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Abstract

We compare the economic efficiency achieved by multiat-
tribute auctions that use an accurate GAI modeling of prefer-
ences, with a multiattribute auction that is limited to an addi-
tive representation. We draw random GAI-structured utility
functions with various internal structures, generate additive
functions that approximate the GAI utility, and compare the
performance of the auctions using the two representations.
We draw general preference modeling and methodological
conclusions from both the process and the results.

Introduction
The Generalized Additive Independence (GAI) representa-
tion is gaining popularity within AI researchers as a con-
venient and effective modeling of multiattribute preference
structure (Boutilier, Bacchus, & Brafman 2001; Gonzales
& Perny 2004; Braziunas & Boutilier 2005). Its main ad-
vantage is that it covers the spectrum between the ever-
popular additive representation, which assumes that pref-
erences over any subset of attributes are not affected by the
values of other attributes, and the full joint utility that makes
no assumption of independence between attributes. It allows
the modeler to pick the right tradeoff between the complex-
ity of representation and its accuracy. Yet, this is a fairly
simple representation, in contrast to other traditional repre-
sentations that require more complex forms and involve ad-
ditional costs (e.g. Keeney and Raiffa (1976)).

In practice, however, the additive representation is still
prominent, at least in the electronic commerce related appli-
cation we consider. A common explanation is that the ad-
ditive representation is considered, even if not exactly right,
a “good enough” approximation. We argue that the field of
preference handling does not provide sufficient tools to re-
fute this kind of a claim. In particular, there is a need to
quantify the benefits of a GAI representation over the addi-
tive simplification.

In this work we set out to provide such a methodolog-
ical quantification, and systematically compare the perfor-
mance of an accurate GAI modeling with its additive ap-
proximation, via simulations and using randomly generated
data. The problem space we use is that of multiattribute auc-
tions, and we experiment with a type of auction we recently
proposed (Engel & Wellman 2007), that is capable of tak-
ing advantage of a known GAI structure. Though the spe-

cific results are relevant to the specific auction mechanism
we tested, we believe that the methodology, the simulation
framework and the spirit of the results can be applied to other
applications.

There are several challenges that needed to be addressed
in performing such simulations. The first one is how to
generate semantically sound GAI structured utility functions
randomly. There are two layers to this problem: 1) the sam-
pling must yield functions that are internally consistent. 2)
The local GAI functions may be completely random, but a
more interesting and a more credible experimentation would
consider that these functions may have some internal struc-
ture, which may imitate true utility better. A second chal-
lenge is how to create the baseline additive representation—
what should we exactly compare the performance of the
GAI-based application with.

We begin by providing background on multiattribute auc-
tions, and GAI auctions in particular. Next, we discuss our
goals in the simulations, how the challenges above were ad-
dressed, and some of the most relevant results.

GAI auctions
A multiattribute auction is a market mechanism that extends
traditional, price-only mechanisms by facilitating the negoti-
ation over a set of predefined attributes representing various
non-price aspects of the deal. For example, a procurement
department of a company may use a multiattribute auction to
select a supplier of hard drives. Supplier offers may be eval-
uated not only over the price they offer, but also over various
qualitative attributes such as volume, RPM, access time, la-
tency, transfer rate, and so on. In addition, different suppli-
ers may offer different contract conditions such as warranty,
delivery time, and service. Procurement is the common ap-
plication of multiattribute auctions, hence we limit our dis-
cussion to the case of one buyer and multiple sellers.

As mentioned, most multiattribute mechanisms, in recent
literature and in practice, assume the simple additive multi-
attribute form (Bichler 2001; Parkes & Kalagnanam 2005).
Another common “shortcut” used in multiattribute auctions
literature (but rarely in practice) is based on the second score
approach introduced by Che (1993). If the buyer initially re-
veals a full evaluation function over the domain (also called
a scoring function), each seller can compare it to its own
cost function. The competition can then be reduced to a
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single dimensional one, where sellers compete over the sur-
plus, or score, they can provide the buyer. The downside is,
of course, the unrealistic information revelation requirement
imposed on the buyer.

Let Θ denote a space of possible outcomes, or possible
configurations of a particular item. Let S = {a1, . . . , am}
be the set of attributes (such as mentioned above) describ-
ing Θ. We assume that each trader has a willingness-to-pay
function (for the buyer) and willingness-to-accept, or cost
function for a seller. We describe these functions using the
framework of measurable value function (MVF) (Dyer &
Sarin 1979), which is a utility function u(S) that is shown to
accommodate willingess-to-pay and cost (Engel & Wellman
2007). The GAI decomposition, defined below, was origi-
nally introduced by Fishburn (1967).1

Definition 1. Let S be a set of attributes, and let
I1, . . . , Ig ⊆ S such that

⋃g
i=1 Ii = S. I1, . . . , Ig are called

generalized additive independent (GAI) if there exist func-
tions f1, . . . , fg such that

u(S) =
g∑

r=1

fr(Ir). (1)

We call each Ir a GAI element, and any assignment to Ir
a sub-configuration.

A GAI network is defined as the graph that contains a node
for each GAI element and an edge for each pair of elements
that intersect (Gonzales & Perny 2004). GAI auctions are
restricted to the case that the GAI network is a tree or a for-
est. This requirement does not reduce generality, but may re-
sult in a higher dimensionality (larger sized GAI elements).
When the subsets I1, . . . , Ig are disjoint, the GAI represen-
tation degeneralizes to an additive representation. In addi-
tive auctions, each attribute is usually considered on its own,
that is u(S) =

∑m
i=1 fi(ai).

GAI auctions address both the revelation problem and the
preference modeling problems mentioned above. It reflects
the buyer’s partial valuation through a price structure, that
contains a price for any sub-configuration of the buyer’s GAI
structure. In each round, all active sellers are bidding on
full configurations, and their bids are stored by their projec-
tions on the GAI elements. The auction selects the buyer-
optimal set: a set of configurations which are approximately
optimal for the buyer, based on a well-defined notion of ap-
proximation. Then the price is reduced by δ for any sub-
configuration that is a part of some seller’s bid, and is not a
part of a configuration in the buyer-optimal set. This guar-
antees that at some point each seller converges to bid on
an approximately efficient configuration, that is a configu-
ration that maximizes the surplus between her cost and the
buyer’s willingness-to-pay, at which point the auction be-
comes a single dimensional competition on the surplus the
sellers are willing to transfer to the buyer, through a dis-
count. This achieves the same effect as achieved by reveal-
ing the buyer’s scoring function, but here it is only a fraction
of the buyer’s information that is revealed.

1We use a somewhat non standard definition in order to simplify
the presentation.

GAI auctions provide theoretical guarantees for the ef-
ficiency it achieves. We define the parameter e to be the
number of edges in the GAI network, that is a measurement
of the connectivity of the GAI elements. Further, let ε be
the maximum price change per configuration at each round,
that is, ε = δg. The following result is limited to the case
in which traders bid truthfully, meaning they use the strat-
egy known as straightforward bidding (SB). This is how-
ever a reasonable assumption, because it is also shown that
straightforward bidding is an (approximately) ex-post Nash
Equilibrium for sellers in GAI auctions.

Theorem 1. (Engel & Wellman 2007) Given a truthful buyer
and SB sellers, GAI auction is (e+ 2)ε-efficient: the surplus
of the final allocation is within (e+ 2)ε of the maximum.

Simulations Design
The main idea behind the GAI auctions is to improve effi-
ciency over the auctions that assume the additive representa-
tion, when the preferences are in fact not additive. However,
the theoretical efficiency guarantee of GAI auctions depends
on e, the connectivity of the GAI network. This suggests a
tradeoff: more accurate modeling improves efficiency with
respect to the true utility, but may cause loss of efficiency
due to higher connectivity. Therefore, the obvious goal is
to test whether GAI auctions are more efficient than addi-
tive auctions, given that the preferences are not additive. We
assume that the buyer’s preferences have some GAI struc-
ture, and compare the performance of the GAI auctions that
model this structure, with the performance of an auction that
is restricted to an additive representation. As the additive ap-
proximating auction (AP), we use an instance of GAI auc-
tion in which the GAI structure is additive. This auction is in
fact very similar to auction AD, a previously suggested auc-
tion design that relies on an additive representation (Parkes
& Kalagnanam 2005). To the best of our knowledge, no
other welfare maximizing multiattribute auctions has been
suggested for additive preferences, beside those that require
full revelation of the buyer’s utility.

GAI Random Utility
We generate random utility functions to represent the
buyer’s value function and the sellers’ cost functions. In
order to imitate realistic, GAI structured utility functions,
we first describe previous results regarding the relationship
between the functions fr of Definition 1, and local utility
functions over the GAI elements. The following represen-
tation was proven by Fishburn (1967), to hold for the von
Neumann-Morgenstern utility functions, that is utility func-
tions that represent (in addition to ordinal preferences), a
preference order over probability distributions over the out-
comes. We previously adapted this representation to the
framework of measurable value functions (Engel & Well-
man 2007).

Let (a0
1, . . . , a

0
m) be a predefined vector called the refer-

ence outcome. For any I ⊆ A, the function u([I]) stands for
the projection of u(S) to I where the rest of the attributes
are fixed at their reference levels.
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Theorem 2. Let {I1, . . . , Ig} be a GAI decomposition. Then
the functional decomposition can be defined as

f1 = u([I1]), and for r = 2, . . . , g (2)

fr = u([Ir]) +
r−1∑
k=1

(−1)k
∑

1≤i1<···<ik<r

u([
k⋂

s=1

Iis ∩ Ir])

Braziunas and Boutilier (2005) establish that, similarly to
the additive utility, GAI utility can be represented using lo-
cally normalized functions, weighted by scaling constants
λr. First, let ūr(Ir) denote a utility function, over Ir, given
that any attribute a ∈ S\Ir is fixed to his reference level a0.2
ūr(Ir) is normalized to [0, 1]. Next, let f̄r(Ir) be defined us-
ing the formula (2), with u([Ir]) replaced with ūr(Ir). Then

ū(S) =
g∑

r=1

λrf̄r(Ir). (3)

Note that (2) is much simplified for GAI trees, because
each element Ir intersect with at most one preceding ele-
ment, its parent Ip(r):

f̄r = ūr(Ir)− ūr([Iir
∩ Ip(r)]) (4)

We refer to the functions ūr([Ir]) as subutility functions.
This representation lets us draw random GAI functions, for
a given GAI-tree structure, using the following steps:

1. Draw random subutility functions ūr(Ir), r = 1, . . . , g in
the range [0,1].

2. Compute f̄r(·), r = 1, . . . , g using (4).
3. Draw random scaling constants and compute ū(S) by (3).
The scaling constants represent the importance that the deci-
sion maker gives the specific GAI element in the overall de-
cision. This procedure results in utilities that are normalized
in [0, 1]. To accommodate means and variances of different
agents, we then scale ū(·) to u(·) in the desired range.

Structured Subutility
A subutility function in the model above may represent any
valuation over the subspace. However, in practice we may
often find additional structure within each GAI element. In
this section we discuss structures which we consider most
typical and generally applicable. We later experiment with
these structured subutility functions, as well as with com-
pletely random ones. To discuss potential structures, we
need the following definitions. The definitions refer to both
utilities and subutilities, hence we refer to a set of attributes
S′. For Y ⊂ S′, we use Y to denote S′ \ Y .
Definition 2. Outcome Y ′ is conditionally preferred to out-
come Y ′′ given Y

′
, if Y ′Y

′ � Y ′′Y
′
. We denote the condi-

tional preference order over Y given Y
′

by �Y
′ .

Definition 3. Y is Preferential Independent (PI) of Y if�Y
′

does not depend on the value chosen for Y
′
.

2Braziunas and Boutilier show that only a relevant subset of
the attributes needs to be considered as fixed. This is useful for
elicitation, but not necessary here.

Typical purchase and sale decisions exhibit what we call
first-order preferential independence (FOPI), under which
most or all single attributes have a natural ordering of qual-
ity, rendering each attribute by itself PI of the rest. For ex-
ample, in a hard drive procurement setting, the buyer al-
ways prefers more memory, higher RPM, longer warranty,
and so on. Let D(x) denote the (discrete) domain of an at-
tribute x. To implement FOPI, we let the integer values of
each attribute represent its quality. For example, if a be-
longs to some GAI element Ir = {a, b}, we make sure that
ūr(ai, b

′) ≥ ūr([aj , b
′]) for any ai > aj , ai, aj ∈ D(a),

and any b′ ∈ D(b). This must of course hold in any GAI
element that includes a, and for any attribute a that is (first-
order) preferential independent. We enforce the condition
after all the values for that GAI element have been drawn,
by a special purpose sorting procedure, that is applied be-
tween steps 1 and 2 above.

The FOPI condition makes the random utility function
more realistic, and in particular more appropriate to our tar-
get application. Once attributes exhibit FOPI, the dependen-
cies between different attributes are likely to be framed as
complements or substitutes. Intuitively, two attributes a and
b are complements if the utility of improving both is higher
than the sum of utilities of improving a and b separately.

Definition 4. Let u(·) be a measurable value function over
S′. Let a, b ∈ S′, and Z = S′ \ {a, b}, and assume that a
and b are each FOPI of the rest of the attributes. a and b are
called complements if for any ai > aî (ai, aî ∈ D(a)) and
any bj > bĵ (bj , bĵ ∈ D(b)), and any Z ′ ∈ D(Z) (D(Z)
stands for the joint domain of Z),

u(ai, bj , Z ′)− u(aî, bĵ , Z ′) >

u(ai, bĵ , Z ′)−u(aî, bĵ , Z ′)+u(aî, bj , Z ′)−u(aî, bĵ , Z ′).

a and b are substitutes if the inequality sign is (always) the
other way round.

This relationship between attributes is ruled out under an
additive utility function. However, it may be admitted by
the weaker utility independence (UI) condition. We omit
the formal definition for UI, which is the extension of PI to
preferences over lotteries (Keeney & Raiffa 1976), or pref-
erences differences (i.e. differences between utility values),
in the MVF framework (Dyer & Sarin 1979). Intuitively, in
the MVF framework, UI(Y, Y ) is implied by the following
condition: Y is PI, and the order over the preferences differ-
ences over the values of Y is also invariant to the value of Y .
Y and Y can still be (for example) complements: the pref-
erence differences over Y may all be magnified for a better
value of Y , as long as the order over them does not change.

Definition 5. A set of attributes S′ is mutually utility inde-
pendent (MUI) if every subset X ⊂ S′ is UI of S′ \X .

MUI is a very demanding condition, and imposes far more
structure then FOPI. It is however, still more flexible than
the additive form. A set S′ of MUI attributes may still in-
clude complements or substitutes, but only if the same type
of condition, with the same “strength”, occurs for every two
attributes in S′. Therefore, assuming MUI allows us to use
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a single variable to control the level of complementarity or
substitutivity within each GAI element, as follows. If a set
S′ is MUI, it can be represented using single-dimensional
subutility function, and j + 1 constants (where |S′| = j).
The first j constants, k1, . . . , kj , (roughly) determine the
weights of the attributes. The last constant, k, is computable
from k1, . . . , kj (Keeney & Raiffa 1976). k, in turn, can
be regarded as a measurement of substitutivity or comple-
mentarity: if −1 < k < 0, the attributes of S′ are substi-
tutes, if k > 0 they are complements, and if k = 0 they
are additively independent. The more extreme the value of
k is within the range (the further away it is from zero), the
stronger the condition is. As this is not the focus of the pa-
per, we refer to Keeney and Raiffa (1976) for the technical
details of the MUI representation, and we omit the formal re-
sult (and its proof) that establishes the connection between
k and Definition 5.3

In an elicitation procedure, one would normally extract
the j scaling constants from a user, and then compute k
based on that (Keeney & Raiffa 1976). For our purposes,
we first determine k according to the relationship we wish
to impose on the attributes, and then draw MUI scaling con-
stants that are consistent with this value. More explicitly, we
draw random scaling constants, and then iteratively modify
all the constants, until a set of constants is found that is con-
sistent with k. The next step is to compute ūr(Ir) according
to the MUI formula (Keeney & Raiffa 1976). ūr(Ir) (for all
r) are in the range [0, 1], hence at this point we can proceed
with steps 2 and 3 above. Note that in this procedure we
use several distinct sets of scaling constants: the g constants
used in step 3 scale the different GAI elements, whereas the
MUI constants, per GAI element, scale the attributes within
the element.

Additive Approximation
Our goal is to test whether using the GAI price structure
improves the efficiency of a multiattribute auction in com-
parison to the previously suggested additive price structure.
To do that, we should test the performance of the additive
price structure given that traders’ preferences are not addi-
tive, that is they exhibit some GAI structure. In GAI auc-
tions, the price structure needs only to model the buyer’s
preferences. If a seller bids on a single configuration in ev-
ery round, he is not exposed to undesired combinations of
values. The problem is therefore how to select the approx-
imately buyer-optimal sets of configurations, given that the
buyer’s preferences are not additive. The approach we have
taken is to come up with an additive function that approxi-
mates the buyer’s true utility function, and use it throughout
the auction. We do not rule out the possibility that there are
better strategies, however any such strategy must be consis-
tent: that is, whenever a point is selected as (approximately)
optimal, it must remain optimal with respect to the buyer’s
“revealed preferences” throughout the auction.

A natural approach to generate a linear approximation to
an arbitrary function is to use linear regression. We define

3An intuition for this result, limited to the specific case of MUI
between two attributes, is also given by Keeney and Raiffa (1976).

an indicator variable xij for any aij ∈ D(ai), and consider
any value of an assignment as a data point. For example,
the assignment a1j(1) . . . amj(m) creates the following data
point:

m∑
i=1

∑
aij
∈D(ai)

cijxij = u(a1j(1) . . . amj(m)),

in which the value of the variable xij is 1 if j = j(i) and
0 otherwise. The coefficients cij represent the values to be
used as fi(aij ).

When the problem includes more than just a few at-
tributes, regression that uses all of the data points is not
tractable. We recall that the function has a compact rep-
resentation, through its GAI structure - it can be fully de-
scribed using a relatively small number of data points. We
tried regression using a separate set of data points for each
GAI element. We found that this method does not yield op-
timal results, meaning that auction AP achieves lower effi-
ciency compared to auction AP that uses regression over the
full joint utility. The reason is that the regression through the
compact representation minimizes the error per each sub-
configuration, and that may result in larger errors for full
configurations. Fortunately, we also found (at least for the
sizes of problems we tested) that we can use a small ran-
dom sample of data points from the joint utility (roughly the
same number of points required by the compact representa-
tion), and that yields an approximation that does as well as
an approximation that uses all of the data points of the joint
utility.

It is important to note that this method of comparison
is overestimating the quality of an additive approximation.
The reason is that typically we will not have the accurate
utility function available to us when we generate the approx-
imation. The extraction, or elicitation of the utility func-
tion is usually the most serious bottleneck of a multiattribute
mechanism. Therefore, the major reason to use an additive
approximation is to perform a shorter elicitation. Hence in
practice we will try to obtain the additive function directly,
rather than obtain the full utility and then approximate it.
The result of such process is somewhat unpredictable, be-
cause the elicitation queries may not be coherent: if the will-
ingness to pay for a1 depends on the value of b, then what
is the willingness to pay for a1 when we do not know b?
We therefore consider this method of approximation a “best
case” scenario of what we might experience in practice.

Efficiency Analysis
All of our efficiency results are measured in terms of per-
centage of the maximal possible surplus, that is the surplus
yielded by the optimal seller-configuration pair. The effi-
ciency of the auctions depends on many factors, such as: d,
the size of the domains of the attributes (to simplify, we use
the same domain size for all the attributes). N , The number
of sellers participating. ε (or δ), the amount of price decre-
ment, which allows to tradeoff efficiency with the number of
rounds required. Efficiency also depends on the distribution
from which utility functions are drawn. In particular, on the
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differences between the means (µ) of the different traders,
and the variance (σ) of each.

However, we are mostly interested in measuring effi-
ciency with respect to the GAI structure. As shown in the
theoretical results, the structure affects efficiency through
the factor e. Further, the size of the GAI elements is ex-
pected to affect to performance of AP. We found that the size
of the largest GAI element (denoted by ξ) is particularly cru-
cial for AP. To isolate these factors that we care about, we
first describe how the results vary according to the choices
of the “side factors”: the buyer’s mean, the sellers’ mean, σ,
d, andN , for several fixed GAI structures with fully random
subutility functions. This allows us to justify the parameter
values we used for the rest of the simulations.

We expect seller’s costs to be generally lower than buyer’s
valuations, otherwise there is no potential surplus. We arbi-
trarily selected the buyer’s mean to be 600, and varied the
general sellers’ mean from 700 down to 300. Normally,
different sellers have different cost levels, so we selected a
mean for each seller from an interval of size 2σ around the
general sellers’ mean. We experimented with several val-
ues (between 50 and 250) for σ, for both the buyer and the
sellers. We found that the choice of these parameters does
have a serious effect on the efficiency, mostly that of AP.
The difference in the means has similar effect on both types
(auctions are more efficient when the difference is larger),
and we picked the value of 500 to the sellers to reflect costs
that are reasonably lower than the buyer’s valuation. We also
noticed that the smaller the variance is, the better an additive
approximation performs. We postulate that it is simply eas-
ier to approximate the function when “there is less to lose”
by being wrong. We picked the value σ = 200, to make sure
the problem is sufficiently challenging.

Next, we varied d, between two to ten, for all the at-
tributes. As expected, the larger the domain is, the more
challenging the problem is for the additive approximation.
Perhaps less expected, is the fact that the size of the domain
seems to have no effect on the GAI auctions. We used do-
main sizes of three to five for the rest of the simulations. As
for number of sellers, we varied this parameter from 2 to 40,
and did not find a significant effect on either auction types.
We used five sellers for the rest of the simulations.

Efficiency and GAI Structure
In the next experiment we used a roughly fixed GAI struc-
ture, with six elements and e = 5 (that is, a tree rather than a
forest), and δ = 4. We increased the number of attributes, by
increasing the size of each element. Figure 1 shows the effi-
ciency obtained given ξ, the size of the largest GAI element.
As expected, the size of the GAI elements has negligible, or
no effect on the efficiency of GAI auctions. It has a dramatic
effect on the efficiency of AP. When ξ = 1, the decompo-
sition is in fact additive and hence AP performs optimally.
The performance then deteriorates when ξ increases.

We performed the same test when using utility in which
all attributes are FOPI. Clearly, given FOPI, the additive
approximation is much more efficient compared to ran-
dom utilities. Somewhat surprisingly, the GAI auctions are
slightly less efficient given this preference structure, again

Figure 1: Efficiency vs. the size of largest GAI element.

Figure 2: Efficiency vs. of the number of GAI elements.

compared to random utility. Nevertheless, the additive ap-
proximation achieves lower efficiency compared to the ac-
curate preference modeling, with differences that pass the
statistical significance test (P < 0.01), for ξ ≥ 4. Moreover,
in practice FOPI may apply just to a subset of the attributes.
We also note that the performance of GAI auctions can al-
ways be improved using a smaller value of ε and δ, whereas
it hardly improves performance of AP. With δ = 2, a statisti-
cally significant difference (with the same confidence level)
is already detected for ξ ≥ 2. We used δ = 2 hereafter.

The next experiment measures efficiency as a function of
e, for a given size of the GAI elements. We did not test GAI
forests, only trees, so e is equivalent to the number of GAI
elements minus one. The simulation started with a structure
of a single element of size five, to which we added another
element in each trial, leading to a ten-elements structure.4
On a single element, the GAI auction is similar to NLD
(Parkes & Kalagnanam 2005), which is an auction that as-
signs a price to every point in the joint domain, being agnos-
tic of any preference structure. Since e = 0, the efficiency of
GSI is close to perfect. This structure is on the other extreme
compared to an additive representation, therefore the perfor-
mance of AP is particularly inferior (only 70% efficient).

With more GAI elements, the efficiency of GAI auctions
declines at a very slow pace. The theoretical guarantee
(e+2)ε, is based on the worst case, in which a configuration
chosen from the approximately buyer-optimal set consists of

4We did not find the particular tree structure to be influential
on the results; the final structure used in the reported results has a
maximum of three children per node.
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Figure 3: Efficiency as a function of k ≥ 0.

sub-configurations which are all at the largest possible dis-
tance from optimum. In practice, the loss is closer to eδ—a
much smaller error. The performance of AP improves when
the number of elements grows while their maximal and av-
erage sizes are fixed. The intuitive reason is that changing
the structure that way takes it closer to an additive represen-
tation. Under FOPI, we see a similar phenomena as before.
However, GAI FOPI outperforms AP FOPI even for ten el-
ements, with a statistically significant difference.

Figures 3 and 4 show efficiency as a function of k, for
complements and substitutes, respectively. We used a fixed
GAI structure with four elements, the largest of which has
four attributes, and imposed the same k on all the elements.
As expected, the stronger the complementarity is between
the attributes, the lower the efficiency of AP, whereas this
relationship does not affect the efficiency of GAI auctions.
The results are different for the case of substitutes. Here,
it seems the the additive approximation performs well, and
the performance starts to deteriorate only for extreme val-
ues of k. Very roughly, we can say that when relationship
between attributes (within each GAI element) is limited to
(mild) substitutions, it could be a good idea to use an addi-
tive approximation.

Unfortunately, our interpretation of the parameter k lacks
quantitative scaling: there is no clear intuition of what the
actual numbers mean, beyond the qualitative classification
mentioned above. This is a subject for future research.

We also tested the other advantage promised by GAI auc-
tions, which is the limited information revelation. The infor-
mation revelation aspect has been studied systematically for
auction AD (Parkes & Kalagnanam 2005). We have verified
that also in GAI auctions, the buyer’s information revealed
is limited to a fraction of his private information (omitted).

Conclusions
We performed a simulation study of multiattribute auctions,
comparing a mechanism that assumes additive preferences
with a recent one we proposed that employs GAI preference
structure. The study validates the usefulness of GAI auc-
tions when preferences are non-additive but GAI, and allow
us to quantify the advantages for particular preference mod-
els. In particular, we found significant benefit to supporting
the accurate preference structure, especially when the GAI
subutilities do not exhibit FOPI. When the local functions

Figure 4: Efficiency as a function of k ≤ 0.

do exhibit structure of their own, in most cases the benefit of
an accurate GAI model is still significant. An additive repre-
sentation may be a reasonable approximation when the GAI
structure is fairly close to an additive one, or when attributes
within each GAI element are known to be substitutes.

We believe this study provides several methodological
lessons applicable to a broader class of preference research
problems. First, we consider the problem of generating
structured random utility functions. The functions remain
random to the extent that they conform to a specific GAI
structure, and that the preference order over each element
exhibit a structure of our choice: FOPI, or MUI with some
predetermined level of complementarity or substitutivity.
Second, we studied the problem of finding an additive ap-
proximation to an arbitrary GAI function. We found that
performing linear regression using a relatively small set of
random points, achieves an approximation that does as well
as one done using all the points in the domain.
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