
Optimization of Preference Queries under Hard Sum Constraints

Markus Endres and Werner Kießling
Institute for Computer Science

University of Augsburg
Universitätsstr. 14

86159 Augsburg, Germany
{endres, kiessling}@informatik.uni-augsburg.de

Abstract

Many important applications, e.g. planning tasks, de-
mand the flexible and efficient use of personaliza-
tion and preference handling techniques. Apply-
ing preference-based search technology could improve
things quite a lot, e.g. using Preference SQL where pref-
erences (i.e. soft constraints) can be combined with hard
constraints. However, there are still fundamental effi-
ciency issues that need to be addressed. In this paper we
study preference database queries involving hard con-
straints over the sum of multiple attributes. We develop
algebraic optimization techniques to transform a prefer-
ence query with a sum constraint in order to enable its
efficient processing by database engines. For this pur-
pose we present new transformation laws for an efficient
solution of this problem.

Introduction
Preferences are an integral part of our private and business-
related life. Personal preferences are often expressed in the
terms of wishes. In case of failure for the perfect match,
people are often willing to accept worse alternatives or to ne-
gotiate compromises. In some instances, preference queries
challenge traditional query processing and optimization, as
illustrated by the following example.

Example 1: Consider a database storing nutritional in-
formation for single servings of different kinds of food rela-
tions like Soups, Meats and Beverages. A user, Mrs. Diet,
is interested in finding meals that satisfy nutritional require-
ments such as a restriction on the number of calories (cal).
For example, the recommendations for a 30-year old female,
who is moderately active, are at most 1100 calories (USDA
2007).

However, in real life, each user has preferences concern-
ing its meals. Mrs. Diet for example likes chicken soup as
starter. The main course should be beef and the total lipid
(abbr. ’fat’) of the beef should be as little as possible. For
beverage she likes red wine. The complete meal must fulfill
the restriction of 1100 calories. Mrs. Diet wants to find all
such meals which fulfill the hard constraint and satisfy her
preferences best possible.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Using Kießling’s approach of modelling preferences as
strict partial orders (Kießling 2002; 2005), the above men-
tioned hard and soft constraints can be expressed by Prefer-
ence SQL (Kießling and Köstler 2002) as follows:

SELECT S.name, M.name, B.name
FROM Soups S, Meats M, Beverages B
WHERE S.cal + M.cal + B.cal <= 1100
PREFERRING

S.name IN (’Chicken soup’) AND
M.name IN (’Beef’) AND M.fat LOWEST AND
B.name IN (’Red wine’)

This query expresses Mrs. Diet’s preferences after the key-
word PREFERRING. It is a Pareto preference (AND) con-
sisting of preferences on soups, meats and beverages. IN
denotes a preference for members of a given set, a POS-
preference. The whole preference is evaluated on the result
of the hard sum constraint.

In this paper we call the query given in the example a
Preference SUM-constraint query, since there is a hard
sum constraint over multiple attributes belonging to several
relations and user preferences which should be fulfilled.

Conventional approaches implement this type of prefer-
ence query by composing pair-wise joins and then evaluat-
ing the preferences with an algorithm like (Börzsönyi, Koss-
mann, and Stocker 2001; Preisinger and Kießling 2007). Be-
cause each condition refers to attributes from more than two
relations, pair-wise join operators may fail to remove inter-
mediate results based on these conditions. Thus, producing
cartesian products of relations may lead to high memory and
computation costs.

In this paper we address such queries and focus on the
critical issue of preference query optimization in combina-
tion with hard sum constraints over multiple attributes from
different database relations. We introduce query rewriting
techniques that can be used by join operators to remove tu-
ples from relations that do not lead to any results at the end
of the evaluation.

First, let’s take a look at related work. Afterwards we de-
scribe the background of our preference model and discuss
the Preference SUM-constraint problem. Thereafter we de-
velop preference optimization techniques for this problem.
Further on, we present experimental results, and finally we
conclude with a summary and outlook.

31



Related Work
Queries with constraints over attributes belonging to several
relations occur frequently in the real world, e.g. in the con-
text of document retrieval or in e-commerce. However, they
have not been intensively researched in the database context.

(Agarwal et al. 1998) address queries with linear con-
straints, and (Guha et al. 2003) address queries with ag-
gregation constraints. However, their work is only valid
for queries on one relation. (Ilyas, Aref, and Elmagarmid
2003) developed algorithms for top-k queries that can be ex-
tended to implement queries with a constraint on the value
of a monotone function. (Liu, Yang, and Foster 2005)
and (Nestorov, Liu, and Foster 2007) integrated constraint-
programming techniques with traditional database tech-
niques to solve sum constraint queries by modifiying exist-
ing nested-loop-join operators. (Döring, Preisinger, and En-
dres 2008) present a first approach for processing of queries
dealing with individual and global preferences of customers
in combination with a hard constraint. (Hafenrichter and
Kießling 2005) and (Chomicki 2003) developed transforma-
tion laws for preference queries with hard constraints, but
these rules only correspond to the one-relation case.

However, none of them consider a sum constraint over a
set of attributes belonging to several relations in combina-
tion with preference handling. But in the database query
context hard constraints over a set of attributes are very im-
portant, particularly in combination with user preferences.

Our techniques are based on query rewriting in combina-
tion with preferences. This leads to algebraic optimization
techniques for preference database queries and can easily in-
tergrated in a Hill-Climbing algorithm.

Note that our approach does not intend to replace other
optimization methods. Instead, our method can be com-
bined with other algorithms to allow more efficient execu-
tion of Preference Queries under Hard Sum Constraints on
relational database systems.

Background
In this section we want to give some background concerning
the preference technology.

Preference Algebra
Preference frameworks tailored to standard database sys-
tems have been introduced in (Kießling 2002) and
(Chomicki 2003). We depict the preference algebra from
(Kießling 2002) which is a direct mapping to relational alge-
bra and declarative query languages. This preference model
is based on strict partial orders and is semantically rich,
easy to handle and very flexible to represent user preferences
which are ubiquitous in our life.

Definition 1. Preference
Let A = {A1, . . . , An} be a set of attribute names with cor-
responding domains of values dom(Ai). The domain of A
is defined as dom(A) = dom(A1)× · · · × dom(An). Then
a preference P is a strict partial order P = (A,<P ), where
<P ⊆ dom(A)× dom(A).

The term x <P y is interpreted as ”I like y more than x”.

Having defined preferences as strict partial orders we pro-
vide a variety of intuitive and customizable base preference
constructors for categorical and numerical domains which
can intuitively be combined to build complex preferences
still yielding partial orders. Formally, a base preference con-
structor has one or more arguments, the first characterizing
the attributes A and the others the strict partial order <P ,
referring to A.

For example, the POS-preference POS(A,<P ) on an at-
tribute A expresses that a special value of an attribute is pre-
ferred to all others (compare the IN-clause above). There is
also a NEG-preference constructor which represents the dis-
liked values of a person. Moreover, it is possible to combine
these preferences to POS/NEG or POS/POS.

If we want to focus on preferences where the domain is
a numerical data type, e.g. decimal, which can be infinite,
we can use a number of numerical preference construc-
tors which are defined by (Kießling 2002), e.g. LOWEST,
HIGHEST, AROUND, BETWEEN and the SCORE prefer-
ence. LOWEST(fat), for example, represents that a person
prefers lower values for ’fat’ over higher values.
Definition 2. Extremal preferences
We define the LOWEST and HIGHEST preference that the
desired value should be as low (high) as possible. Formally:
• P is called a LOWEST preference, if: x <P y iff x > y

• P is called a HIGHEST preference, if: x <P y iff x < y

In the following we will briefly discuss a complex prefer-
ence constructor, namely the Pareto preference (AND, ⊗).
Definition 3. Pareto preference: P1 ⊗ P2

Given two preferences P1 = (A,<P1) and P2 = (B,<P2),
for x, y ∈ dom(A)× dom(B) we define

x <P1⊗P2 y iff
(x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨
(x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1))

P = (A ∪ B,<P1⊗P2) is called Pareto preference mod-
elling P1 and P2 as equally important.

A generalization of the Pareto preference constructor to
more than two preferences is obvious. An extended defini-
tion can be found in (Preisinger and Kießling 2007).

Example 2: As in example 1, beef and fat as little as pos-
sible are equally important for Mrs. Diet. With preference
algebra we describe her preferences as:

P = POS(Meats, {Beef}) ⊗ LOWEST (fat)

There exist further complex preference constructors, e.g.
the Prioritization, where a preference P1 is considered more
important than a preference P2. Detailed information on all
preference constructors are given in (Kießling 2002).

The BMO Query Model
Given preferences over a set of attributes a central question
is to determine an outcome that is preferentially optimal
with respect to the preference statements. Whether prefer-
ences can be satisfied depends on the current database con-
tents. Thus a match-making between wishes and data has to

32



be made. For this purpose the Best-Matches-Only (BMO)
query model has been proposed by (Kießling 2002).
Definition 4. BMO-Set
The Best-Matches-Only result set contains only the best
matches w.r.t the strict partial order of a preference P . It
is a selection of unordered result tuples where all tuples in
the BMO-set are undominated by others regarding the pref-
erence P .

In principle, efficient BMO query evaluation requires two
new relational operators. We define

σ[P ](R) := {t ∈ R | ¬∃t′ ∈ R : t[A] <P t′[A]}

as preference selection. It finds all best matching tuples
t for a preference P = (A,<P ) with A ⊆ attr(R)1. If
none exists, it delivers best-matching alternatives, but noth-
ing worse.

A preference can also be evaluated in grouped mode,
given some B ⊆ attr(R). This can be expressed as the
grouped preference selection

σ[P groupby B](R) :=
{t ∈ R | ¬∃t′ ∈ R : t[A] <P t′[A] ∧ t[B] = t′[B]} .

σ[P ](R) and σ[P groupby B](R) can perform the match-
making process as required by BMO semantics.

The Preference SUM-Constraint Problem
In this section we want to discuss the Preference SUM-
constraint problem and we work out the idea behind our new
approach. Consider Mrs. Diet’s preference query from ex-
ample 1 in our preference model: 2

σ[P1 ⊗ P2 ⊗ P3]σS.cal+M.cal+B.cal ≤ 1100(S ×M ×B)

with preferences
• P1 = POS(Soups, {Chicken})
• P2 = POS(Meats, {Beef}) ⊗ LOWEST (fat)
• P3 = POS(Beverages, {Red wine})

Conventional approaches implement such queries by a
set of binary join operators and evaluate the hard sum con-
straint. Afterwards the user preferences as soft selection
combined with the Pareto operator (⊗) are evaluated by a
skyline algorithm, e.g. (Börzsönyi, Kossmann, and Stocker
2001), to retrieve all combinations that fulfill the preferences
best possible.

Because the hard constraint refers to attributes from more
than two relations, pair-wise join operators may fail to re-
move intermediate results based on these condition. For a
hard constraint such as A1 + ... + Ar Θ c, Θ ∈ {<,>,≤
,≥,=, 6=} and c a number, current join operators cannot test
the satisfiability of an intermediate tuple until all variables
have been determined. A consequence of this inability to
remove intermediate tuples that will not lead to any results

1We use attr(R) to denote all attributes of a relation R
2σ[P ] means preference selection, i.e. a soft constraint, whereas

σF denotes a classical relational algebra selection, i.e. a hard con-
straint.

is that the query evaluation process must ultimately evaluate
the cartesian product of all tuples of all join relations, which
lead to high memory and computation costs, particularly if
the relations are large.

However, for efficient computation it may be helpful to
apply the soft selection first (Hafenrichter and Kießling
2005; Chomicki 2003). Then we can neglect dominated
tuples which do not satisfy the user’s preferences, maybe
before evaluating the cartesian product. Building the carte-
sian product after this elimination is much faster, since the
number of tuples in each relation maybe reduced. However,
Mrs. Diet’s rewritten query
σS.cal+M.cal+B.cal ≤ 1100(σ[P1](S)×σ[P2](M)×σ[P3](B))
could produce an empty result set. Maybe there is no so-
lution which perfectly satisfies all preferences and the hard
sum constraint. If we first evaluate the preferences, we get
the best-matches. But for the hard constraint, which is an
absolute must, no combinations could exists.

Example 3: Considering the example database (table 1).

Table 1: Example database
Soups ID Name Cal

S1 Vegetable 59
S2 Chicken 198
S3 Noodle 453

Meats ID Name Cal Fat
M1 Turkey 818 0.4
M2 Pork 857 0.8
M3 Beef 911 0.2

Beverages ID Name Cal
B1 Red Wine 85
B2 Lemonade 181
B3 Coke 400

Mrs. Diet’s rewritten preference query
σS.cal+M.cal+B.cal≤1100(σ[P1](S)× σ[P2](M)× σ[P3](B))
gives an empty result, since
• σ[P1](Soup) = {S2}
• σ[P2](Meats) = {M3}
• σ[P3](Beverages) = {B1}
and the sum of calories of this combination (1194 kcal) ex-
ceeds the hard constraint of c ≤ 1100 kcal. On the other
hand, building the cartesian product, selecting all combina-
tions with the sum constraint below 1100 kcal and evalu-
ating the preference query afterwards leads to the solution
{S1,M3, B1} with 1055 kcal.

This shows that a simple change of hard and soft con-
straints is not allowed. However, there is a possibility to
’push the preferences’ over the cartesian product and exe-
cute them before evaluating the cartesian product.

In the next section we introduce a new approach for
such preference SUM-constraint queries that enables search
space refinement by inserting rewritten preferences into the
cartesian product.

33



Preference Optimization
In this section we present new transformation laws for an
efficient evaluation of Preference SUM-constraint queries.

Dominance Criterion
Since the target is to minimize the costs for computing the
cartesian product, we introduce a dominance criterion. The
dominance criterion allows us to eliminate dominated tu-
ples from our relations which definitely can never be in the
BMO-set. This can be done before building the cartesian
product and therefore speeds up the evaluation.
Theorem 1. Dominance-Criterion
Assume a query

Q := σ[P1 ⊗ ...⊗ Pr] σPr
i=1 Ai Θ c(R1 × ...×Rr)

with
• Ri(Ai, Bi), i = 1, ..., r database relations
• Ai numerical attributes
• Pi = (Bi, <Pi

) base preferences
•

∑r
i=1 Ai Θ c

a SUM-constraint with Θ ∈ {<,≤, >,≥,=, 6=}.

Let tuples t, t′ ∈ Ri such that

t[Ai] Θ̂ t′[Ai] ∧ t[Bi] <Pi
t′[Bi] (∗)

and Θ̂ defined as

Θ̂ :=

{ ≥ iff Θ ∈ {≤, <}
≤ iff Θ ∈ {≥, >}
= iff Θ ∈ {=, 6=}

Then an optimal solution exists for our Preference SUM-
constraint query Q without the tuple t ∈ Ri, i.e. using the
dominance criterion (∗) for each relation, Q leads to a cor-
rect and complete solution.

Proof. Let w := (t1, ..., t, ..., tr) and v := (t1, ..., t′, ..., tr)
two tuples in R := R1 × ...×Rr which only differ in t and
t′ with t, t′ ∈ Ri and

t[Ai] Θ̂ t′[Ai] ∧ t[Bi] <Pi
t′[Bi]

Then, it is evident that:

1) if the hard constraint fails for v, also the hard constraint
fails for w, since t[Ai] Θ̂ t′[Ai] (SUM is monotone).
Therefore w is not an element of the solution.

2) if v fulfills the hard constraint, then
a) if w fails the hard constraint, then w is not an element

of the solution.
b) if w also fulfills the hard constraint, then we know

t[Bi] <Pi
t′[Bi], i.e. tuple t′ is preferred to t. It fol-

lows from the Pareto preference P1⊗ ...⊗Pr that v is
preferred over w since t′ is preferred w.r.t Pi and all
others are equal.

Example 4: Revisit example 1 with Mrs. Diet’s hard con-
straint of maximal 1100 kcal (Θ is ≤) and her preferences
concerning the chicken soup. Table 2 represents a simple
soup relation.

Table 2: Example for the dominance criterion
Soups ID Name Cal

S1 Vegetable 59
S2 Chicken 198
S3 Noodle 453

Since ’S3’ has more calories than ’S2’ (Θ̂ is≥) and ’S3’ is
worse than ’S2’ concerning her soup preference, tuple ’S3’
is dominated, i.e. we have not to consider ’S3’ in the carte-
sian product and the hard selection. This results in the un-
dominated tuples of ’S1’ and ’S2’. Tuple ’S1’ is worse than
’S2’ concerning the same preference, but due to lower calo-
ries and the hard constraint we must take into account tuple
’S1’.

Transformation laws
(Hafenrichter and Kießling 2005) constructed a preference
query optimizer as an extension of a classical Hill-Climbing
algorithm. We added the dominance criterion to this prefer-
ence query optimizer. For this we have to introduce a new
complex preference constructor called CUTOFF.

Definition 5. CUTOFF Preference Constructor
Given preferences P̂ = (A1, <P̂ ) and P = (A2, <P ), x =
(x1, x2), y = (y1, y2) ∈ dom(A1)× dom(A2).
Then Pc := CUTOFF (P̂ , P ), if:

x <Pc
y iff (x1 = y1 ∨ x1 <P̂ y1) ∧ x2 <P y2)

CUTOFF is a partial order and therefore a preference ac-
cording to (Kießling 2002).

For an evaluation of the dominance criterion from theo-
rem 1 we use the CUTOFF (P̂ , P ) preference constructor
described above within a BMO algorithm.

Corollary 1. Given a relation R(A,B) with A a numerical
attribute and P = (B,<P ) a user preference. Then the
preference constructor

Pc := CUTOFF (P̂ , P )

models the dominance criterion (∗) from theorem 1 in pref-
erence algebra. For this we have to set P̂ as follows:

• if Θ ∈ {≤, <}, then P̂ = LOWEST (A)

• if Θ ∈ {≥, >}, then P̂ = HIGHEST (A)

• if Θ ∈ {=, 6=}, then P̂ = A↔

A↔ is called anti-chain preference on the attribute A and
returns all elements of the input relation (Kießling 2002).

Proof. We prove this only for P̂ = LOWEST (A). The
other cases can be done analogously.
Using definition 5 we get for P̂ = LOWEST (A)

x <Pc
y iff

(x1 = y1 ∨ x1 <P̂ y1) ∧ x2 <P y2 ⇔
x1 ≥ y1 ∧ x2 <P y2

which corresponds to the dominance criterion (∗).

34



With the help of theorem 1 and corollary 1 we can de-
velop transformation laws for preference relational algebra
that allow us to eliminate dominated tuples before building
the cartesian product by inserting the CUTOFF preference
into the query. For simplicity we reduced the number of
preferences and relations to two, but all laws can be extended
arbitrarily (cp. theorem 1).
Corollary 2. Insert CUTOFF into Cartesian Product
Let Ri(Ai, Bi) be database relations, Ai numerical at-
tributes, Pi = (Bi, <Pi

) base preferences, c a hard con-
straint and Θ ∈ {<,≤, >,≥,=, 6=}. Then

σ[P1 ⊗ P2] σA1+A2 Θ c(R1 ×R2) =
σ[P1 ⊗ P2] σA1+A2 Θ c(σ[Pc1 ](R1)× σ[Pc2 ](R2))

where Pci
= CUTOFF (P̂ , Pi) and P̂ conditioned by Θ.

Proof. The proof is given by theorem 1.

In the case of joins like R1 onR1.X=R2.X R2 we have to
ensure that we do not eliminate join partners, i.e. for each
tuple in the first relation there must exist a join partner in
the second relation. To get rid of this problem we have to
evaluate the CUTOFF preference as a grouped preference
selection, see (Hafenrichter and Kießling 2005). Therefore,
the CUTOFF preference is only evaluated for tuples in the
same equivalence class, i.e. grouped by X .

Example 5: Revisit example 1 once more, but now we ex-
tend the query by the taste of the meal. The complete food
combination should have the same taste, i.e. it should be bit-
ter, salty, sour, sweet or umami (’savoury’) and not mixed.
SELECT S.name, M.name, B.name
FROM Soups S, Meats M, Beverages B
WHERE S.cal + M.cal + B.cal <= 1100

AND S.taste = M.taste
AND M.taste = B.taste

PREFERRING ...

Applying the dominance criterion without grouping by the
attribute ’taste’ maybe eliminates all umami wines and no
overall combination exists with an umami taste.

Corollary 3. Insert CUTOFF into Join
Let Ri(Ai, Bi, X) be database relations, Ai numerical at-
tributes, Pi = (Bi, <Pi

) base preferences, X ⊆ attr(R1) ∩
attr(R2), c a hard constraint and Θ ∈ {<,≤, >,≥,=, 6=}.
Then

σ[P1 ⊗ P2] σA1+A2 Θ c(R1 onR1.X=R2.X R2) =
σ[P1 ⊗ P2] σA1+A2 Θ c(σ[Pc1 groupby X](R1)

onR1.X=R2.X σ[Pc2 groupby X](R2))

where Pci
= CUTOFF (P̂ , Pi) and P̂ conditioned by Θ.

Proof. This is a consequence from theorem 1 and (Hafen-
richter and Kießling 2005), theorem L6 and L7.

Notice, the selectivity of a groupby-preference depends
on the distribution of the attribute X . In the worst case,
X is a unique attribute and no tuples are dominated by the
grouping operation. Otherwise, if the distribution of X is
sparse, a good selectivity can be achieved.

Corollary 4. Further transformation laws
Let Ri(Ai, Bi, X) be database relations, Ai numerical
attributes, P1 = (B1, <P1) a base preference, X ⊆
attr(R1) ∩ attr(R2), c a hard constraint and Θ ∈ {<,≤
, >,≥,=, 6=}. Then
a) σ[P1] σA1Θ c(R1) = σ[P1] σA1 Θ c(σ[Pc1 ](R1))
b) σ[P1] σA1+A2Θ c(R1 ×R2) =

σ[P1] σA1+A2 Θ c(σ[Pc1 ](R1)×R2)
c) σ[P1] σA1+A2Θ c(R1 on R2) =

σ[P1] σA1+A2 Θ c(σ[Pc1 groupby X](R1) on R2)

Proof. These transformation laws are direct consequences
from corollary 2 and 3.

With the help of these new transformation laws the eval-
uation of such preference queries is evident: Our Preference
SQL engine (Kießling and Köstler 2002) applies the CUT-
OFF preference independently on each stream of tuples. Af-
terwards it performs the cartesian product (checking the hard
sum constraint) and finally the Pareto preference.

Remark: All transformation laws are also valid for a Pri-
oritization instead of a Pareto preference in the selection
query. We skipped this for simplicity and limited space.

Experimental Results
In order to evaluate our rewriting technique, we performed
several experiments using real-world data. We used a food
database published by the (USDA 2007). This database
contains nutritional facts for more than 7000 types of food.
From this database we created three relations: Soups, Meats
and Beverages containing information about their epony-
mous types of food. The sizes of these relations are as fol-
lows: There are 433 soups, 1057 meats and 261 beverages
available, i.e. about 120.000.000 possible combinations

We run all test queries on an Oracle 10.0 database system
in combination with our Preference SQL engine (Kießling
and Köstler 2002). The system is running on a Linux ma-
chine (Intel Dual Core CPU 1.6 GHz, 2GB main mem-
ory). We evaluated the efficiency of our rewriting technique
by comparing the response times of several sum constraint
queries with and without joins respectively with and with-
out rewriting. Due to limited space we only report one
of them, with representative performance, shown in figure
1 and 2. The test query is based on example 1 and contains
a constraint requiring the sum of attributes cal to be less or
equal than a value called max cal.
SELECT S.name, M.name, B.name
FROM Soups S, Meats M, Beverages B
WHERE S.cal + M.cal + B.cal <= max_cal
PREFERRING

S.name IN (’Chicken soup’) AND
M.name IN (’Beef’) AND M.fat LOWEST AND
B.name IN (’Red wine’)

Notice, varying the parameter max cal varies the selec-
tivity of the query, while varying the size of the relations
changes the size of the problem to be solved. Therefore, we
varied the required calories (max cal) in order to change the
selectivity (see figure 1) and we varied the size of the rela-
tions (see figure 2).

35



 0

 100

 200

 300

 400

 500

 600

 700

 800

1615141312111098765

R
es

po
ns

e 
tim

e 
(s

)

max_cal x100

No rewriting
Rewriting

Figure 1: Performance results for different max cal.

Since the dominance criterion only depends on the prefer-
ences and not on max cal, the response time for the prefer-
ence query with different max cal is nearly constant. Obvi-
ously our rewriting techniques speeds-up the evaluation be-
cause of writing in the CUTOFF preference into the query.

Further on, we run our query with different relation sizes
(but fixed max cal = 1100) and demonstrate the performance
results in figure 2.

 0

 100

 200

 300

 400

 500

 600

 700

120M64M27M8M1M

R
es

po
ns

e 
tim

e 
(s

)

Number of combinations

No rewriting
Rewriting

Figure 2: Performance results for different relation sizes.

From the experimental results of our benchmark queries,
we can see that our proposed rewriting techniques improve
the query performance consistently for different types of
sum constraint queries.

Summary and Outlook
In this paper we have investigated Preference SUM-
constraint queries. Despite its practical importance like
e.g. in planning tasks or tourism, few optimization results
have been known so far. Finding efficient query optimiza-
tion techniques for this class of problems is beneficial for a
variety of practical database applications. The key to our ef-
ficient evaluation is a dominance criterion and the new CUT-
OFF preference constructor which leads to algebraic trans-
formation laws. For experimental results we used real-world
data from the USDA. Performance comparison results with
a standard evaluation approach demonstrates the enormous
speed-ups that have been achieved. For future work we want
to consider multiple constraints on multiple attributes be-
longing to several relations and we want to develop further
transformation laws that lead to fast evaluation of preference

queries under hard constraints. Further on, our method is
not limited to linear sum constraints, indeed any monotone
function (e.g. the product) can be used. However, this needs
a more formal specification and will be the next step.

References
Agarwal, P. K.; Arge, L.; Erickson, J.; Franciosa, P. G.;
and Vitter, J. S. 1998. Efficient Searching with Linear
Constraints. In PODS, 169–178.
Börzsönyi, S.; Kossmann, D.; and Stocker, K. 2001. The
Skyline Operator. In Proceedings of the 17th International
Conference on Data Engineering (ICDE), 421–430. IEEE
Computer Society.
Chomicki, J. 2003. Preference Formulas in Relational
Queries. In ACM Transactions on Database Systems
(TODS), volume 28, 427–466. ACM Press.
Döring, S.; Preisinger, T.; and Endres, M. 2008. Ad-
vanced Preference Query Processing for E-Commerce. In
Proceedings of 23rd Annual ACM Symposium on Applied
Computing (SAC), 1457–1462. ACM.
Guha, S.; Gunopoulos, D.; Koudas, N.; Srivastava, D.; and
Vlachos, M. 2003. Efficient approximation of optimiza-
tion queries under parametric aggregation constraints. In
Proceedings of the 29th international conference on Very
large data bases (VLDB), 778–789. VLDB Endowment.
Hafenrichter, B., and Kießling, W. 2005. Optimization of
Relational Preference Queries. In The 16th Australasian
Database Conference (ADC), 175–184.
Ilyas, I. F.; Aref, W. G.; and Elmagarmid, A. K. 2003.
Supporting Top-k Join Queries in Relational Databases. In
Proceedings of the 29th international conference on Very
large data bases (VLDB), 754–765. VLDB Endowment.
Kießling, W., and Köstler, G. 2002. Preference SQL -
Design, Implementation, Experiences. In Proceedings of
the International Conference on Very Large Data Bases
(VLDB), 990–1001.
Kießling, W. 2002. Foundations of Preferences in Database
Systems. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), 311–322.
Kießling, W. 2005. Preference Queries with SV-
Semantics. In Proceedings of the 11th International Con-
ference on Management of Data (COMAD), 15–25.
Liu, C.; Yang, L.; and Foster, I. 2005. Efficient Rela-
tional Joins with Arithmetic Constraints on Multiple At-
tributes. In Proceedings of the 9th International Database
Engineering & Application Symposium (IDEAS), 210–220.
IEEE Computer Society.
Nestorov, S.; Liu, C.; and Foster, I. T. 2007. Efficient
Processing of Relational Queries with Sum Constraints. In
APWeb/WAIM, 440–451.
Preisinger, T., and Kießling, W. 2007. The Hexagon Al-
gorithm for Evaluating Pareto Preference Queries. In Pro-
ceedings of the Multidisciplinary Workshop on Advances in
Preference Handling (VLDB).
USDA. 2007. USDA national nutrient database for stan-
dard reference. http://www.nal.usda.gov/fnic/.

36




