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Abstract 
This synopsis presents Harvey Mudd College’s entry into 
the 2008 AAAI robotics exhibition. We demonstrated three 
inexpensive robot platforms on which we have implemented 
a vision-based FastSLAM algorithm for landmark mapping. 
As a result, this project reinforces the educational 
scalability of low-cost platforms: they offer not only a 
compelling invitation to the study of computer science and 
robotics, but a means of engaging students in the recent and 
ongoing work of the AI robotics community.  

Overview 

In the 2008 AAAI robot exhibition Harvey Mudd College 
demonstrated several robotic platforms based on low-cost 
hardware. Each serves as a platform for running 
FastSLAM, a landmark-based mapping algorithm 
(Montemerlo et. al. 2002). Our goal was to demonstrate 
that inexpensive platforms, typically used to engage 
introductory students in computer science and/or robotics, 
can also serve as a basis for student investigations of recent 
and ongoing work in the field of AI robotics. 
 

Platforms 

Our first platform consists of an iRobot Create base  
connected directly to a MacBook Pro resting on top. For 
sensing, we attached an iSight webcam to the assembly. 
Not counting the laptop, the robot cost less than $400, 
putting it well within the means of many undergraduate 
programs. Since the laptop need not be dedicated to the 
robot – indeed, the laptop depicted is used for many other 
purposes – this platform meets our goals of affordability.  
 
Also, because each of the components in Figure 1 is a 
commercial product, there is no special expertise or 
equipment required to build the robot from the parts 
shown. All that is necessary is some way to secure the 
laptop and webcam to the Create, a job for which velcro 
tape works more than well enough. 
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The use of the high-quality iSight camera makes this 
platform the most visually capable of our robots. Vision is 
the crucial sensing modality for the inexpensive and  
repeatable landmark-detection at the heart of the 
FastSLAM algorithm. Another advantage of this platform 
is the simplicity of its software interface. The Create has a 
standard serial API; the webcam interacts easily with the 
laptop, and can be accessed via the OpenCV library. This 
means that we didn't have to spend time writing low-level 
drivers for various components and could focus on the 
higher-level algorithmic concerns. This also means that the 
laptop must travel onboard; the Create is about as small as 
it can be while still handling such a payload. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1  Our Create-based platform. At left is an image of the 
components comprising the robot; at right is the assembled 

platform.  Beyond the existing laptop and webcam, which may be 
swapped as needed, the system's cost totals less than $200. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2   (left) The Myro platform consisting of a Scribbler base 
and Fluke Bluetooth camera. (right) The Scribbler's OpenCV-

based vision system and FastSLAM mapping interface. 
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In addition to the Create-based platform, we implemented 
FastSLAM atop the Institute for Personal Robotics in 
Education's Myro hardware, consisting of a Parallax 
Scribbler base and a Fluke bluetooth camera. Transmitting 
images from the Fluke slows down the running of the 
algorithm, but it has the advantage of allowing students 
work entirely from a familiar laptop or desktop interface 
off-board the robot. Figure 2 illustrates these systems. 

The FastSLAM Algorithm 

Introduced in 2002 (Montemerlo et. al. 2002) and actively 
refined since that time, e.g., (Thrun et. al. 2004), 
FastSLAM combines both nonparametric and Gaussian 
representations of uncertainty in order to build and 
maintain a population of possible maps of a previously 
unknown environment. The algorithm processes a series of 
odometric estimates along with noisy landmark 
observations to produce an estimate of both robot location 
and landmark locations based on a combination of Kalman 
filtering and particle filtering. Although open-source 
implementations exist, we found that the community's 
current codebase serves researchers far better than it serves 
students. This is natural for an algorithm that continues to 
motivate advances in its field, but was not in line with our 
desire to make our code easy to use and understand. 
    
To provide as accessible an implementation as possible, we 
implement the algorithm as a set of Python modules. Our 
goal in re-implementing the algorithm was to produce a 
well-commented piece of code that could be shared with 
other students or with researchers interested in using, 
rather than investigating, the approach. In addition, the use 
of Python dovetails with a strong codebase in place for 
both the Create and Myro hardware. We succeeded in 
running the resulting code on PC, Mac, and Linux-based 
systems without recourse to any third-party software 
libraries. Our FastSLAM codebase is freely available from  
https://svn.cs.hmc.edu/svn/robotics/slam/pySLAM.

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 A population of maps is maintained by FastSLAM, at 
left. The red circle is the pose estimate based only on odometric 

data, showing the robot pointing to the side of the orange 
landmark. Cyan particles capture the uncertainty in the robot's 

location with a mode at the true pose, shown at right. The graphic 
at left superimposes the distinct map maintained by each pose. 

The FastSLAM algorithm has several variants: FastSLAM 
1.0, the algorithm that we have implemented in Python, is 
the simplest and most straightforward. FastSLAM 2.0 uses 
data about the observed landmarks not only to filter robot 
pose particles and to update landmark position estimates, 
but also to generate a more accurate set of estimated robot 
poses with each update. There are also several ways to run 
FastSLAM without knowing which landmark is which. 
This additional challenge requires a data-association metric 
to guide the algorithm to make choices about landmark 
correspondence. We have explored FastSLAM with 
unknown data association. However, our experiences 
suggest that distinguishable landmarks, e.g., the colorful 
construction paper cylinders shown in the figure, create a 
much more accessible – and successful – basis for initial 
student exploration of the approach.  

The Vision System 

The FastSLAM algorithm relies on measurements of 
odometry and landmark locations in order to compute its 
map. Rough odometry is straightforward to obtain. The 
Create platform has built-in wheel encoders; the Scribbler 
does not, but estimation by integrating the commanded 
velocities suffices. Reliably observing landmarks, on the 
other hand, poses a significant challenge. Many FastSLAM  
implementations segment landmarks from laser range-
finder data, e.g., finding tree trunks or architectural corner 
features. To make FastSLAM more accessible on a smaller 
budget, we decided to use webcams to extract landmarks. 
Even with the straightforward color-segmentation of 
uniform cylindrical landmarks, our efforts with the vision 
system dominated the time required to implement the 
mapping algorithm.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Cylindrical landmarks have roughly constant width 
from any viewing angle. As a result, an estimated landmark 

distance can be computed from observed width. 
 
Our vision algorithm is based on several simplifying 
assumptions. First, we assume that the landmarks that we 
are using are each uniquely-colored with respect to both 
each other and their surroundings. This enabled us to use 
relatively simple color-segmentation and blob-filling 
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methods to decide which part of an image contained a 
landmark and which landmark it was. Next, we assumed 
that our landmarks were perfect cylinders (and constructed 
them as close as possible to this ideal). This simplified the 
use of a perspective camera model to determine the range 
and bearing to an observed landmark: the range to a 
cylindrical landmark depends on its observed width, and a 
landmark's angle relative to the robot depends on its 
horizontal location in the image. Both computations 
require knowledge of the camera's field-of-view, internal 
parameters, and the assumption that it remains at a fixed 
distance above the ground plane. We estimated the needed 
information by imaging a ruler at a known distance. The 
resulting rough estimates suffice, because FastSLAM 
permits tuning of the error estimates of the landmark-
sensing model: we simply increased the sensor-error 
covariance to encompass inaccuracies in calibration. 

Using OpenCV and the CVBlobs library, we set up a 
visual pipeline that took images from the webcam, filtered 
them based on predefined color definitions, grouped blobs 
of colored pixels together, and calculated the range and 
bearing to any blobs observed. To improve the blobbing 
step, we use a dilate-erode filter pair with a higher radius 
for the erosion than the dilation. This meant that our 
observed width would be slightly less than the actual 
width, but it greatly reduced spurious blob detections. We 
accounted for the reduced width in our distance calculation 
algorithm. Using this software, we could use our webcam-
equipped robots to make landmark observations and thus 
run FastSLAM. Complete source of our vision code is at 
https://svn.cs.hmc.edu/svn/robotics/cvserver. Our 
software enables any robot equipped with a webcam that 
can run OpenCV to recognize simple cylindrical landmarks 
made out of brightly-colored material. This crucial step 
makes it much easier to run algorithms that depend on 
observing landmarks on cheap platforms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5  The vision algorithm processing an image.  The 
window in the upper left is the raw image, the window in the 
upper right is the color segmentation, and the bottom image 

shows the blobs (represented by their average color) on top of the 
raw image, along with x-coordinate and width information. 

Additional Platforms 

Because one of the goals of our project was to be as 
inclusive as possible, we explored several platforms for use 
with our software. By running our software on several 
hardware setups, we were also able to verify the portability 
of our code and resolve several potential barriers to its 
wider adoption.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  The OLPC laptop controlling an iRobot Create. This 
platform uses the OLPC’s webcam for sensing as well as a sonar 

sensor mounted atop a servo motor on the front of the Create.  
 
One platform that demonstrated our effort's portability is 
the One Laptop Per Child Foundation's XO laptop, also 
known as the “OLPC." Although no longer available 
commercially, this platform is not uncommon, having been 
mass-produced for deployment around the world. Our 
institution obtained ten OLPCs for a prior term’s 
Computing in the Developing World seminar. As a result, 
we were able to leverage them as an alternative platform 
for driving the Create. The OLPC is superior to a 
commodity laptop both in durability and cost. The OLPC 
has a built-in webcam and supports OpenCV (albeit with 
some modifications). The resulting cost of Figure 6’s 
vision-based robotic system including all computation and 
development systems is less than $400, far less than other 
vision-based robots’ price points. As a result, we term this 
system the ORPC, or One Robot Per Child platform. 
 
 
 
 
 
 
 
 
 
 
 

Figure 7  (left) A snapshot of FastSLAM’s state. Three (green) 
robot-pose particles and their maps are juxtaposed with the 
odometric position in red. The actual location of the ORPC 

appears at right. Note that the camera is positioned to observe its 
laptop’s user, so that it is facing leftward. Only the pink blue and 
yellow landmarks have been observed thus far. The ellipses show 

their means and covariances in each of the maps maintained.  
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The ORPC’s primary drawback is its custom Linux-based 
operating system, whose stringent security limitations 
intend to protect users new to computation. Those 
protections can complicate the creation and composition of 
systems that connect the OLPC’s hardware and software. 
After finding several workarounds for components that 
behaved differently on the OLPC – and modifying our 
code to be more portable in the process – we were able to 
get our FastSLAM implementation working on our ORPC 
platform. The main hitches were with the camera, for 
which we had to use a custom-compiled version of 
OpenCV, and the access protections. Our repository, noted 
above, contains the final version of our ORPC code.  
 
A second platform we considered was the Qwerkbot, a 
robot based on the work of CMU's TeRK project. This 
robot is built around an embedded Linux board, called the 
Qwerk, which offers a capable computational engine and 
many input/output ports. We attached a pair of wheels, a 
webcam, and 5 sonars to the Qwerk. To facilitate 
development, the robot sends the video stream offboard as 
a sequence of pictures to be processed by a remote laptop 
using an ad-hoc wireless network. This effort ran into 
problems with the Logitech webcam. In particular its white 
balance aggressively adjusted to the lighting conditions, 
washing out landmarks as shown in Figure 8 and foiling 
color-region extraction algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8  (top left) The Qwerkbot platform. (top right) An image 

demonstrating the overly aggressive white-balancing of the 
Qwerk board's camera drivers. (middle) The robot's interface has 
velocity control, camera panning, sonar data, and a video feed.  

(bottom) Middle-school girls visiting AAAI 2008 found the 
tabletop platforms engaging, challenging, and accessible. 

Faced with this failure we have moved towards SIFT-based 
landmarks, and progress continues in the creation of that 
system.  

Results and Perspective 

In the end, the exhibition at AAAI 2008 offered precisely 
the counterpoints this project sought. For most of the three 
day event, our platforms provided grist for AI and robotics 
educators: discussions focused on the accessibility of 
spatial reasoning algorithms at the undergraduate level. Yet 
for two hours on the final day, the character of the 
exhibition changed completely. A troop of three dozen 
middle-school girls visited the AAAI's robot exhibition as 
part of their science-themed summer camp (Figure 8).  
 
During this visit, the two tabletop platforms – the 
Qwerkbot and the Scribbler – showed their remarkable 
pedagogical range. The girls engaged in hands-on 
challenges in which they controlled those robots to 
accomplish small, challenging tasks. One of these tasks 
asked the campers to program the Scribbler to trace the 
first letter of their name; in another challenge, girls used 
only the sensor data available to the Qwerkbot in order to 
direct it safely though an unknown and otherwise unseen 
enclosure.  
 
By providing the capability to support FastSLAM on 
robots accessible enough to actively engage middle-school 
students in open-ended investigations, these platforms 
offer a baseline of pedagogical scalability that we hope to 
continue to improve. Our ongoing efforts seek to 
implement additional spatial-reasoning and vision 
algorithms (SIFT and monocular depth) that will make 
inexpensive robots even more compelling resources for 
educators at a wide range of curricular levels.  
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