
Preferences in Semi-Cooperative Agreement Problems

Elisabeth Crawford and Manuela Veloso
Computer Science Dept., Carnegie Mellon University,

Pittsburgh PA, 15213

Abstract

We define the Extended Incremental Multiagent Agreement
Problem with Preferences (EIMAPP). In EIMAPP, variables
arise over time. For each variable, a set of distributed agents
receives reward for agreeing on which option to assign to
the variable. Each of the agents has an individual, privately
owned preference function for choosing options. EIMAPPs
reflect real world multiagent agreement problems, including
multiagent meeting scheduling and task allocation. We an-
alyze negotiation in EIMAPP theoretically. We introduce
semi-cooperative agents, which we define as agents with
an increasing incentive to reach agreements as negotiation
time increases. Agents necessarilyreveal information about
their own preferences and constraints as they negotiate agree-
ments. We show how agents can use this limited and noisy
information to learn about other agents, and thus to negotiate
more effectively. We demonstrate our results experimentally.

Introduction
In Agreement Problems, multiple parties receive reward for
reaching agreement on some issue. Agreement problems
are generally solved via negotiation. Some examples in-
clude: (i) the exchange of availability information to sched-
ule meetings; (ii) negotiation about role or task assignments;
and (iii) a sports team agreeing on a game plan.

Automating agreements has been studied from multiple
directions, including centralized approaches, e.g., (Ephrati,
Zlotkin, and Rosenschein 1994), cooperative distributed
constraint satisfaction approaches e.g., (Wallace and Freuder
2005) and game-theoretic negotiation approaches, e.g., (En-
driss 2006). In negotiation, particularly involving both hu-
mans and automated agents, it has been shown that some
cooperation is beneficial, and expected by the human nego-
tiators (Grosz et al. 2004). In this paper, we study agree-
ment problems where variables arise over time, preferences
are privately owned, and where agreements are negotiated.

Agreement problems are neither fully cooperative (agents
have individual preferences), nor fully adversarial (agents
need to reach agreement in order to receive reward). We cap-
ture this “middle-ground” assemi-cooperativebehavior, in
which the agent’s utility relaxes its faithfulness to the user’s
preferences as a function of the negotiation round. In our

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach, the discount in the utility function acts as an in-
creasing incentive to compromise as time increases. Our
approach contrasts to existing work on agreement problems
that focuses on either fully co-operative or simply rational
behavior in the traditional game theoretic sense.

We further focus on the private aspect of the distributed
agreement problem. We define preferences and assign-
ments as privately owned. However, as negotiation pro-
ceeds, agents necessarily reveal information about their pref-
erences and properties. We use the incremental partial dis-
closure of privately owned information, to learn to adapt an
agent’s negotiation to the other agents. In this paper, we con-
tribute a learning algorithm which uses negotiation histories
to model the behavior of other agents. The negotiation his-
tories are challenging and noisy, in particular because of the
impact of multiple agents adapting at once. We show how
our learned models can be successfully exploited to increase
the agent’s utility while continuing to learn online.

Agreement Problems

We define the Extended Incremental Multiagent Agreement
Problem with Preferences (EIMAPP). In EIMAPPs, vari-
ables,v, arise over time. For each variable, the set of de-
cision makers,Dv, receive reward if they agree upon an
option, o, from the set of all options,O, to assign tov.
Each agent has a privately owned preference function that
specifies its payoff for assigningv to each option. We
build upon the Incremental Multiagent Agreement Problem
(IMAP) Modi & Veloso (2005). We extend IMAP to cover
a wider class of values/options and to include preferences.

Definition The Extended Incremental Multiagent Agree-
ment Problem (EIMAP) consists of:

• A set of agentsA.

• A set of values/optionsO.

• A set of variablesV , not provided up-front.

• For each variablev ∈ V , Dv ⊆ A is the set of agents
that decidev. To decidev each of the agents inDv must
agree to assign a particular optiono ∈ O to v. When
the agentsDv decide a variable they each receive some
reward according to their utility function (defined later).

25

Preferences in EIMAP
IMAP (Modi and Veloso 2005), does not include a built-
in notion of preferences. Nonetheless, in many domains,
agents have preferences about which options are assigned to
variables. For instance, in a multi-robot task domain, some
options for completing a task may be more expensive to a
robot than others.

Definition EIMAP with Preferences (EIMAPP) is an in-
stance of EIMAP where each agenta ∈ A has a function
prefa: O × V → ℜ+. The function indicatesa’s preference
for assigningo to a variablev. In this paper we look at the
case where prefa(o, v) = pref(o, v′) ∀v′ ∈ V

We do not include a specificgoal in the problem defini-
tion, since the appropriate goal depends on the agent model.

To represent some real-world problems, it may be neces-
sary to add restrictions to the EIMAPP definition. Currently,
any option can be used to decide any variable. Agentsa1 and
a2 could assigno1 to v1 ando1 to v2. To represent domains
such as meeting scheduling where resources are limited we
can add restrictions on option usage to represent constraints,
e.g., in one week an agent can’t assign the option “Monday
9am” to more than one variable.

Privately Owned Information
In EIMAPP domains certain information is privately owned.
In order to distributively reach agreements agents reveal
some of their privately owned information, but it is impor-
tant they retain control of what is communicated.
Variables: Only the agentsDv need to knowv exists to as-
sign it an option. In some domains it is undesirable for all
agents to know of all the variables, e.g, meeting scheduling.
Assignments: Only the agentsDv need to know which op-
tion, o, is assigned tov.
Preferences: Privately owned by the agents.

Negotiation
To decide a variablev, the agents,Dv negotiate until they
reach an agreement by exchanging offers of options. Ane-
gotiation protocolis a public set of rules, governing the me-
chanics of the negotiation. Our protocol operates in rounds,
and offered options remain on the table. Every round the
initiator of the variable, offers a set of options to the other
decision makers. The decision makers respond by sending a
set of options back to the initiator . The process ends when
there is an intersection in the offers. Algorithm 1, shows an
un-restricted form of the protocol.

Algorithm 1 Un-restricted negotiation protocol
for eacha in Dv, letOa be the set of optionsa has offered
if

⋂

∀a∈Dv

Oa = ∅ then
initiator, i, offersOr

i ⊂ O to the other agents inDv

a ∈ {Dv − i} offersOr
a ⊂ O to the initiator

else
intersection=

⋂

∀a∈Dv

Oa

initiator selects anoc from intersection to assign to the
variable and notifies alla ∈ Dv

The protocol allows for a wide variety of agent behavior.
e.g., agents can send each other empty offers, offer all op-
tions, etc. A common protocol restriction is that the agents
monotonically concede, e.g., we could require that at least
one new option is offered each round. The choice of pro-
tocol affects what privately owned information is revealed,
and thus the difficulty of learning about other agents. By re-
stricting agent behavior, protocols can reveal with certainty
some of an agent’s privately owned information. For in-
stance, Modi & Veloso (2005) require agents to accept any
proposal that does not violate a constraint. In their meet-
ing scheduling domain, when an agent does not agree to
a time, it has a meeting. Wallace & Freuder (2005) also
require agents to agree to any feasible proposal. Our pro-
tocol does not place agreement requirements of this type
upon the agents. Others, e.g., (Jennings and Jackson 1995;
Bui, Kieronska, and Venkatesh 1996) require agents to re-
veal their preferences for the options they propose. Bui et
al., (1996) use a Bayesian learning to learn the preferences
of other agents, using meeting scheduling as their test do-
main. The agents are assumed to truthfully reveal their pref-
erences for different options. This gives the learner correctly
labeled training data to learn the preference function of the
other agents.

At the other end of the spectrum, some researchers have
focused on privacy. For example, in the context of Dis-
tributed Constraint Optimization (DCOP), Yokoo, Suzuki &
Hirayama (2005) used cryptographic techniques to preserve
privacy. However, even if a cryptographic approach is used
to obscure the agreement process, the agents gain some in-
formation from seeing the options that are agreed upon.

Negotiation Strategies
A Negotiation Strategy is an algorithm that subject to a par-
ticular negotiation protocol, determines the agent’s actions.
In our protocol negotiation strategies decide what options
to offer in each round. Negotiation strategies are privately
owned. There is a large range of negotiation strategies.1

We will analyze preference based strategies.

Definition 1-Preference-Order Strategy: Offers one option
per round. If prefa(oi) > prefa(oj), oi offered beforeoj . If
prefa(oi) = pref(oj) then a offers the option already of-
fered by the largest number of agents, tie-breaking in fa-
vor of the earliest offered option (further tie-breaking is ran-
dom). Where possible, a Pareto-Optimal option is selected
from the intersection by the initiator (assuming all agents
use the strategy).

A typical performance criteria is whether a negotiation
strategy leads to aPareto Optimaloutcome in self-play.

Definition Pareto Optimality in terms of Preferences: An
outcomeoi is Pareto Optimal forv if there does not exist
another outcomeoj such that for somea ∈ Dv prefa(oj) >
prefa(oi) and∀b 6= a ∈ Dv prefb(oj) ≥ prefb(oi).

1If we require agents to offer a new option each round, the space
of negotiation strategies, which don’t depend on the offers of other
agents, is every ordering of options, i.e., fork options there arek!

distinct strategies.

26

Theorem 1. Let there be two agentsa and b, who both
use the 1-Preference-Order Strategy, then the outcomeoc

is Pareto Optimal in terms of preferences.

Proof. Let rc be the agreement round. For a contradic-
tion, suppose∃op such that prefa(op) > prefa(oc) and
prefb(op) ≥ prefb(oc). Case 1: Let a be the initiator. Since
prefa(op) > prefa(oc), a must have offeredop prior torc. If
prefb(op) > prefb(oc) thenb must have offeredop prior to
rc. If prefb(op) = prefb(oc) thenb must also have offeredop

prior torc (tie-breaking rule). Henceop would be the agree-
ment.Case 2: Let b be the initiator. If prefb(op) > prefb(oc)
the same argument applies. If prefb(op) = prefb(oc) thenb
may offeroc beforeop, but a will still offer op beforeoc.
This could result in bothoc andop appearing in the intersec-
tion. However,b knows thata is either indifferent or prefers
op, so by the Pareto-Optimality condition in the strategy,b
will selectop as the agreement.

For two agents (offering one option a round) preference
order leads to a Pareto Optimal outcome. We can extend the
result to agentsofferingk options a round, if we require that
agentsdon’t offer options of different preference in the same
round. Forn agents, we run into difficulties, since the option
intersection can contain options that are Pareto Dominated.

Lemma 2. Whenn agents negotiate using the 1-Preference-
Order Strategy the intersection can contain a Pareto Domi-
nated option, which is indistinguishable to the initiator from
a Pareto Optimal option (Crawford 2008).

Corollary 3. The outcome ofn agents using the 1-
Preference-Order Strategy is not always Pareto-Optimal.

This problem could be avoided by using a protocol where
only the initiator proposes options and the others just ac-
cept/reject. This could be very slow however. A strat-
egy that offers options in preference order makes sense if
the agent only cares about preferences. However, in many
agreement problems agents have concerns about negotiation
time. In the following section we address this by defining
semi-cooperative agents and utility functions.

Semi-Cooperative Agents
In general, agreement problems are neither fully cooperative
nor fully adversarial. We note that if an agent compromises,
by offering an option out of preference in order, we can’t
guarantee Pareto Optimality.

Lemma 4. If an agent offers an option out of order of pref-
erence, an outcome that is not Pareto-Optimal (in terms of
preferences) can result.

Proof. Suppose there are two agents,a, b anda offersoc out
of order to agree withb. Then,∃op, such that prefa(op) >
prefa(oc). Suppose prefb(oc) = prefb(op), thenoc is not
Pareto Optimal. A similar argument works forn > 2 agents.

In many agreement problems preferences are not the only
consideration - negotiation efficiency is important. For ex-
ample a personal assistant agent may need to negotiate elec-
tronically with humans as well as with computer agents.

We definesemi-cooperative agentsto address the dual con-
cerns of preference satisfaction and cooperation in agree-
ment problems. We model the agents as having a self-
interested component to their utility - the reward accord-
ing to the agents’ preference functions. This reward is dis-
counted over negotiation time (measured in rounds) to rep-
resent the agents’ cooperative tendencies.

Definition Preference-Round Semi-Cooperative Utility
Let agenta’s utility from agreeing to assign optiono to vari-
ablev in roundr be given by:

U(o, v, r) = γrprefa(o, v), γ ∈ (0, 1)

Agents with a high cost for negotiation time (lowγ) are
incentivized to compromise earlier in the negotiation (by
agreeing to an offered option) than agents with a highγ.
Due to privacy considerations, it is undesirable for agents
to offer many options in order to reach agreement quickly.
We assume the agents have a maximum number of options
they can offer per round (e.g., set by the agent’s user). In
our experiments this maximum is set to one, and we use the
protocol restriction where agents offer one option per round.

Definition ǫ Semi-Cooperative Behavior For a variable,v,
agenta selects an optiono fromOun-Offereda (the options it has
not yet offered forv) to offer in roundr as follows.

ov(r) =










argmax
o∈Oun-Offereda ,r′>r

U(o, v, r′) if ∃o, r′ : U(o, v, r′) ≥ ǫ

argmax
o∈Oun-Offereda&∄o

′offered by more agents

prefa(o).

In other words, the agent offers the option it believes will
maximize its utility, if the utility will exceed the parameter
ǫ, for somer′. The roundr′ is the estimated (from learn-
ing) agreement round for the option. If the agent cannot
achieve utility greater thanǫ, then it seeks to reach an agree-
ment quickly, by selecting from amongst the options that
have been offered by the most agents, the option it prefers.

Other models of semi-cooperativeness have been con-
sidered in the agents literature. Gal et al. (2004) look at
modelling an individual agent’s utility as a function of self-
interest and others’ interest. This works when the prefer-
ences of the agents are public knowledge. Manisterski, Katz
& Kraus (2007) define semi-cooperativeness, not according
to the agents’ utility functions, but using other properties,
e.g., they require Pareto Optimality in self-play. Zhang and
Lesser (2007) also base their definition on agent properties,
in particular they define an agent that is truthful and col-
laborative, butnot willing to voluntarily sacrifice its own
interest for others, as semi-cooperative. Negotiation with
discount factors has been looked at in game theory, e.g.,
in the context of the split the pie game analyzed by Ru-
binstein (1982). Game theoretic analysis is most applicable
when there is complete information or when the agents share
accurate prior beliefs about type distributions.

Previously, we showed that when agents only cared about
preferences, that if they offered an option out of preference
order it could result in a Pareto Dominated outcome. When
agents are semi-cooperative we get the following:

27

Lemma 5. Anagent may receive greater utility if it offers an
optionout of preference order, than in order, when it has a
Preference-Round Semi-Cooperative utility function (Craw-
ford 2008).

To design algorithms for semi-cooperative agents and
evaluate them, we need to appropriate performance criteria.
Unfortunately,achieving Pareto Optimality relative to semi-
cooperative utility is not a realistically achievable when
agents negotiate EIMAPPs. To show this we need to define
Pareto Optimality relative to semi-cooperative utility. Since
the round and option both determine the agents’ payoffs, we
let an outcome be an option round pair, e.g.(oi, 2). Pareto
Optimality is then defined as previously,using utility func-
tions instead of preference functions.

Lemma 6. For an outcome of the negotiation process to be
Pareto Optimal in terms of Semi Cooperative utility it must
be agreed upon in the first round.

Proof. Let (oi, r), s.t r > 1 be the outcome of negotiat-
ing v. Then by the definition of Semi Cooperative utility,
Ua(oi, 1) > Ua(oi, r)∀a ∈ Dv.

Since agent preferences and any constraints are privately
owned, we can’t guarantee Pareto Optimality. Instead, our
agents aim to achieve high semi cooperative utility. Because
the round of agreement influences utility, and depends on
the behavior of other agents, we present an approach where
agents learn online to improve their negotiation.

Learning to Maximize Estimated Utility
To compare the utility of offering different options, agents
need a way to estimate when options will be agreed upon.
The negotiation history contains relevant data.

Data
For each variable an agent negotiates, it can record the com-
plete negotiation history.

Definition Let anegotiation historyfor a particular variable
v, hv, have the following form. For each:a ∈ Dv,

hv(a) = [offera(v, t1), offera(v, t2), . . . , offera(v, tfinal)]

, where offera(v, ti) is the set of options proposed by agent
a for variablev in roundti of the negotiation. If an agent is
a decision maker for a variable, but not the initiator, then it
only has the record of its own offers and the initiator’s offers.

From the negotiation histories of all the variables it
has negotiated, an agent can extract training data of the
following form, for each of the other agents it negoti-
ations with: dataa = {(option,round)}, e.g., dataa =
{(o1, r1), (o2, r10), (o1, r3), ..}.

Learning to Predict Rounds
To the data gathered the agent can apply aregression algo-
rithm to predict for each option the round in which the agent
is most likely to offer it, given the data (in the experiments
we use Linear Regression). To estimate the round in which
an optionwill be agreed upon, theagent takes the maximum
of the round estimates for each of the decision makers.

One important consideration is how to handle options that
are never offered. For a given number of decision makers
and option set size, we can calculate the maximum number
of rounds required (assuming the agents must offer a new
option in each round). Initially we provide a training exam-
ple for every option where the negotiation round is set to be
this maximum. This represents the concept that the option is
never offered. The first time an option is offered, the initial
training example is removed from the set. For options that
are never offered thenevertraining examples remain.

Learning Online: Exploration
When an agent negotiates for the first time with another
agent it has no way to estimate when that agent will of-
fer options. Agents need tolearn onlineas they negotiate.
Learning online also allows the agent to adjust to changes
in the other agent’s behavior. In this paper we use a scheme
where the agentexploreswith some probability, or instead
exploitswhat it has learnt. The probability of exploration
is decreased as the number of variables negotiated with an
agent increases. When the agent explores, it uses the 1-
preference order negotiation strategy. However it still uses
theǫ condition on utility and will seek to compromise if util-
ity is going to fall belowǫ.

Exploiting the Learned Information
We consider the protocol restriction where the agent must
offer one new option each round. When exploiting the
learned information, the agent would like to select the op-
tion,ow, that it estimates will maximize its utility.ow has an
associated predicted agreement roundrw. The agent would
like to simply offerow and wait for it to be accepted (hope-
fully by roundrw). However, if the agent must offer a new
option every round and there are no other options to offer
of equal estimated utility, the agent will have to offer an op-
tion of lower estimated utility. As such, there is a danger
that the option of lower estimated utility could become the
agreed upon option. To try and avoid this, after offeringow

the agent can offer options in the order of highest estimated
round first. Ifrw is exceeded without an agreement being
reached the agent needs to revise its utility estimate forow,
and start to offer any options with utility equal to the new
estimate. The process described here is the idea behind the
Strategic-Semi-Cooperative-Learner. This process is sum-
marized in Algorithm 2. Note that when a round estimate
is required for an agent, if the agent has already offered the
option this is taken into account instead of querying the re-
gression learner for an estimate.

A drawback of the Strategic-Semi-Cooperative-Learner is
that if the round estimates are inaccurate the agent could be
wasting rounds. To address this, we also explore the use of
a strategy we call Semi-Cooperative-Ordered-Learner (sum-
marized in Algorithm 3). In this strategy, the agent offers
options in order of estimated utility.

Each of the learning approaches described requires the
agent to estimate the utility of offering the different op-
tions. To estimate the utility of offering optionow, the agent
queries the regression learner for the estimate of when each
of the decision maker agent will offerow. Let the highest

28

Algorithm 2 Strategic-Semi-Cooperative-Learner: Select-
Option(v)

First-Call: sort-by-est-util(unofferedv)
ow = pop(unoffered), offer(ow)
Method:
sort-by-est-util(unofferedv)
if util-est(ow)> util-est(top(unofferedv)) then

if util-est(ow) < ǫ) then
execute SC-ǫ behavior

else
cp = sort-by-highest-est-round(copy(unofferedv))
offer(remove(unofferedv, top(cp)))

else
if util-est(top(unofferedv))< ǫ) then

execute SC-ǫ behavior
else

ow = pop(unofferedv)
offer(ow)

Algorithm 3 Semi-Cooperative-Ordered-Learner: Select-
Option(v)

First-Call: sort-by-est-util(unofferedv)
ow = pop(unoffered), offer(ow)
Method:
sort-by-est-util(unofferedv)
if max (util-est(ow),util-est(top(unofferedv))) < ǫ) then

execute SC behavior
else

ow = pop(unofferedv)
offer(ow)

such round berw. This is the agent’s estimate for whenow

will be agreed upon. To estimate the utility of offeringow

the agent then uses its own utility function with the values
of ow andrw.

The overall online learning algorithm is summarized in
Algorithm 4.

Algorithm 4 Online-Learning-Negotiator: receive-
offer(o,a,v,r)

First-Call: explore = 1
dataa ∪ (o, r)
if explore> randthen

1-Preference-Order.Select-Option(o,v)
else

Exploit using Semi-Cooperative-Ordered-Learner or
Strategic-Semi-Cooperative-Learner

if finished negotiating vthen
run regression on data

reduce-probability(explore,r)

Experiments and Results
We have conducted a large number of experiments in
EIMAPP (without restrictions on option use) to determine

the efficacy of our approaches . In the experiments pre-
sented, variables were negotiated between two agents. Thus,
when we make comparisons to the 1-Preference-Order Strat-
egy, we are comparing to an outcome that is Pareto Optimal
in terms of preferences. Focusing on the two agent case here
allows us to most readily analyze the effect of the exploita-
tion strategies. However, we have also experimented with
more agents and found the learning very successful. The
number of options in all the experiments was 40. The graphs
displayed don’t show error bars since the standard deviation
over the trials was insignificant.

Approaches Effectively Adapt in Self-Play

Figure 1 demonstrates both our approaches effectively adapt
over time in self-play. In the experiment shownγ = 0.3
and the preference range of the agents was40. Using the
1-Preference-Order strategy resulted in the agent receiving
zero utility, however, our learning agents performed much
better. The graph shows the utility of of Agent 1 increas-
ing as the number of variables negotiated increases, rela-
tive to the non-learning approach (the graph for Agent 2 is
similar). The problem of learning when another agent will
offer options is non-trivial in the self-play, since the semi-
cooperative agents are not consistent in when they offer op-
tions. This is because both agents are exploring, and seek-
ing to compromise when they exploit. As such it is impres-
sive how quickly the agents adapt. Adapting quickly on-
line is important in domains like meeting scheduling, where
two agents may have relatively few opportunities to learn
about each other. For otherγ values and different prefer-
ence ranges we got similar results.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200

U
til

ity
 o

f A
ge

nt

Number of variables negotiated

Average Utility

Strategic-SC
SC-Ordered

1-Preference

Figure 1: The Strategic-Semi-Cooperative-Learner and
the Semi-Cooperative-Ordered-Learner increase the average
utility they achieve over time in self-play

Effect of γ on Improvement Due to Learning

We examined the effect (Figure 2) different values ofγ had
on how much learning improved performance (as a percent-
age of the performance of the 1-Preference-Order strategy).
For very lowγ, γ = 0.1 we found that all the approaches
achieved a utility of0 when rounded to two decimal places.
All the preferences in this experiment fell in the range1 to
9. Whenγ was high for the agent we were evaluating (0.9),

29

the percentage improvement was moderate (17 to 27%), re-
gardless of whether the other agent had a high or a lowγ. As
theγ of the agent we were evaluating decreased to medium
high (MHi= 0.7) and medium (MLow= 0.3) the percentage
improvement increased dramatically, first to a little under
200%, and then to over500%. The MLow γ setting high-
lights how much the learning and exploitation algorithms
help when the agent cares about negotiation time. We didn’t
find a signifigant difference between the two exploitation ap-
proaches. The pattern described here was similar for other
preference ranges.

 0

 100

 200

 300

 400

 500

 600

SCOrdMLowMHiGamma

StratMLowMHiGamma

SCOrdMHiMLowGamma

StratMHiMLowGamma

SCOrdHiHiGamma

StratHiHiGamma

SCOrdHiLowGamma

StratHiLowGamma

SCOrdLowLowGamma

StratLowLowGamma

P
er

ce
nt

ag
e

Im
pr

ov
em

en
t i

n
A

ve
ra

ge
 U

til
ity

 (
ov

er
 m

ul
tip

le
 tr

ia
ls

)

Percentage Improvement Of Learning Approaches Over 1-Preference Order

Figure 2: Percentage improvement of the Strategic-Semi-
Cooperative-Learner(Strat) and Semi-Cooperative-Ordered-
Learner(Ord) over the 1-Preference-Order strategy. Marker
“HiLowGamma” indicates that the agent being evaluated
had a highγ and the other agent had a lowγ. γ values:
Hi=0.9 MHi=0.7, MLow=0.3, Low=0.1. 200 variables were
assigned and the std. dev across trials was negligible.

Discussion
The experiments presented are for the general case of
EIMAPP (options are reusable). Without restrictions,
EIMAPP can represent problems such as a sports team
repeatedly picking team plays. In domains like meeting
scheduling, where a time-slot can’t be used again until the
calendar is reset for the next week, we have also found learn-
ing to predict rounds improves performance.

In addition to evaluating the exploitation approaches in
self-play, we have evaluated them against each other, and
against the 1-Preference-Order strategy. The best results are
achieved when both the agents learn. In the future we would
like to evaluate against a wider variety of exploitation ap-
proaches. We have also looked at the case where more than
two agents negotiate variables. For example, when a group
of agents negotiated variables with up to 10 decision makers
we found that learning online increased the performance of
our agent approximately 4-fold.

Conclusions
In this paper we formalized agreement problems by defin-
ing EIMAPP, emphasizing the importance of preferences
and the relevance of privately owned information. We in-
troduced a definition of semi-cooperative agents in which

agents become more cooperative as negotiation time in-
creases. We contributed an approach for semi-cooperative
agents tolearn to improve their negotiationin agreement
problems. We showed experimentally that our approach sig-
nificantly outperforms not learning. The learning aspect of
our work differs from previous work on learning in agree-
ment problems, which has largely sort to learn explicit mod-
els of agents’ properties and constraints.

Acknowledgements
This work was partly supported by DARPA under Contract
No. FA8750-07-D-0185. The presented views and conclu-
sions are those of the authors only. Thanks to the anonymous
reviewers and to Andrew Carlson for helpful discussions re-
garding regression.

References
Bui, H. H.; Kieronska, D.; and Venkatesh, S. 1996. Learn-
ing other agents’ preferences in multiagent negotiation. In
Proceedings of AAAI.
Crawford, E. 2008. Improved negotiation in multiagent
agreement problems through learning.
Endriss, U. 2006. Monotonic concession protocols for
multilateral negotiation. InProceedings of AAMAS.
Ephrati, E.; Zlotkin, G.; and Rosenschein, J. 1994. A non–
manipulable meeting scheduling system. InProc. Interna-
tional Workshop on Distributed Artificial Intelligence.
Gal, Y.; Pfeffer, A.; Marzo, F.; and Grosz, B. J. 2004.
Learning social preferences in games. InProceedings of
AAAI.
Grosz, B.; Kraus, S.; Talman, S.; Stossel, B.; and Havlin,
M. 2004. The influence of social dependencies on decision-
making: Initial investigations with a new game. InPro-
ceedings of AAMAS.
Jennings, N. R., and Jackson, A. J. 1995. Agent based
meeting scheduling: A design and implementation.IEE
Electronics Letters31(5):350–352.
Manisterski, E.; Katz, R.; and Kraus, S. 2007. Provid-
ing a recommended trading agent to a population: a novel
approach. InProceedings of IJCAI.
Modi, P. J., and Veloso, M. 2005. Bumping strategies
for the multiagent agreement problem. InProceedings of
AAMAS.
Rubinstein, A. 1982. Perfect equilibrium in a bargaining
model.Econometrica50(1):97–109.
Wallace, R. J., and Freuder, E. C. 2005. Constraint-based
reasoning and privacy/efficiency tradeoffs in multi-agent
problem solving.Artif. Intell. 161(1-2):209–227.
Yokoo, M.; Suzuki, K.; and Hirayama, K. 2005. Se-
cure distributed constraint satisfaction: reaching agreement
without revealing private information.Artif. Intell. 161(1-
2):229–245.
Zhang, X., and Lesser, V. 2007. Meta-level coordination
for solving negotiation chains in semi-cooperative multi-
agent systems. InProceedings of AAMAS.

30

