
Mapping for All

Peter Mawhorter, Elaine Shaver, Zeke Koziol, and Zachary Dodds

Harvey Mudd College Computer Science Department
301 Platt Boulevard

Claremont, CA 91711
pmawhorter@cs.hmc.edu, eshaver, zkoziol, dodds@hmc.edu

Abstract
This synopsis presents Harvey Mudd College’s entry into
the 2008 AAAI robotics exhibition. We demonstrated three
inexpensive robot platforms on which we have implemented
a vision-based FastSLAM algorithm for landmark mapping.
As a result, this project reinforces the educational
scalability of low-cost platforms: they offer not only a
compelling invitation to the study of computer science and
robotics, but a means of engaging students in the recent and
ongoing work of the AI robotics community.

Overview

In the 2008 AAAI robot exhibition Harvey Mudd College
demonstrated several robotic platforms based on low-cost
hardware. Each serves as a platform for running
FastSLAM, a landmark-based mapping algorithm
(Montemerlo et. al. 2002). Our goal was to demonstrate
that inexpensive platforms, typically used to engage
introductory students in computer science and/or robotics,
can also serve as a basis for student investigations of recent
and ongoing work in the field of AI robotics.

Platforms

Our first platform consists of an iRobot Create base
connected directly to a MacBook Pro resting on top. For
sensing, we attached an iSight webcam to the assembly.
Not counting the laptop, the robot cost less than $400,
putting it well within the means of many undergraduate
programs. Since the laptop need not be dedicated to the
robot – indeed, the laptop depicted is used for many other
purposes – this platform meets our goals of affordability.

Also, because each of the components in Figure 1 is a
commercial product, there is no special expertise or
equipment required to build the robot from the parts
shown. All that is necessary is some way to secure the
laptop and webcam to the Create, a job for which velcro
tape works more than well enough.

Copyright © 2008, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

The use of the high-quality iSight camera makes this
platform the most visually capable of our robots. Vision is
the crucial sensing modality for the inexpensive and
repeatable landmark-detection at the heart of the
FastSLAM algorithm. Another advantage of this platform
is the simplicity of its software interface. The Create has a
standard serial API; the webcam interacts easily with the
laptop, and can be accessed via the OpenCV library. This
means that we didn't have to spend time writing low-level
drivers for various components and could focus on the
higher-level algorithmic concerns. This also means that the
laptop must travel onboard; the Create is about as small as
it can be while still handling such a payload.

Figure 1 Our Create-based platform. At left is an image of the
components comprising the robot; at right is the assembled

platform. Beyond the existing laptop and webcam, which may be
swapped as needed, the system's cost totals less than $200.

Figure 2 (left) The Myro platform consisting of a Scribbler base
and Fluke Bluetooth camera. (right) The Scribbler's OpenCV-

based vision system and FastSLAM mapping interface.

14

In addition to the Create-based platform, we implemented
FastSLAM atop the Institute for Personal Robotics in
Education's Myro hardware, consisting of a Parallax
Scribbler base and a Fluke bluetooth camera. Transmitting
images from the Fluke slows down the running of the
algorithm, but it has the advantage of allowing students
work entirely from a familiar laptop or desktop interface
off-board the robot. Figure 2 illustrates these systems.

The FastSLAM Algorithm

Introduced in 2002 (Montemerlo et. al. 2002) and actively
refined since that time, e.g., (Thrun et. al. 2004),
FastSLAM combines both nonparametric and Gaussian
representations of uncertainty in order to build and
maintain a population of possible maps of a previously
unknown environment. The algorithm processes a series of
odometric estimates along with noisy landmark
observations to produce an estimate of both robot location
and landmark locations based on a combination of Kalman
filtering and particle filtering. Although open-source
implementations exist, we found that the community's
current codebase serves researchers far better than it serves
students. This is natural for an algorithm that continues to
motivate advances in its field, but was not in line with our
desire to make our code easy to use and understand.

To provide as accessible an implementation as possible, we
implement the algorithm as a set of Python modules. Our
goal in re-implementing the algorithm was to produce a
well-commented piece of code that could be shared with
other students or with researchers interested in using,
rather than investigating, the approach. In addition, the use
of Python dovetails with a strong codebase in place for
both the Create and Myro hardware. We succeeded in
running the resulting code on PC, Mac, and Linux-based
systems without recourse to any third-party software
libraries. Our FastSLAM codebase is freely available from
https://svn.cs.hmc.edu/svn/robotics/slam/pySLAM.

Figure 3 A population of maps is maintained by FastSLAM, at
left. The red circle is the pose estimate based only on odometric

data, showing the robot pointing to the side of the orange
landmark. Cyan particles capture the uncertainty in the robot's

location with a mode at the true pose, shown at right. The graphic
at left superimposes the distinct map maintained by each pose.

The FastSLAM algorithm has several variants: FastSLAM
1.0, the algorithm that we have implemented in Python, is
the simplest and most straightforward. FastSLAM 2.0 uses
data about the observed landmarks not only to filter robot
pose particles and to update landmark position estimates,
but also to generate a more accurate set of estimated robot
poses with each update. There are also several ways to run
FastSLAM without knowing which landmark is which.
This additional challenge requires a data-association metric
to guide the algorithm to make choices about landmark
correspondence. We have explored FastSLAM with
unknown data association. However, our experiences
suggest that distinguishable landmarks, e.g., the colorful
construction paper cylinders shown in the figure, create a
much more accessible – and successful – basis for initial
student exploration of the approach.

The Vision System

The FastSLAM algorithm relies on measurements of
odometry and landmark locations in order to compute its
map. Rough odometry is straightforward to obtain. The
Create platform has built-in wheel encoders; the Scribbler
does not, but estimation by integrating the commanded
velocities suffices. Reliably observing landmarks, on the
other hand, poses a significant challenge. Many FastSLAM
implementations segment landmarks from laser range-
finder data, e.g., finding tree trunks or architectural corner
features. To make FastSLAM more accessible on a smaller
budget, we decided to use webcams to extract landmarks.
Even with the straightforward color-segmentation of
uniform cylindrical landmarks, our efforts with the vision
system dominated the time required to implement the
mapping algorithm.

Figure 4 Cylindrical landmarks have roughly constant width
from any viewing angle. As a result, an estimated landmark

distance can be computed from observed width.

Our vision algorithm is based on several simplifying
assumptions. First, we assume that the landmarks that we
are using are each uniquely-colored with respect to both
each other and their surroundings. This enabled us to use
relatively simple color-segmentation and blob-filling

15

methods to decide which part of an image contained a
landmark and which landmark it was. Next, we assumed
that our landmarks were perfect cylinders (and constructed
them as close as possible to this ideal). This simplified the
use of a perspective camera model to determine the range
and bearing to an observed landmark: the range to a
cylindrical landmark depends on its observed width, and a
landmark's angle relative to the robot depends on its
horizontal location in the image. Both computations
require knowledge of the camera's field-of-view, internal
parameters, and the assumption that it remains at a fixed
distance above the ground plane. We estimated the needed
information by imaging a ruler at a known distance. The
resulting rough estimates suffice, because FastSLAM
permits tuning of the error estimates of the landmark-
sensing model: we simply increased the sensor-error
covariance to encompass inaccuracies in calibration.

Using OpenCV and the CVBlobs library, we set up a
visual pipeline that took images from the webcam, filtered
them based on predefined color definitions, grouped blobs
of colored pixels together, and calculated the range and
bearing to any blobs observed. To improve the blobbing
step, we use a dilate-erode filter pair with a higher radius
for the erosion than the dilation. This meant that our
observed width would be slightly less than the actual
width, but it greatly reduced spurious blob detections. We
accounted for the reduced width in our distance calculation
algorithm. Using this software, we could use our webcam-
equipped robots to make landmark observations and thus
run FastSLAM. Complete source of our vision code is at
https://svn.cs.hmc.edu/svn/robotics/cvserver. Our
software enables any robot equipped with a webcam that
can run OpenCV to recognize simple cylindrical landmarks
made out of brightly-colored material. This crucial step
makes it much easier to run algorithms that depend on
observing landmarks on cheap platforms.

Figure 5 The vision algorithm processing an image. The
window in the upper left is the raw image, the window in the
upper right is the color segmentation, and the bottom image

shows the blobs (represented by their average color) on top of the
raw image, along with x-coordinate and width information.

Additional Platforms

Because one of the goals of our project was to be as
inclusive as possible, we explored several platforms for use
with our software. By running our software on several
hardware setups, we were also able to verify the portability
of our code and resolve several potential barriers to its
wider adoption.

Figure 6 The OLPC laptop controlling an iRobot Create. This
platform uses the OLPC’s webcam for sensing as well as a sonar

sensor mounted atop a servo motor on the front of the Create.

One platform that demonstrated our effort's portability is
the One Laptop Per Child Foundation's XO laptop, also
known as the “OLPC." Although no longer available
commercially, this platform is not uncommon, having been
mass-produced for deployment around the world. Our
institution obtained ten OLPCs for a prior term’s
Computing in the Developing World seminar. As a result,
we were able to leverage them as an alternative platform
for driving the Create. The OLPC is superior to a
commodity laptop both in durability and cost. The OLPC
has a built-in webcam and supports OpenCV (albeit with
some modifications). The resulting cost of Figure 6’s
vision-based robotic system including all computation and
development systems is less than $400, far less than other
vision-based robots’ price points. As a result, we term this
system the ORPC, or One Robot Per Child platform.

Figure 7 (left) A snapshot of FastSLAM’s state. Three (green)
robot-pose particles and their maps are juxtaposed with the
odometric position in red. The actual location of the ORPC

appears at right. Note that the camera is positioned to observe its
laptop’s user, so that it is facing leftward. Only the pink blue and
yellow landmarks have been observed thus far. The ellipses show

their means and covariances in each of the maps maintained.

16

The ORPC’s primary drawback is its custom Linux-based
operating system, whose stringent security limitations
intend to protect users new to computation. Those
protections can complicate the creation and composition of
systems that connect the OLPC’s hardware and software.
After finding several workarounds for components that
behaved differently on the OLPC – and modifying our
code to be more portable in the process – we were able to
get our FastSLAM implementation working on our ORPC
platform. The main hitches were with the camera, for
which we had to use a custom-compiled version of
OpenCV, and the access protections. Our repository, noted
above, contains the final version of our ORPC code.

A second platform we considered was the Qwerkbot, a
robot based on the work of CMU's TeRK project. This
robot is built around an embedded Linux board, called the
Qwerk, which offers a capable computational engine and
many input/output ports. We attached a pair of wheels, a
webcam, and 5 sonars to the Qwerk. To facilitate
development, the robot sends the video stream offboard as
a sequence of pictures to be processed by a remote laptop
using an ad-hoc wireless network. This effort ran into
problems with the Logitech webcam. In particular its white
balance aggressively adjusted to the lighting conditions,
washing out landmarks as shown in Figure 8 and foiling
color-region extraction algorithms.

Figure 8 (top left) The Qwerkbot platform. (top right) An image

demonstrating the overly aggressive white-balancing of the
Qwerk board's camera drivers. (middle) The robot's interface has
velocity control, camera panning, sonar data, and a video feed.

(bottom) Middle-school girls visiting AAAI 2008 found the
tabletop platforms engaging, challenging, and accessible.

Faced with this failure we have moved towards SIFT-based
landmarks, and progress continues in the creation of that
system.

Results and Perspective

In the end, the exhibition at AAAI 2008 offered precisely
the counterpoints this project sought. For most of the three
day event, our platforms provided grist for AI and robotics
educators: discussions focused on the accessibility of
spatial reasoning algorithms at the undergraduate level. Yet
for two hours on the final day, the character of the
exhibition changed completely. A troop of three dozen
middle-school girls visited the AAAI's robot exhibition as
part of their science-themed summer camp (Figure 8).

During this visit, the two tabletop platforms – the
Qwerkbot and the Scribbler – showed their remarkable
pedagogical range. The girls engaged in hands-on
challenges in which they controlled those robots to
accomplish small, challenging tasks. One of these tasks
asked the campers to program the Scribbler to trace the
first letter of their name; in another challenge, girls used
only the sensor data available to the Qwerkbot in order to
direct it safely though an unknown and otherwise unseen
enclosure.

By providing the capability to support FastSLAM on
robots accessible enough to actively engage middle-school
students in open-ended investigations, these platforms
offer a baseline of pedagogical scalability that we hope to
continue to improve. Our ongoing efforts seek to
implement additional spatial-reasoning and vision
algorithms (SIFT and monocular depth) that will make
inexpensive robots even more compelling resources for
educators at a wide range of curricular levels.

Acknowledgments

The authors gratefully acknowledge support from National
Science Foundation DUE CCLI #0536173, the Institute for
Personal Robotics in Education, and resources provided by
Harvey Mudd College.

References

Montemerlo, M., Thrun, S., Koller, D., and Wegbreit. B. (2002).
FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem, Proceedings of the National
Conference on Artificial Intelligence, pp. 593-598.

Thrun, S., Montemerlo, M., Koller, D., Wegbreit, B., Nieto, J.,
and Nebot, E. (2004). FastSLAM: An Efficient Solution to the
Simultaneous Localization and Mapping Problem with Unknown
Data Association, Journal of Machine Learning Research, 4(3)
pp. 380-407.

17

