
ISensor=edu.robotics.P3ATSonar
ISensor=edu.robotics.P3ATBump
ISensor=edu.robotics.UKYOLaser

Laser based feature detector
The data provided by the SICK LMS 200 laser after a com-
plete scan has high angular resolution by default. The de-
fault settings give a scanning angle of 180◦ allowing a read-
ing for every 1◦ at a range of 30m for a comprehensive range
image detailing the features in the environment on the laser
scan plane. For finer sensor readings, the angular resolution
can be increased up to .25◦ with a loss in scanning angle
which is reduced to 100◦. A good compromise allows an
increase of the angular resolution to .50◦ while keeping the
scanning angle at 180◦, giving a total of 360 range readings
every 26 ms (SIC 2002). Range images are typically speci-
fied in the polar coordinate system {(ρi, θi) | i = 1..NR},

with(ρi, θi) being the polar coordinates of the ith range
reading with ρ denoting the range in millimeters and θ the
angle of the reading in radians, with the origin at the location
of the sensor.

Figure 2: A typical range image of the environment. Three
points of interest are detected along with other items in the
environment such as walls, a box and clutter. Red and green
dots signify breakpoints in the laser data.

The first step in the identification process requires a defi-
nition of each polar coordinate in terms of a function f . Be-
cause we are working with digital data that is finite, the max-
imum possible range change is also finite. The shortest dis-
tance over which the change can occur is between individual
range readings. This provides a one-dimensional function
which can be utilized during data processing. The process of
finding breakpoints and rupture points involves identifying
range readings that change abruptly from their surrounding
range points in the laser scan data by exceeding a threshold
value. A typical method of finding these abrupt changes in-
volves using the second-order derivative of the digital func-
tion, i.e. the laser scan data, to isolate them. To under-
stand how to arrive at the second-order derivative it is benefi-
cial to understand how to calculate the first-order derivative.
The basic definition of the first-order derivative of a one-
dimensional function f(x) is the forward-difference (Gon-
zalez and Woods 2007)(Basson and Engelbrecht 1999)

∂f

∂x
=

Δf

Δx
≈

f(x + 1)− f(x)

(x + 1)− x
(1)

To find the second-order derivative, the first-order forward-
difference is extended to two forward differences(Gonza-
lez and Woods 2007)(Basson and Engelbrecht 1999)(Morse
2000)

∂2f

∂x2
=

Δf

Δx
−

Δf

Δ(x − 1)
(2)

≈
f(x + 1)− f(x)

(x + 1)− x
−

f(x)− f(x− 1)

x− (x− 1)
(3)

6



= f(x + 1) + f(x− 1)− 2f(x) (4)
One should note that the use of the partial derivative does

not affect the result of what is trying to be accomplished
as ∂f

∂x
= df

dx
when there is only one variable in the func-

tion. Partial derivatives that are used here remain consistent
with image processing literature. The second-order deriva-
tive was chosen as the method to extract breakpoints since
it is non-zero at the start and end of all changes in range.
Segments of data are formed by pairing breakpoints in suc-

Figure 3: 2nd derivative image of Figure 2. Note green
and red dots represent breakpoints. The adaptive breakpoint
algorithm is used to determine these dynamically. Larger
spikes represent large sudden changes in the laser data. The
large spike continuing off the image edge represents the sus-
picious object near the laser in Figure 2. Conversely, the flat
parts of the data represent the walls and areas of little change
from point to point.

cession starting from the beginning of the breakpoint list.
The segmentation is meant to classify the data into groups
which could possibly associate them with structures in the
environment (Nunez et al. 2006). It was stated previously
that in order to classify breakpoints and rupture points, they
must differ significantly from their surrounding data points
by a certain threshold. (Borges and Aldon 2004) describe a
technique that can be used to adjust the threshold dynami-
cally thereby reducing the likelihood of adding inappropri-
ate breakpoints. In their algorithm, two consecutive range
readings belong to different segments if

‖(ρ, θ)i − (ρ, θ)i−1‖ > ρi−1 ·
sin Δθ

sin(λ −Δθ)
+ 3σr (5)

where Δθ is the angular resolution, λ corresponds to the
worst case of incidence angle of the laser scan ray with re-
spect to a line for which the scan points are still reliable. The
statistical error in the range readings is represented by σr.
Values for Δθ, λ and σr are .50, 10 and .005 respectively
and were obtained from a mixture of (Nunez et al. 2006),
(SIC 2002) and this experiment’s specific value for angular
resolution.
If a breakpoint is detected, both (ρ, θ)i and (ρ, θ)i−1

added to the breakpoint list. The reader should note that

Figure 4: Segment illustration as defined in (Nunez et al.
2006)

Figure 5: Adaptive breakpoint detector as defined in (Borges
and Aldon 2004). This determines how far a point must be
from a neighboring point so as to classify it as a breakpoint.
The green and red dots in Figures 2 and 3 were detected
using this technique.

7



‖(ρ, θ)i − (ρ, θ)i−1‖ corresponds to the first derivative of
the digital laser data function. As stated earlier, the imple-
mentation in this report uses the second-order order deriva-
tive as noted in (4) but the results are similar due to the fact
that (Borges and Aldon 2004) record both the ith and ith − 1
in a single iteration of the processing loop while this imple-
mentation records only the ith − 1 per iteration. However,
the second derivative yields a non-zero result at both the start
and end of changes in range which is essentially equivalent
to both points captured in (Borges and Aldon 2004) imple-
mentation utilizing the first order derivative.
Once the list of breakpoints has been compiled, it can used

in a variety of ways ranging from assisting in localization
tasks to object detection efforts.

Laser Object Detector as Framework Modules
In this section we discuss how we have built framework
modules that allow a robot to perform as an IED (improvised
explosive device) detection and disposal robot. IED objects
in the environment are cardboard cyclinders of varying size
and location. These framework modules allow the robot to
detect the IED objects with a laser range scanner (such as a
SICK LMS or UKYO) and then approach the IED.

object detector
The object detector module, ObjectSensor is an pas-
sive virtual ISensor. This means that the object detec-
tor is being driven by the framework thread manager to
query the collaboration space for some knowlege, proccess
this knowlege, then post some new knowlege back into the
collaboration space. This sensor queries the collaboration
space asking for the latest LaserRangeScanData (A
data type provided by the framework) which contains a vec-
tor of 180 integer values representing the range in milimeters
where the vector index is the scan direction. In this instance
the ObjectSensor is continually retrieve the latest scan
posted by the laser range finder module, applies the range
based object detection algorithm, and then posts a collection
of world vectors (MapVector object) back to the collabo-
ration space.

behavior module
The behavior module, ObjectAdviser is a relatively
simple IAdviser which periodically checks the collab-
oration space for world object vectors. If object vectors
are retrieved from an area of the map the robot has not
yet visited (according to the collaboration space) then the
ObjectAdvisor will emit a composition of the built in
task types, one that tells the robot to drive to a coordi-
nate, the other to generate a collaboration space post (a
MapLandmark object) that indicates the robot has visited
this object.

Conclusion
This framework has allowed us to rapidly prototype robot
control software for several different scenarios. The frame-
work has increased the ease of integrating code from dif-
ferent student developers. The framework configuration for

�������	
����
���

�����

	
'�����

�
������

���
�����
�������

��������

�����������������
�
����������
���
���

����������
���

�������
���
�

���
��
���
�

�
��
���
�

�����
������
������
�

%����&

Figure 6: Depiction of the modules running in a robot con-
trol system configured to detect objects via the laser detector
and approach detected objects.

the Semantic Robot Vision Challenge consisted of 5 non-
trivial ISensormodules, and 3 different IAdivsermod-
ules. The IAdviser modules can be enabled or disabled
depending on how well they each perform in the SRVC en-
vironment (which is usually much different than the home
testing environment.) 5 different student developers were
involved in the implementation of these 8 modules, and very
no effort was expended debugging adverse interactions be-
tween different developer’s code. This has allowed us to
both concentrate on challenging robot problems in parallel
with allowing novice developers to quickly contribute to the
project.

References
Basson, E., and Engelbrecht, A. 1999. Approximation of a
function and its derivatives in feedforward neural networks.
Borges, G. A., and Aldon, M.-J. 2004. Line extraction
in 2d range images for mobile robotics. J. Intell. Robotics
Syst. 40(3):267–297.
Gonzalez, R. C., and Woods, R. E. 2007. Digital Image
Processing (3rd Edition). Prentice Hall.
Gustafson, D.; Marlen, M.; Chavez, A.; and King, A. 2007.
Ksu willie in the aaai 2007 semantic vision challenge.
Morse, B. S. 2000. Lecture 13: Edge detection. lecture.
Nunez, P.; Vazquez-Martin, R.; del Toro, J.; Bandera, A.;
and Sandoval, F. 2006. Feature extraction from laser scan
data based on curvature estimation for mobile robotics.
Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on 1167–1172.
SICK AG. 2002. LMS 200 / LMS 211 / LMS 220 / LMS
221 / LMS 291 Laser Measurement Systems.

8




