
Exploiting Ontological Information for Reasoning with Preferences

Gil Chamiel and Maurice Pagnucco
School of Computer Science and Engineering, The University of New South Wales,

NSW, Sydney 2052, Australia and NICTA, Sydney, Australia.
Email: {gilc|morri}@cse.unsw.edu.au

Abstract

The ability to model preferences and exploit preferen-
tial information to assist users in searching for items
has become an important issue in knowledge represen-
tation. Accurately eliciting preferences from the user
in the form of a query can result in a coarse recom-
mendation mechanism with numerous results returned.
The problem lies in the user’s knowledge concerning
the items among which they are searching. Unless the
user is a domain expert, their preferences are likely to
be expressed in a vague manner and so vague results (in
the form of numerous alternatives) are returned.
In this paper we remedy this problem by exploiting
ontological information regarding the domain at hand.
This ontological information can be provided by a do-
main expert and need not concern the user. However,
we show that it can prove useful in focussing query
results, providing more meaningful and useful recom-
mendations.

We are faced with choices every day: which type of
restauratnt to go to; which radio station to listen to or TV
channel to watch? In order to answer these questions we
exercise our preferences. Preferences make effective rea-
soning possible since they encapsulate our everyday deci-
sions. However, explicit preferences alone are only part of
the story. In some situations our own understanding of the
domain is poor and our preferences tend to reflect this. As a
result, we are unable to effectively discriminate among the
choices at hand. This paper addresses this problem by sup-
plementing user preferences with ontological information so
as to provide an effective user preference mechanism.

Research on modelling abstract notions of preference has
provided a rich literature in logic and decision theory (Doyle
and Thomason 1999; Fishburn 1999; Bradley, Rafter, and
Smyth 2000) with applications such as modelling social
choice in economonics. With the growth of the World Wide
Web as a major platform for purchase and consumption, the
need for personalised product recommendation systems has
become evident, and their development has become an im-
portant issue in Knowledge Representation and Reasoning
and Artificial Intelligence. One method that has gained pop-
ularity in the last few years issocial-based product recom-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mendation, e.g. collaborative filtering (Sarwar et al. 2001),
where the selection history of other customers is used to rec-
ommend products. Such techniques tend to ignore deeper
information of the domain in favour of following the herd
mentality.

The aim of this paper is to exploit information that is
available in the structure of an OWL ontology to sup-
plement user preferences in order to provide an effective
choice mechanism. We consider a number of methods
based on different definitions ofconcept similarityas mea-
sured in a RDF graph representation of an OWL ontol-
ogy. Furthermore, we provide an implementation of our
schemes in the SPARQL query language that extends pre-
vious work by (Siberski, Pan, and Thaden 2006) building on
the preference mechanisms added to SQL by (Kießling 2002;
Kießling and K̈ostler 2002).

Previous work in this area is limited. An ontology based
similarity system has been presented by (Middleton, Shad-
bolt, and Roure 2004) but provides for only basic features.
(Schickel-Zuber and Faltings 2006) is much closer in spirit
to this paper, introducing the notion ofontology filtering.
However, they propose a score propogation system within an
hierarchical graph, where we focus on the structural proper-
ties of the ontology. (Kiefer, Bernstein, and Stocker 2007)
has applied similarity to semantic data mapping, ontology
mapping and semantic web service matchmaking using tech-
niques from linguistic analysis. Semantic similarity for lin-
guistic analysis has been studied previously (e.g. (Li, Ban-
dar, and McLean 2003)) and there are lessons here for con-
ceptual similarity in ontologies.

The rest of this paper is arranged in the following way. In
the next section we cover the necessary background material
with a brief introduction to OWL and SPARQL. We then
briefly look at the work by (Kießling 2002; Kießling and
Köstler 2002) extending SQL and it’s partial implementa-
tion in SPARQL by (Siberski, Pan, and Thaden 2006). This
is followed by our proposal based on concept similarity, ex-
ploiting the structure in a RDF based OWL ontology. We
end with a discussion and conclusions.

Background
In our work, we adopt principles from preferences in
database systems and description logic based ontologies. In
this section, we briefly discuss these concepts.

19



Preference Querying in Database Systems
In the context of database systems, (Kießling 2002) presents
a framework for dealing with preferences as soft constraints,
namedPreference-SQL. In this work, preferences are seen
as strict partial orders over database tuples i.e. as transi-
tive and irreflexive preference relations. It proposes an ex-
tension to the SQL query language (Kießling and Köstler
2002) which permits filtering the result set using soft con-
straints as opposed to classical SQL filtering which adopts
hard constraints returning only those results that match the
queryexactly. A partial syntax of the extended query lan-
guage is given below:
SELECT <projection-list>
FROM <table-reference>
WHERE <hard-conditions>
PREFERRING <soft-conditions>
ORDER BY <attribute-list>

Using this syntax, the user can express their preferences as
soft constraints and will receive tuples whichbest match
those constraints. This approach is referred to as the BMO
(Best Match Only) query model in which a tuple will find
its way into the final result set if there does not exist any
other tuple whichdominatesit, i.e. better satisfies the pref-
erence constraints. Preference constraints in this framework
can be expressed through standard SQL operators in terms
of likes/dislikes (e.g.=, <>, IN) and numeric constraints
(e.g. <, >=, BETWEEN). This work also introduces a set
of special operators which allow the user to express their
preferences in terms of numerical approximations (through
the operatorAROUND which will favour values close to a
given numerical target value) and in terms of minimiza-
tion/maximization of numerical values (through the opera-
torsLOWEST/HIGHEST which will accept a lowest/highest
value respectively over other values). In order to allow com-
plex preference construction, two binary preference assem-
bly operators are introduced:
ThePareto accumulation(AND) treats both constituent pref-
erence constructs as equal and is defined as:

x ≺P1⊗P2
y ⇔

(x ≺P1
y ∧ (x ≺P2

y ∨ x ≡ y))∨

(x ≺P2
y ∧ (x ≺P1

y ∨ x ≡ y))

Wherex, y are database tuples andP1, P2 are preference
constructs. Intuitively, this definition says thaty is strictly
preferred tox whenever it is strictly preferred by at least
one of the two constituent preferences and equally or more
preferred by the other.
ThePrioritize accumulation(CASCADE) is used to treat two
preference constructs in order of importance and is defined:

x ≺P1&&P2
y ⇔

x ≺P1
y ∨ (x ≺P2

y ∧ (x ≺P1
y ∨ x ≡ y))

This definition says thatx is strictly preferred toy whenever
it is strictly preferred by the first preference in the cascade
and otherwise it is strictly preferred by the second preference
in the cascade and equally or more preferred by the first.
Therefore, the first constituent preference in the cascade is
given higher consideration.

Querying Ontological Information

Ontologies provide a standardised way of classifying terms
related to a domain. They are central to the knowledge-
based paradigm.

Description Logic Based Ontologies In recent years,
with the emergence of the Semantic Web, the importance
of knowledge representation and reasoning techniques over
ontological information has gained added significance. On-
tologies (Antoniou and van Harmelen 2004) are a knowl-
edge representation technique based on description logic
(DL) principles consisting of terminological entities, i.e.
ConceptsandPropertiesalso referred to asTBox and in-
stances(individuals) also refered to asABox. A very im-
portant feature of ontologies is the inherent ability to define
terminological objects in a hierarchical manner, that is, con-
cepts and sub-concepts, properties and sub-properties.

RDF and OWL A very common methodology for cre-
ating ontological information is through the XML-based
markup langague OWL (Web Ontology Language) which
allows the construction of the different entities of an on-
tology based on RDF (Resource Description Framework)
graphs. In RDF, entities are represented using a triple
pattern logic. Each element in the RDF graph has to be
a literal or an RDF resource. For example, the follow-
ing tag constructs an OWL class (concept) named Car:
<owl:Class rdf:ID="Car">. Here, the subject is a
class definition, the predicate is the class id and the object is
the string “Car”. Properties and Individuals can be created
in the same manner. For example, the following tag con-
structs a new individual Car<Car rdf:ID="Car_1">.
Suppose we have a property definition of a car’s year, the
following tag will assign the number 2005 asCar_1’s year:
<Car_1 :hasYear=2005>.

SPARQL The SPARQL query language over RDF graphs
(Prud’hommeauxand Seaborne 2006) is a W3C Recommen-
dation and considered to be a vital tool for dealing with on-
tological information in the semantic web. SPARQL allows
queries over RDF Graphs usingTriple Pattern Matchingby
introducing variables and binding the appropriate RDF re-
sources to the variables. A partial syntax for SPARQL is
given below:

SELECT <projection-var-list>
FROM <ontology-reference>
WHERE <var-bindings>
FILTER <hard-conditions>
ORDER BY <var-list>

As opposed to SQL, the projected entities are variables
where the equivalent entity to a database tuple is a set of
variables also referred to as asolution binding(or a result
binding). TheWHERE clause in the query is typically used
to bind variables to RDF resources while hard constraints
are given through theFILTER clause (although it is pos-
sible to perform certain filter operations through theWHERE
clause itself). TheORDER BY clause acts as a solution mod-
ifier, i.e. a solution list transformation function, which sorts
the result bindings according to the variables in a given list.

20



Other solution modifiers offered by SPARQL areLIMIT to
limit the number of results returned andOFFSET to instruct
SPARQL to start the result set after a given number of bind-
ings are found.

Querying Ontological Information with
Preferences

A natural progression is to extend SPARQL with preferential
queries.

P-SPARQL
In a similar fashion to the way that Kießling extended SQL
to enable database querying with preferences, (Siberski,
Pan, and Thaden 2006) presents an extension to SPARQL
to query ontological information with preferences. The fun-
damental idea here is similar; a new query element is intro-
duced to allow the construction of preferences as soft con-
straints. The extended syntax of SPARQL (in the rest of this
paper, we refer to this extension as P-SPARQL) is given be-
low:
SELECT <projection-var-list>
FROM <ontology-reference>
WHERE <var-bindings>
FILTER <hard-conditions>
ORDER BY <var-list>
PREFERRING <soft-conditions>

In the preferring section, every filter operator supported by
SPARQL can be used as well as two scoring operators,
HIGHEST/LOWEST with similar semantics as Preference-
SQL. Also, similarly to Preference-SQL, two complex pref-
erence assembly methods are implemented, i.e. the Pareto
operator for treating two preference operators as equally im-
portant and the Cascade operator to prioritize one prefer-
ence operator over the other. Finally, in this work the BMO
(Best Match Only) query model was adopted where a so-
lution binding is a best match if there is no other solution
binding dominating it (i.e., strictly preferred). Each solu-
tion binding competes against every other solution binding
where a solution binding will find its way into the final result
set if it is a best match under this definition.

Exploiting Hierarchical Structure for
Reasoning with Preferences

One of the most distinctive properties in representing knowl-
edge using ontologies is the inherent ability to define the
terminologies in the ontology in an hierarchical manner.
In analogue to terminologies in database systems, i.e. the
database schema, in this work we consider the terminolig-
cal component of an ontology (TBox) to be the part which
stores information created by experts on the domain at hand.
This assumption will then enable us to supply (possibly rec-
ommend) to the user information about individuals (ABox)
according to their preferences without having to assume a
very high level of domain knowledge on behalf of the user,
and exploit the level of knowledge the user does have in
order to perform more accurate preference querying. This
is important because in many product recommendation set-
tings, the user possesses little if any domain knowledge.

Motivating Example
The Beer Ontology Consider an ontology which de-
scribes and stores information about beer (Figure 1). This
may include the type of beer, country of origin, alcohol level
etc. Drawn from domain-specific knowledge, beer types are
typically viewed in an hierarchical manner. It is common to
consider categorizations of beer types by the differences in
yeast used in the fermentation process. Thus, the main beer
categories arelagers (made of bottom-fermenting yeasts),
ales(top-fermenting yeasts) andlambics(spontaneous fer-
mentation using wild yeasts). Under these categories we can
find sub-types of lagers, ales and lambics and so on. A par-
tial beer type hierarchy graph is given in Figure 1. Note that
this information was taken from domain specific expert data
and it is not neccesary for users (beer consumers in this case)
to be aware of the different types of beer or the hierarchical
relations between them. Still this information can be read-
ily exploited when reasoning with preferences. This domain
example was chosen in the context of this work due to the
fact that each hierarchical level defines not only a level of
abstraction but can store real objects as well. For example,
the type Dark Ale is an abstract concept (possibly defined
as a dark top-fermented beer) which other beer types (e.g.
Stout and Porter) inherit from but it is also a way of describ-
ing real objects (some beers are categorized simply as Dark
Ales). In other words, individuals (beer instances) will be
associated not only with leaf concepts but with concepts at
any level. This is a crucial point for the work presented here.

Example Query Consider the following P-SPARQL
query:

Prefix beer:
<http://example.com/beer.owl#>

SELECT ?id ?type ?country
FROM <http://example.com/beer.owl>
WHERE {
?id rdf:type ?type.
?id beer:hasCountry ?country.}

PREFERRING
?country = beer:Australia

CASCADE
?type = beer:DarkAle

In this query, we prefer Australian beers as our most impor-
tant preference attribute before we prefer dark ales. In case
no such beer exists so it perfectly answers our preference
(i.e. no Australian Dark Ale exists), we argue that it will
be sensible to return an Australian beer with similar type
to Dark Ale over returning any arbitrary beer type which
happens to be Australian. Running this query through P-
SPARQL will have exactly the behaviour where any type of
beer will be considered equal without examining its relation-
ship with the target concept.

Equality as an IS-A Relation
In Description Logic (Baader et al. 2003) concept inheri-
tance can be viewed as anIS-A relationC1 ⊑ C0 where
a sub-concept (or property)C1 is also of typeC0 by in-
heriting its properties and functionality. In our case,Stout

21



Thing

Beer

Lambic Lager Ale

Fruit Beer Gueuze Pale Lager Bock Dark Lager Dark Ale Golden Ale Pale Ale Wheat Beer

Stout Porter Amber Ale India Pale Ale Altbier

Dry Stout Imperial Stout Sweet Stout

Dry Lager Pilsner

Figure 1: Ontological Concept Hierarchy of Beer Types

will be considered a Dark Ale and thus (assuming the exis-
tence of an Australian Stout) should dominate other types
which are not a sub-concept of Dark Ale. Even though
OWL is based on description logic concepts, this behaviour
is not inherited in SPARQL. Filtering using the equal op-
erator will return only those objects which have that par-
ticular target concept. Furthermore, the filtering option
?type rdfs:subClassOf C (for querying individuals
which have a sub-concept of some target conceptC), will
result only in those that are a direct sub-class ofC omit-
ting individuals which have the typeC itself (and thus not
satisfying the axiomC ⊑ C) as well as individuals which
have a type which is not directly inherited fromC (and
thus not satisfing the transitivity property of theIS-A re-
lation). The effect of theIS-A relation can be obtained
by changing the semantics of the equality operator so that
C1 = C0 ⇔ C1 ⊑ C0. Note that querying with theIS-
A relation can affect not only preference querying but also
standard hard-constraint querying. Note also that treating
the equality operator as anIS-A relation will result in it be-
ing asymmetric.

However, there are still a few problems with this method:
what if there is no result under the target concept (or any
of its sub-concepts)? Should we consider all other concepts
outside the target concept as equal? Furthermore, is there
any relation between different levels within a sub-hierarchy?
Do we want to distinguish between general and specific con-
cepts? We discuss these issues in the next section.

Similarity-based Querying
In order to expolit the hierarchical structure of an ontology,
we present here a series of methods for computing categor-
ical similarity between concepts in aTBox. We use these
similarity methods for performing preference querying over
ontological information.

We introduce a new Boolean operatorSim(C1, C2) (is
similar to):

b1 ≺P (C0) b2 ⇔ Sim(C(b1), C0) < Sim(C(b2), C0) (1)

Where C0 ∈ Concepts is the target concept,b1, b2 ∈
ResultBindings andC(bi) is the value bound to the rel-
evant variable in the result bindingbi w.r.t C.

For example, in order to change the previous example to
prefer Australian beers and then beerssimilar to the type
Dark Ale, we change thePREFERRING section of our query
to:

PREFERRING
?country= beer:Australia

CASCADE
?type ∼= beer:DarkAle

Where∼= is the syntactic version of the similarity operator
Sim(C1, C2).

Note that by introducing a new Boolean operator we do
not change the notion of domination querying. We still have
the ability to compare two result bindings to obtain the pref-
erence domination relationship between them.

There are many ways to compute similarity between con-
cepts in an ontology, each reflecting a different rationale.
In the rest of this section we discuss various methods and
their rationales for computing this kind of similarity mea-
surement.

Similarity via Direct Graph Distance A very simple
method for measuring similarity in an ontology graph is by
looking at the direct distance between a candidate concept
and the target concept:

Sim(C1, C0) =
1

Dist(C1, C0)
(2)

Where distance is defined as the distance of each concept to
themost recent common ancestorof the two concepts:

Dist(C1, C0) = N1 + N0 + 1 (3)

Ni = len(Ci, MRCA(C1, C0)) and MRCA(C1, C0) is
the most recent common ancestor ofC1 and C0 (i.e., the
meetin lattice theoretic terms). Note that the distance be-
tween a concept and itself here is equal to 1 to avoid division
by zero. The rationale behind this simple method is to con-
sider concepts which are “closer” to the target concept more
similar. For example, a plainAle or aStoutwill be consid-
ered more similar to the target conceptDark Alethen aPale
Lager. The main problem with this approach is the fact that
it is not consistent with theIS-Arelation assumption. It may
consider concepts which are not a sub-concept of the target
concept more similar than concepts under the target concept.
This naı̈ve approach, being less intuitive, can however serve
well as a benchmark method for comparing other methods.

Distance and theIS-A relation Combining the two ideas
presented so far, i.e. treating a sub-concept as the target con-
cept (theIS-A relation) and measuring similarity via graph
distance solves the above problem. (4) is a similarity mea-
surement that will differentiate between sub-concepts and
non-sub-concepts of the target concept. Sub-concepts of the
target concept will all be equally similar to the target concept
and will always be more similar to the target concept than
those concepts “outside” the target concept. The similarity
of concepts outside the target concept will be according to
their closeness to the target concept.

Sim(C1, C0) =

{

1 if C1 ⊑ C0,
1

Dist(C1,C0)
if C1 6⊑ C0.

(4)

Communicated level of specificity The previous method
considers all concepts below a target concept as equal. This

22



may well be the case for many users or in many domains
(we discuss the relevance of the different methods in the dis-
cussion section) but in some cases, the following argument
can be made: suppose a user asks for an Ale. As discussed
above, we cannot assume that the user is familiar with the
complete sub-hierarchy under Ale. In other words, we can-
not assume that the user knows exactly which types of Ale
exist (we only assume that the ontology engineer and the
people in charge of data entry are experts in the field and
can be trusted). What we can assume is that our user knows
what Ale means (as opposed to other types of beer). Fur-
thermore, if a different user asks for a very specific type of
Ale, we can now assume that he is familiar with that type
and probably looking specifically for it. If the user asking
for an Ale wanted that very specific type of Ale, he would
probably ask for it directly. In other words, we may consider
sub-concepts “closer” (and thus more general) to the target
concept because they are closer to thelevel of specificitythe
user hascommunicated in their preference. The following
measure will create this effect:

Sim(C1, C0) =

{

1
Dist(C1,C0)

if C1 ⊑ C0,

−Dist(C1, C0) if C1 6⊑ C0.
(5)

Most Specific Shared Information So far we have con-
centrated on the similarity between sub-concepts under the
target concept. We saw different ways of treating this in-
formation. Another very important issue when dealing with
hierarchical-based similarity methods is the similarity be-
tween the different concepts not inherited from the target
concept and that target concept. Consider the following
query over our beer ontology: the user has asked for a Stout
(possibly among other criteria). There is no Stout or a sub-
concept of a Stout which satisfy the request. We do consider
an Ale and a Porter. Up until now, these two concepts will
be considered as equally similar to Stout (both with distance
3 from Stout). The problem here is that it may well be ar-
gued that Porter is more similar to Stout than a plain Ale
since Stouts and Portersshare more specific information.
Both Stout and Porter inherit from Dark Ale which means
that they share the special properties of a Dark Ale that dis-
tinguish it from a plain or any other type of Ale. (Wu and
Palmer 1994) presented a similarity measurment (in the con-
text of linguistics) which takes the level of shared informa-
tion into account:

Sim(C1, C0) =
2 ∗ N3

N1 + N2 + 2 ∗ N3
(6)

WhereN1, N2 are the distances from the conceptsC0 and
C1 to their MRCA respectively andN3 is the distance
from this MRCA and the root of the ontology (assuming
the most general concept is the OWL conceptThing). In
our example,Sim(Stout, Ale) = 2∗2

2+0+2∗2 = 0.67 while
Sim(Stout, Porter) = 2∗3

1+1+2∗3 = 0.75 and thus Porter
will be considered more similar to Stout than Ale and will
dominate it in the context of beer type.

A major drawback in using this method to compute sim-
ilarities in ontology hierarchies is that it does not respect
the IS-Arelation axiom on ontologies with depth> 4 when

comparing the similarity between a general concept and a
sub-concept on depth≥ 4 from it. For example, this method
will give a similarity measurement of0.5 betweenAle and
Lagerand a smaller similarity measurement of0.44 between
Ale and a sub-concept ofAle at depth 6 (that is, a very spe-
cific type of Ale). It may be argued that even though this
very specific type of Ale is indeed an Ale, due to its spe-
cific charateristics it may have gone far enough from the
base concept to be considered less similar to it compared to
a concept outside that base concept. We find no justification
for making such an argument mainly due to the fundumental
significance of theIS-Arelation in description logic concep-
tual inheritance.

We propose here a method for measuring similarities be-
tween concepts while considering specific shared informa-
tion more similar and preserving theIS-ADL axiom.
Most Specific Shared Information w.r.t Tree Depth In
order to measure similarity between concepts while consid-
ering concepts that share more specific information to be
more similar and preserve the DL semantics of theIS-Arela-
tion, we modify (6) by reducing the similarity measurement
in relation to the depth of the compared concepts and the
maximal depth of the tree. In order to keep the method sym-
metric, we look at the average distance of the two compared
concepts to the depth of the tree:

Sim(C1, C0) =
2 ∗ N3

N1 + N2 + 2 ∗ N3 + AV G
(7)

WhereN1, N2 andN3 are defined as in (6),AV G is the
average distance ofMAX to the depth of the conceptsC0

andC1 andMAX is the length of the longest path from
the root of the ontology to any of its leaf concepts. For
example,Sim(Stout, Ale) = 2∗2

2+0+2∗2+2 = 0.5 while
Sim(Stout, Porter) = 2∗3

1+1+2∗3+1 = 0.67 and thus, as for
the previous method, Porter will be considered more simi-
lar to Stout than Ale. But now, as opposed to (6), this will
still give a smaller similarity measurement (0.24) between
AleandLagerand a greater similarity measurement between
Ale and any sub-concept ofAle, e.g. 0.4 for a sub-concept
of Ale at depth 6. We can prove that (7) guarantees that
sub-concepts are always preferred to non-sub-concepts w.r.t
a target concept.

Theorm 1. Let ≺ be defined by (1) withSim defined as
in (7). Let C0, C1, C2 be concepts in an ontology such
that C1 ⊑ C0 and C2 6⊑ C0. For all result bindingsb1,
b2 such thatC(b1) ∈ C1 and C(b2) ∈ C2 it holds that
Sim(C0, C1) > Sim(C0, C2) (henceb2 ≺P (C0) b1).

The powerfulness of this method is that it encapsulates
both discussed intuitions while preserving the symmetric na-
ture of (6). It stands in theIS-Arelation axiom, always con-
sidering sub-concepts of a target concept more similar than
non-sub concepts w.r.t a target concept. It also considers
concepts that share more specific information more similar
unless the previous statement does not hold.

23



Implementation
An implementation of the methods proposed here have
been completed based on theARQSPARQL query engine
(Seaborne 2005) (aJenabased query engine) and building
on the implementation of (Siberski, Pan, and Thaden 2006)
where the iterative processing of preference querying is per-
formed as asolution modifier(similarly to the way the clas-
sical sorting functionalityORDER BY is done). On top of
the described similarity measurement methods, we comple-
mented this implementation by adding some further numeri-
cal preference attributes mentioned in (Kießling and Köstler
2002) such asAROUND andBETWEEN. In order to give the
user the flexibility in choosing their preference query se-
mantics w.r.t similarity, the system receives two parameters:
equality operator semantics (strong equivalence orIS-A) and
a similarity measurement method.

Discussion
We have described here various similarity meaurement tech-
niques to be used in the context of preference querying. How
should one choose a method in order to utilize this for their
own purpose? Furthermore, who should bear the responsi-
bility of deciding on the different parameters in this system?
We briefly discuss these issues here.

In terms of the similarity method applied, apart from the
different rationale encapsulated in the different methods, it
is important to distinguish between two different inheritance
systems:Abstract Inheritance SystemsandData Inheritance
Systems. Abstract inheritance systems define an hierarchical
system in which data objects (individuals) are attached only
to leaf nodes. The intermediate levels in the hierarchy serve
as abstract concepts (and thus are not used for instantiation).
For example, suppose we have an hierarchy over the dif-
ferent programming languages according to some features
of those languages.Javamay inherit from the conceptOb-
ject Oriented Languagebut this concept cannot be used for
instantiation of a specific program (a program will eventu-
ally be written in a specific language). This abstract concept
can be used for reasoning purposes. In data inheritance sys-
tems, non-leaf nodes also often define an abstraction over
their child concepts but instances can be associated with any
concept in the hierarchy. An example of a data inheritance
system is our beer ontology. We argue that this distinction
should be taken into consideration when selecting a similar-
ity measurement method. For example, pure distance based
methods (2) and (5) will not perform well on abstract inher-
itance systems whileIS-A relation based methods will per-
form better on those systems.

Conclusions
In this paper we have enhanced preference querying by sup-
plementing the user’s preferences with ontological informa-
tion; in particular, by exploiting the structural properties of
the ontology describing the domain at hand. We claim that
this is significant for a vast class of ontologies that we refer
to asdata inheritance systems. By introducing a notion of
similarity based on distance metrics, we free the user from

having to possess a deep understanding of the underlying do-
main. In particular, we adapt one similarity measure (6) and
introduce another (7). Ontologies are developed by domain
experts who have intimate knowledge of their subject area
and are exploited by naive users who can specify weaker
preferences without the fear of being overwhelmed by the
results. Moreover, the results are not biased by the whims of
previous user consumption but by exploiting domain exper-
tise. Our proposals are implemented on ARQ and enhance
the SPARQL standard.

References
Antoniou, G., and van Harmelen, F. 2004.A Semantic Web
Primer (Cooperative Information Systems). MIT Press.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003.The description logic
handbook: Theory, implementation, and applications. New
York, NY, USA: Cambridge University Press.
Bradley, K.; Rafter, R.; and Smyth, B. 2000. Case-based
user profiling for content personalisation.Lecture Notes in
Computer Science1892:62–72.
Doyle, J., and Thomason, R. H. 1999. Background to
qualitative decision theory.AI Magazine20(2):55–68.
Fishburn, P. 1999. Preference structures and their numeri-
cal representations.Theor. Comput. Sci.217(2):359–383.
Kiefer, C.; Bernstein, A.; and Stocker, M. 2007. The
fundamentals of iSPARQL – A virtual triple approach for
similarity-based semantic web tasks. InISWC ’07.
Kießling, W., and Köstler, G. 2002. Preference SQL: de-
sign, implementation, experiences. InVLDB, 990–1001.
Kießling, W. 2002. Foundations of preferences in database
systems. InVLDB, 311–322.
Li, Y.; Bandar, Z. A.; and McLean, D. 2003. An ap-
proach for measuring semantic similarity between words
using multiple information sources.IEEE Transactions on
Knowledge and Data Engineering15(4):871–882.
Middleton, S. E.; Shadbolt, N. R.; and Roure, D. C. D.
2004. Ontological user profiling in recommender systems.
ACM Trans. Inf. Syst.22(1):54–88.
Prud’hommeaux, E., and Seaborne, A. 2006. SPARQL
query language for RDF. Technical report, W3C Candidate
Recommendation.
Sarwar, B. M.; Karypis, G.; Konstan, J. A.; and Reidl, J.
2001. Item-based collaborative filtering recommendation
algorithms. InWorld Wide Web, 285–295.
Schickel-Zuber, V., and Faltings, B. 2006. Inferring User’s
Preferences using Ontologies. InAAAI 2006, 1413–1418.
Seaborne, A. 2005. ARQ - A SPARQL processor for Jena.
http://jena.sourceforge.net/arq.
Siberski, W.; Pan, J. Z.; and Thaden, U. 2006. Querying the
semantic web with preferences. InInternational Semantic
Web Conference, 612–624.
Wu, Z., and Palmer, M. 1994. Verb semantics and lexical
selection. In32nd Annual Meeting of the Association for
Computational Linguistics, 133 –138.

24




