
Long-term Fairness with Bounded Worst-case Losses

Gabriel Balan and Dana Richards and Sean Luke
Department of Computer Science, George Mason University
4400 University Drive, MSN 4A5, Fairfax, VA, 20030, USA

{gbalan, richards, sean}@cs.gmu.edu

Abstract

How does one repeatedly choose actions so as to be fairest
to the multiple beneficiaries of those actions? We examine
approaches to discovering sequences of actions for which
the worst-off beneficiaries are treated maximally well, then
secondarily the second-worst-off, and so on. We formulate
the problem for the situation where the sequence of action
choices continues forever; this problem may be reduced to a
set of linear programs. We then extend the problem to situa-
tions where the game ends at some unknown finite time in the
future. We demonstrate that an optimal solution is NP-hard,
and present two good approximation algorithms.

Introduction
Consider the problem of repeatedly assigning two AI pro-
fessors to teach two classes offered by their department each
semester. One class is much harder than the other one, so
during any single semester any one-to-one assignment is un-
fair to one of the professors. One fair solution would be for
the professors to teach both classes together. But assuming
this requires more overall effort than teaching the classes
separately, this solution would be inefficient over the long
run.

There is of course a better solution. If the two professors
instead took turns teaching the hard class, then in the long
run their average utilities would be more fair than in the one-
to-one assignments and more efficient than in the sharing as-
signment. This is the rough idea behind long-term fairness:
repeated interactions offer opportunities for improved effi-
ciency and fairness over the single interaction scenario. But
in general the solutions will not be as simple as alternating
assignments (e.g. suppose we extended the previous exam-
ple with multiple assignments, involving many professors
and classes).

The research presented here examines the following
framework: there are a number of beneficiaries (e.g. pro-
fessors), which receive different rewards from each of a fi-
nite set of actions (e.g. class assignments). The actions
are chosen with replacement, and actions chosen early do
not restrict what actions can be chosen later, or their re-
wards. This framework, borrowed from (Verbeeck, Parent,

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Nowé 2003), is very similar to the repeated normal-form
game framework from game theory, except there is a single
decision maker that chooses actions for the good of all ben-
eficiaries.

We are ultimately interested in the game-theoretic mul-
tiple decision maker case. But it turns out that the single
decision maker situation has been inadequately studied, and
so our focus here is on that case.

We define a beneficiary’s utility as the average of all re-
wards he received in the past. We will use the term utility
profile to refer to the vector of utilities (one utility per bene-
ficiary) that they derive from past actions.

In order to compare utility profiles, we use a fairness con-
cept called leximin. Leximin is a total-order relation defined
as follows: a utility profile U1 is preferable to another util-
ity profile U2 if the beneficiary with the minimum utility in
U1 is better-off than the minimum utility beneficiary in U2;
ties are broken by comparing the utilities of the the second-
worst beneficiary in each utility profile, then third-worst, and
so on. From a procedural point of view, one should sort
in increasing order the two utility profiles, and compare the
sorted versions lexicographically. We choose leximin for our
work because it is widely used in the literature, it is well un-
derstood, and it incorporates a certain measure of efficiency
(a leximin-optimal profile is also Pareto-optimal), making it
a good fit for long-term fairness.

In this paper we derive upper bounds for this notion of
utility in infinitely repeated games and propose a particular
approach to approximation solutions for more realistic cases
(i.e. a finite sequence of actions).

Infinite-length Games
An action may give high rewards to some beneficiaries and
low rewards to others, so sticking to just one action might be
unfair to some beneficiaries, and thus leximin-undesirable.
However, if beneficiaries receive different rewards from dif-
ferent actions we may be able to improve all beneficiaries’
reward averages by playing a combination of actions.

One approach to playing combinations is to use a peri-
odic, repeated sequence of actions. In previous literature
(Verbeeck, Parent, and Nowé 2003), distributed algorithms
for discovering such sequences found suboptimal ones. We
will show optimal solutions, albeit with non-distributed al-
gorithms.

7

Periodic sequences are intuitively appealing, but even if
one can find the periodic sequence with the best limit, that
can still be suboptimal. We will show at the end of this sec-
tion that in some problem instances with irrational coeffi-
cients there might exist infinite non-periodic sequences that
achieve, at the limit, leximin-superior utility profiles to any
utility profile achievable by a periodic sequence. Our algo-
rithms are guaranteed to produce sequences converging to
the optimal utility profile, and, whenever possible, those se-
quences are periodic.

In this section we will (1) prove that convergent sequences
(periodic or non-periodic) are sufficient and (2) identify the
class of sequences with the leximin-optimal limit-point. In
the following sections we will propose additional require-
ments to impose on this class of sequences and then provide
algorithms that produce sequences satisfying these require-
ments.
Problem 1. Base Problem Let there be a set A of na actions
affecting a set B of nb beneficiaries through the reward func-
tion R : A×B→ R. Let S be the set of infinite sequences of
actions from A:

S = {S = 〈s1,s2, . . .〉|∀i ∈ N : si ∈ A}.
Let U be the set of all possible utility profiles (vectors)
achievable from following any sequence for any number of
time steps:

U = {U ∈ Rnb |∃t ∈ N,∃S ∈ S : Ub =
1
t

t

∑
j=1

R(s j,b)}.

The goal of the problem is to find U? = sup(U), the supre-
mum (least upper bound) with respect to leximin over the set
of all achievable utility profiles.

In order to solve this problem we focus on a subset of
“well-behaved” sequences that achieve the entire set of pos-
sible utility profiles U. We then provide a mapping of
that subset into the na-dimensional simplex which can be
searched efficiently using linear-programming-based algo-
rithms from the literature.

To make things easier, we refer to the elements of A as
{1 . . .na} and the elements of B as {1 . . .nb}. Let S′ ⊂ S be
the set of all sequences S where the proportions of the na
actions converge. Formally:

S′ = {S ∈ S|∀ j ∈ A : ∃ lim
t→∞

1
t

k j(St)}

where St is the subsequence of S consisting of the first t el-
ements and k is the count function (so k j(St) is equal to the
number of times action j is used in the first t positions of
sequence S). We denote with F(S) the vector of action pro-
portions (or fractions) for S (i.e. Fj(S) = limt→∞

1
t k j(St)).

Let U(St) be the vector of utilities achieved after follow-
ing the first t steps of sequence S (i.e. U’s component for
beneficiary b is Ub(St) = 1

t ∑
t
i=1 R(s j,b)). Because the ac-

tion proportions converge, the sequence of utility vectors
〈U(S1),U(S2), . . .〉 also converges component by compo-
nent; we denote its limit point by the vector U(S):

Ub(S) = lim
t→∞

Ub(St) =
na

∑
j=1

Fj(S)R(s j,b). (1)

It can be shown that U′, the set of utility profiles achiev-
able by sequences in S′, is equal to U.‡ Moreover, if U′′ is
the set of limit points of U′ (U′′ = {U |∃S ∈ S′ : U = U(S)}),
then we can prove that:‡

sup(U = U′) = sup(U′′). (2)

Because U(S) depends only on F(S), there is an ob-
vious one-to-one correspondence between U′′ and the na-
dimensional unit simplex.

Once reformulated as an optimization problem over a
compact and convex set, the problem becomes readily solv-
able with the algorithm proposed in (Potters and Tijs 1992).
In our particular case, the algorithm consists of solving
O(n2

a) linear programs (LPs), but approximate results based
on a floating-point fixed-length representation might be re-
quired to make sure the complexity of this algorithm does
not dominate that of the algorithms we propose here. The
algorithm produces U?, the unique leximin-optimal util-
ity vector, and F?, a point (not necessarily unique) inside
the simplex such that: ∀b ∈ B : ∑

na
i=1 R(b, i)× F?

i = U?
b .

Since U? is the leximin-maximal utility vector in U′′ (by
the algorithm’s guarantee), and it is unique, it implies that
U? = sup(U′′), and, by Equation 2:

U? = sup(U). (3)

We revisit the existence of a periodic sequence for a given
optimal utility profile solution U?. If such a periodic policy
exists, let c j denote the number of times of action j appears
in one period (we call c j the multiplicity of action j). Then
by normalizing the vector c = [c1 . . .cna] one should obtain
a valid F? vector. If all rewards are rational then there must
exist an F? with rational components, and hence a periodic
sequence.‡However, irrational rewards could mean there is
no F? with rational coefficients, in which case there is no
optimal periodic sequence.

For example, if both professors get a reward of 0 from
teaching the hard class, but teaching the easy class gives one
professor a reward of 1 and the other a reward of

√
2, then

U? = [
√

2
1+
√

2
,
√

2
1+
√

2
] and there is a unique F? = [

√
2

1+
√

2
, 1

1+
√

2
].

We make the observation that depending on the values in
F?, the multiplicities could be arbitrarily large. Thus, one
can see the non-periodic sequences due to F? having (some)
irrational components as special cases of periodic sequences
where the period length is infinite.

Finite-length Games
Solving the Base Problem provides U?, the least upper
bound over the set of achievable utility profiles. If the game
is guaranteed to last forever, one could be satisfied with the
goal of finding a sequence that achieves U? at the limit. But
in more practical applications, one must consider the impli-
cations of having the process end after a finite number of
steps, or more generally, having the length of the sequence
of actions drawn from some probability distribution.

‡Due to limited space we omit all proofs and mathematical
derivations. They may be found in (Balan, Richards, and Luke
2008), as well as an extended discussion.

8

time

1 2 3 4 5 6 7 8

-10

10

0

-5

5

Risk

(a) S1 = 〈(1,2)∗〉

time

1 2 3 4 5 6 7 8

-10

10

0

-5

5

Risk

(b) S2 = 〈(2,1)∗〉

time

1 2 3 4 5 6 7 8

-10

10

0

-5

5

Risk

(c) S3 = 〈(1,1,2,2)∗〉

time

1 2 3 4 5 6 7 8

-10

10

0

-5

5

Risk

(d) S4 = 〈(1,2,2,1)∗〉
Figure 1: Risks as functions of time for the two beneficiaries in Example 1 (the solid line for the first and the dotted line for the
second) as produced by various periodic sequences.

Consider the professor-assigment example from the in-
troduction: the first actions corresponds to the assignment
where the first professor teaches the easy class, the second
action corresponds to the assignment where the second pro-
fessor teaches the easy class, and the third action is the as-
signment where they teach the classes together:

Example 1.

Beneficiaries
b1 b2

1 10 0
Actions 2 0 10

3 1 1

The utility least upper bound for Example 1 is U? = [5,5],
which can only be achieved through F? = [0.5,0.5,0], and
which coincides with the optimal solution if the game lasts
for an even number of steps: use actions 1 and 2 in equal
proportions. However, one should use action 3 if the game
lasts for only one round. This shows that the optimal se-
quence of decisions depends on the duration of the game,
and so if the duration is not known in advance, some sort of
tradeoff might be required.

One could choose an action stochastically, using the val-
ues in F? as probabilities. This approach produces the
leximin-optimal expected rewards (equal to U?). This sort
of guarantee is usually referred to in the economics literature
as ex-ante fairness (ex-ante means “beforehand” in latin). If
all beneficiaries are risk-neutral, a mechanism choosing re-
peatedly from the F? distribution promises leximin-optimal
expected utilities before the process starts, but not necessar-
ily leximin-optimal actual utilities when the game ends. For
Example 1 this approach would flip a coin between actions
1 and 2; although the expected rewards (and utilities) are
equal to U?, if the game ends after two rounds, there is a 50%
chance that one beneficiary accumulated 10 reward units and
the other none. Moreover, if the game continues, the proba-
bility that the difference between the two will shrink is equal
to the probability that the difference will grow. Thus, the
weakness of this ex-ante approach would be its lack of con-
cern with paying reparations for unfairness resulting from
past randomness.

One can address the weaknesses of the previous method
with a deterministic approach, aiming to find a sequence
which leximin-optimizes beneficiaries’ expected utilities
weighted by the probabilities in the distribution of game

lengths. Unlike the previous method, this could use action
3 in Example 1, provided there is a high enough probability
that the game will end after one step.

Both previous methods assume risk-neutral beneficiaries.
Given that leximin is a risk-averse fairness concept (“no one
is left behind”), it makes sense to instead focus on a risk-
averse solution approach: minimize the largest amount a
beneficiary risks losing due to the game ending prematurely.
We define the risk of beneficiary k at time step t while ex-
ecuting sequence S as the difference between the rewards
accumulated by beneficiary k during the first t steps, and the
amount he was entitled to, which is t×U?

k .

Riskb(S, t) =
t

∑
i=1

R(si,b)− t×U?
b . (4)

We use the term worst risk (WR) of a sequence S to mean
a lower bound on all risk values, regardless of beneficiary
(i.e. WR ≤ Riskb(S, t), ∀t ∈ N and ∀b ∈ B). The worst risk
is a negative value, and its absolute value is an upper bound
on the largest amount that any beneficiary can lose.

This approach is not meant to replace expectation opti-
mization; we are simply adding another tool to the arsenal
available for this problem. It is reasonable to expect the
computational complexity of the expectation-optimization
approach to grow with the maximum game length, and so
our proposed solution is particularly suitable to scenarios
with very large game durations (our approach is insensitive
to the distribution of game durations). Furthermore, lower-
bounding the worst risk will always make the utilities con-
verge to U? as t→ ∞.‡

For convenience, we define for each action j a vector X j =
[X j,1 . . .X j,nb], where X j,b = R(j,b)−U?

b , the amount action
j changes the risk of beneficiary b.

Riskb(S, t) =
t

∑
i=1

[R(si,b)−U?
b] =

t

∑
i=1

Xsi,b (5)

∀b ∈ B :
na

∑
j=1

X j,b×F?
j = 0 (6)

Let us illustrate the concept of risk using Example 1. The
X vectors are as follows: X1 = [5,−5], X2 = [−5,5], and
X3 = [−4,−4]. We will compare the following periodic ac-

9

tion sequences (see Figure 1):

S1 = 〈1,2,1,2, . . .〉
S2 = 〈2,1,2,1, . . .〉
S3 = 〈1,1,2,2,1,1,2,2, . . .〉
S4 = 〈1,2,2,1,1,2,2,1, . . .〉

Sequence S1 makes the first beneficiary’s risks equal to 5
on odd steps and 0 on even steps, while the second benefi-
ciary’s risks are 0 on odd steps and−5 on even ones. There-
fore the second beneficiary risks coming up 5 units short if
the game stops after an odd number of steps and breaks even
otherwise. Sequence S2 has identical effects as S1, but to
different beneficiaries, so the two are equally good. Using
sequence S3, the second beneficiary risks losing as much as
10 units, so we prefer S1 (or S2) to S3.

Note that using sequence S1 makes the second beneficiary
take all the “bad” (negative) risks, while the first beneficiary
takes only “good” (positive) risks. Although sequence S1 is
as fair as possible with respect to average utilities, one can-
not help but notice a “second degree” unfairness. Instead,
one might consider the goal of optimizing cumulative risks
(e.g. sequence S4 alternates which beneficiary is taking neg-
ative risks). This leads to the following paradox: although
intuitively one prefers S4 to S1 or S2, the worst risks for all
beneficiaries during sequences S1 or S2 (i.e. −5 and 0) are
leximin superior to the worst risks during S4 (i.e. −5 and
−5). This suggests that one might consider optimizing only
the “min” of the worst risks, instead of leximin optimizing
all beneficiaries’ worst risks.

Problem 2. Worst Risk Maximization Problem Given the
setup in the Base Problem, find an infinite sequence of ac-
tions S with a maximal worst risk.

Theorem 1. Problem 2 is intractable‡(since even finding a
sequence of a given finite length is NP-hard).

Algorithms
The most intuitive solution to optimizing worst risk(s) is to
try to keep all risks as large as possible at all times, i.e.
greedily choose the action that leximin optimizes risks dur-
ing the next step (choose the action with the best immedi-
ate effects). We will refer to this strategy as GR (Greedy
leximin-optimizing next-step Risks). One weakness of this
approach is that it assumes the world ends at the next step.
In Example 1 it will always choose action 3, leading to arbi-
trarily bad risks for both beneficiaries if the game lasts long
enough. Note that F?

3 = 0, meaning action 3 should not be
played at all. One can easily extend the greedy heuristic to
ignore the “unusable” actions, but that is not enough to pre-
vent risks from getting arbitrarily bad. Consider Example 2,
with U? = [240,240,240] and unique F? = [4

15 , 6
15 , 5

15]. For
this problem GR will choose action 1 repeatedly, leading to
arbitrarily bad risks for the first and last beneficiaries. The
reason is that action 2 and 3 hurt one of those beneficia-
ries more than action 1 hurts any of them, and GR lacks the
look-ahead to see the benefits of using actions 2 and 3.

Example 2.

Beneficiaries
b1 b2 b3

1 -20 30 -20
Actions 2 60 30 -40

3 -56 -60 64

The algorithms we propose in this paper are based on the
following observation. All beneficiaries’ risks are zero at
time t if the number of times each action j was used up to
time t are all proportional to the corresponding components
of some F? vector (i.e. k j(St) = F?

j × t, ∀ j). Ideally all
k j(St) = F?

j × t at all times, but since the k j functions only
take integer values, that is not always possible. It is intuitive
that the risks cannot get very bad at any time t ′ if the rela-
tive counts (k j/t ′) for how much each action was used up to
time t ′ are close enough to the corresponding values in F?.
There are many ways one can construct sequences S to keep
the k j(St) values close enough to the F?

j × t values; we will
present two simple methods, and derive risk upper and lower
bounds for both of them.

Our methods completely ignore the actions j which are
not “used” in F? (i.e. F?

j = 0). Let n?
a be the number of

actions “used” in F?; for simplicity, we rename the actions
(reorder the dimensions of the simplex) such that all actions
used in F? come before the other ones: ∀ j ∈{1 . . .n?

a} : F?
j >

0 and ∀ j ∈ {n?
a +1 . . .na} : F?

j = 0.

Method 1 Intuitively, this method chooses an action that,
up to that point, has been used the least relative to how of-
ten the action should have been used. Consequently, an ac-
tion j can be chosen at time t + 1 if it has the smallest ratio
k j(Dt)
F?

j ×t , where D is the sequence of decisions produced by
this method (so Dt contains all its past decisions). With-
out affecting the decision process, one can eliminate t from
the denominator. We formally describe this method with the
following notation:

dt ∈

{
j ≤ n?

a

∣∣∣∣∀i≤ n?
a :

k j(Dt−1)
F?

j
≤ ki(Dt−1)

F?
i

}
(7)

where all functions k j are extended such that k j(D0) = 0,
∀ j ∈ {1 . . .nb}. Note that multiple actions could tie for the
minimum.
Theorem 2. Regardless of how the first method breaks ties,
the following holds ∀b ∈ B and ∀t ∈ N:‡

n?
a

∑
i=1

min(Xi,b,0)≤ Riskb(D, t)≤
n?

a

∑
i=1

max(Xi,b,0). (8)

Method 2 While the previous approach helps less-often
chosen actions catch up to the others, the next approach
chooses actions that — if used — will get the least ahead
of the others. The sequence of decisions D′ for this method
is described formally as follows:

d′(t) ∈

{
j ≤ n?

a

∣∣∣∣∀i≤ n?
a :

k j(D′t−1)+1
F?

j
≤

ki(D′t−1)+1
F?

i

}
(9)

10

Theorem 3. Regardless of how the second method breaks
ties, the following holds for ∀b ∈ B and ∀t ∈ N:‡

−
n?

a

∑
i=1

max(Xi,b,0)≤ Riskb(D′, t)≤−
n?

a

∑
i=1

min(Xi,b,0). (10)

Discussion
We proposed two methods for choosing actions such that
the risks are always lower-bounded. While GR leximin-
optimizes next-step risks, our methods greedily optimize ac-
tions’ usage frequencies (relative counts) relative to some
optimal configuration F?; we will call our methods GF.

We denote with LB1 and LB2 the lower bounds on risks
guaranteed by the two GF methods respectively.

LB1 = min
b

n?
a

∑
i=1

min(Xi,b,0) (11)

LB2 = min
b

n?
a

∑
i=1
−max(Xi,b,0). (12)

There is an obvious way to unify the two: compute LB1 and
LB2 ahead of time, then use the most promising method.
Thus our best worst risk guarantee is:

WR≥max(LB1,LB2). (13)

The computational complexity of our algorithms is
O(lgn?

a) per time step. This is because one can use a heap
to store actions’ k j[+1]/F?

j scores, since our algorithms
change a single action’s score at each time step.

Eliminating Unnecessary Actions If the vector F? is not
unique, the particular choice of F? influences both the time
complexity (through n?

a), and the worst risk. Each benefi-
ciary’s worst risk is bounded below by the sum of his nega-
tive X values (or the negative sum of his positive X values),
so eliminating an action can only improve the worst risk.

Lemma 1. There must always exist F? such that n?
a ≤ nb.‡

Based on this result, one can eliminate at least max(na−
nb,0) actions in a preprocessing phase, thus reducing the
per-step complexity to O(lg(min(na,nb))). There exists a
simple algorithm for this task based on a particular construc-
tive proof for Carathéodory’s theorem (e.g. (Florenzano and
Le Van 2001)), using Gauss elimination. The complexity
of the Gauss elimination is O(nan2

b), and there are at most
na−1 iterations, so the entire pre-process of eliminating ac-
tions can be done in O(n2

an2
b).

Breaking Ties with GR The lower-bounds on worst risks
(Equations 11 and 12) make no assumptions on how ties are
broken, which means they assume the ties are broken in the
worst possible way. Finding the best way to break ties is NP-
hard (see the proof of Theorem 1), so a greedy approach will
have to do. The most obvious solution would be to use GR
to break ties for GF (for a time complexity of O(nb×n?

a) per
time step).

Related Work
The game-theoretic work in (Bhaskar 2000; Lau and Mui
2005) is concerned with finding Nash equilibria that result
in alternating joint-actions (also referred to as turn-taking),
but these results were tailored for specific classes of 2-by-2
games.

The starting point in our research on long-term fairness
was the work in (Verbeeck, Parent, and Nowé 2003) on “pe-
riodic policies.” Their reward model comes in the form of
a normal-form game, but the players are actually coopera-
tive learning agents (rather than self-interested). The pro-
cess consists of the learners playing selfishly to discover a
pure Nash equilibrium, while being interrupted periodically
to compare accumulated rewards. The player gaining the
most (in the current Nash equilibrium and overall) has its
action put off-limits until the others catch up. Alternatively
(Verbeeck et al. 2006), after the learners discover all pure
Nash equilibria, they create a periodic policy consisting of
those joint actions with the fairest outcomes. In the authors’
examples the players have only two actions: a highly lucra-
tive one and a social one they fall back on while waiting for
the other(s) to catch up. Both of these greedy algorithms
could lead to utility profiles arbitrarily worse than the opti-
mum.

The Worst Risk Maximization Problem is actually a
variant of the Compact Vector Summation Problem (Sev-
ast’janov 1991): given a finite set of vectors X1, . . . ,Xn ∈Rm

such that ∑
n
i=1 Xi = 0, one must find a permutation π of

{1,2, . . . ,n} that minimizes max1≤k≤n ‖∑
k
i=1 Xπi‖. In the

earliest such work ‖ ·‖ was the Euclidian norm, so the prob-
lem consisted of ordering the vectors such that the path
resulting from adding vectors one by one stays inside a
minimum-radius m-dimensional circle centered at the ori-
gin. Later research has focused on results general enough to
accommodate arbitrary norms (intuitively a norm is a func-
tion associating a “size” value to every vector).

We submit that the algorithm in (Sevast’janov 1991) is
the most relevant algorithm for a comparison with our al-
gorithms: it has the best guarantee and time complexity we
are aware of and it accommodates “asymmetric norms.” The
last item is relevant because it is more meaningful to com-
pare against algorithms trying to optimize the same function,
and the function we try to optimize can be rearranged as an
asymmetric norm but not a norm. Maximizing the worst
risk is equivalent to minimizing is the largest absolute value
of any negative coordinate of any partial sum of X vectors.
This function is an asymmetric norm, but not a norm, since
it satisfies the triangle inequality (‖y + z‖ ≤ ‖y‖+ ‖z‖) and
positive definiteness (‖y‖ = 0⇒ y = 0), but it only satis-
fies the scalability condition (‖ky‖ = |k|× ‖y‖) for positive
scaling factors (Borodin 2001).

Guarantee Comparison Sevat’janov’s algorithm guaran-
tees no risk will be worse than −M(n?

a − 1 + 1
n?

a
), where

M = max1≤k≤n‖Xi‖ (i.e. −M is the smallest coordinate of
any X vector size). We submit that LB1 ≥−M(n?

a−1). This
results from Equation 11, replacing every negative Xi,b with
−M, and noticing that for any given beneficiary b at most

11

n?
a−1 of his X values can be negative.‡Therefore our worst

risk, WR ≥ LB1 ≥ −M(n?
a− 1) = −M(min(na,nb)− 1) >

−M(nb−1+ 1
nb

), the guarantee of Sevast’janov’s algorithm.

Complexity Comparison Sevast’janov’s algorithm has a
complexity of O(n2m2), because it picks a vector n−m
times, and each such operation has a complexity of O(km2),
where k is the number of alternatives (k = n, . . . ,n−m). An
iteration in Sevast’janov’s algorithm has the same complex-
ity as an iteration in our preprocessing phase (they are both
based on Gauss elimination). We also submit that the num-
ber of iterations in Sevast’janov’s algorithm is at least the
number of iteration in our preprocessing phase (each action
has at least multiplicity 1). Therefore the time complexity of
our preprocessing phase cannot be larger than that of Sevas-
tianov’s algorithm. More importantly, even if that algorithm
were extended to benefit from our preprocessing phase and
to explicitly deal with multiplicities (i.e. k = n?

a), its com-
plexity would still be O(n?

an2
b) per time step which is higher

than the complexity of our algorithms (even when breaking
ties with GR).

In summary, by eliminating unnecessary actions and only
keeping track of multiplicities, we are able to offer worst
case guarantees that are never worse than (and sometimes
much better than) Sevast’janov’s.

Conclusions
In this paper we studied the problem of achieving certain
long-term fairness guarantees in a simple repeated-game
setup: (1) all beneficiaries are entitled to their socially-
optimal utilities and (2) no matter when the game ends all
beneficiaries are guaranteed to have received close to what
they were entitled to that point. We proved that finding an
optimal solution with respect to the second guarantee is NP-
hard and proposed two efficient approximation algorithms.

Acknowledgements
We thank Octav Olteanu, Joey Harrison, Zoran Duric,
Alexei Samsonovich, and Alex Brodsky for their help.

References
Balan, G.; Richards, D.; and Luke, S. 2008. Long-term
fairness with bounded worst-case losses. Technical Report
GMU-CS-TR-2008-2, Department of Computer Science,
George Mason University.
Bhaskar, V. 2000. Egalitarianism and efficiency in re-
peated symmetric games. Games and Economic Behavior
32(2):247–262.
Borodin, P. A. 2001. The Banach-Mazur theorem
for spaces with asymmetric norm. Mathematical Notes
69:298–305.
Florenzano, M., and Le Van, C. 2001. Finite Dimensional
Convexity and Optimization. Springer.
Lau, S.-H. P., and Mui, V.-L. 2005. Using turn taking
to mitigate conflict and coordination problems in the battle
of the sexes game. Technical Report 1129, Hong Kong
Institute of Economics and Business Strategy.

Potters, J. A. M., and Tijs, S. H. 1992. The nucleolus of
a matrix game and other nucleoli. Mathematics of Opera-
tions Research 17(1):164–174.
Sevast’janov, S. 1991. On the compact summation of vec-
tors. Diskretnaya Matematika 3(3):66–72.
Verbeeck, K.; Nowé, A.; Parent, J.; and Tuyls, K. 2006.
Exploring selfish reinforcement learning in repeated games
with stochastic rewards. Journal of Autonomous Agents
and Multi-Agent Systems 14(3):239–269.
Verbeeck, K.; Parent, J.; and Nowé, A. 2003. Homo egualis
reinforcement learning agents for load balancing. In In-
novative Concepts for Agent-Based Systems: 1st Interna-
tional Workshop on Radical Agent Concepts, volume 2564
of Lecture Notes in Computer Science, 81–91.

12

