
Imprecise Soft Constraint Problems

M. Gelain*, M.S. Pini*, F. Rossi*, K. Venable* and N. Wilson**
∗ University of Padova, Italy, E-mail:{mgelain,mpini,frossi,kvenable}@math.unipd.it

∗∗ Cork Constraint Computation Centre, University College Cork, Ireland, E-mail: n.wilson@4c.ucc.ie

Abstract

We define interval-valued soft constraints, where users
can associate an interval of preference values, rather
than a single value, to each instantiation of the variables
of the constraints. This allows us to model a form of un-
certainty and imprecision that is often found in real-life
problems. We then define several notions of optimal so-
lutions for such problems, providing algorithms to find
optimals and also to test whether a solution is optimal.
Besides the usefulness of the algorithms, that can be the
base for an environment where to reason with uncer-
tainty in soft constraints problems, it is important to no-
tice that most of the times these algorithms require the
solution of a soft constraint problem. This means that
it is possible to handle uncertainty in soft constraints
without increasing the computational effort to reason
with such problems. We also show that the same re-
sults hold if users are allowed to use multiple disjoint
intervals rather than a single one.

Introduction
Constraints (Dechter 2003; Rossi, Beek, and Walsh 2006)
are useful to model real-life problems when it is clear what
should be accepted and what should be forbidden. Soft con-
straints (Bistarelli, Montanari, and Rossi 1997; Rossi, Beek,
and Walsh 2006) extend the constraint notion by allowing
several level of acceptance. This allows to express prefer-
ences rather than (and besides) strict requirements.

However, in soft constraints, each instantiation of the vari-
ables of a constraint must be associated to a precise prefer-
ence value. Sometimes it is not possible for a user of a soft
constraint system to know exactly all these values. For ex-
ample, a user may have a vague idea of the preference value.
Also, a user may not be willing to reveal his preference, for
example for privacy reasons. In this paper we consider these
forms of imprecision, and we provide a formalism and rea-
soning tools to handle them.

In particular, we extend soft constraints by allowing users
to state an interval of preference values for each instantianti-
ation of the variables of a constraint. This interval can con-
tain a single element (in this case we have usual soft con-
straints), or the whole range of preference values (when
there is complete ignorance about the preference value), or
it may contain more than one element but a strict subset of

the set of preference values. We callinterval-valued CSPs
(or also IVCSPs) such problems.

In an IVCSP, ascenario is a soft constraint problem
(SCSP) obtained by selecting a specific preference value
from each interval. Also, given any solutions (that is,
a complete assignment of the variables) of an IVCSP, we
can associate to it two preference valuesL(s) and U(s),
obtained by combining all the lower bounds (resp., upper
bounds) in the intervals thats selects in the constraints.

Given an IVCSP, we consider several notions of optimal
solutions. We first start with interval-based notions. For ex-
ample, we definelower-optimal solutions, which are com-
plete variable assignmentss such that there is no other as-
signments′ with L(s′) better thanL(s). Such solutions are
optimal in the worst scenario, that is, in the scenario ob-
tained by selecting the lower bound in every interval. They
are therefore useful in a pessimistic approach to uncertainty,
since they outperform the other assignments in the worst
scenario. We also define several other notions of optimal
solutions, which may be interesting in other approaches to
uncertainty.

We then provide algorithms to find such optimal solu-
tions, and also to test whether a given solution is optimal.
In most of the cases, finding or testing an optimal solution
amounts at solving a soft constraint problem. Thus, even
if our formalism significantly extends soft constraints, and
gives users much more power in modelling his knowledge
of the real world, in the end the work needed to find an op-
timal solution (or to test it is optimal) is not more than that
needed to find an optimal solution in a soft constraint prob-
lem.

We then pass to more general notions of optimality, which
do not refer to intervals but to more general ideas that apply
whenever we have several scenarios to consider. For exam-
ple, as in (Gelain et al. 2007), we considernecessarily opti-
mal solutions, which are optimal in all scenarios, orpossibly
optimal solutions, which are optimal in at least one scenario.
We also consider solutions that guarantee a certain level of
preference in all (resp., some) scenarios, and we aim to find
those that guaranteee the highest level.

By relating these general notions of optimal solutions to
the specific ones based on intervals, we are then able to pro-
vide algorithms to find or test optimal solutions according
to these notions. Again, it is very important to notice that

49

solving a soft constraint problem is almost always enough,
thusconfirming that it is possible to handle uncertainty in
soft constraints without increasing the computational effort
to reason with such problems.

The optimality notions considered in this paper would not
produce different results if users were allowed to use mul-
tiple disjoint intervals rather than a single one. This means
that a level of precision greater than a single interval does
not add any useful information when looking for an optimal
solution.

Previous approaches to uncertainty in soft constraint
problems assumed either a complete knowledge of the pref-
erence value, or a complete ignorance. In other words,
a preference value in a domain or a constraint was either
present or not (Faltings and Macho-Gonzalez 2005; Gelain
et al. 2007; Gonźalez, Anśotegui, and Meseguer 2005;
Wilson, Grimes, and Freuder 2007). Then, the solver was
trying to find optimal solutions with the information given
by the user or via some form of elicitation of additional pref-
erence values. Here instead we consider a more general set-
ting where the user may specify preference intervals. Also,
we assume that the user has given us all the information he
has about the problem, so we do not resort to preference
elicitation.

The usage of intervals for defining preference orders is
not new. For example, Fishburn (Fishburn 1985) introduced
interval orders to represent non-transitive indifference rela-
tions. In this case, the user is indifferent among the ele-
ments in an interval. Also, in (Braziunas and Boutilier 2006;
Boutilier et al. 2006) space of generalized utility functions is
defined by imposing range constraints on certain parameters.
Soft constraints with preference intervals are less expressive
than the formalism in (Boutilier et al. 2006), since they are
not able to handle also qualitative preferences. However,
they don’t force the user to reveal his preferences via utility
functions.

In this paper the proofs of all the formal results, as well
as the correctness proofs for the proposed algorithms, have
been omitted for lack of space.

Background: soft constraints
A soft constraint (Bistarelli, Montanari, and Rossi 1997) is
just a classical constraint (Dechter 2003) where each instan-
tiation of its variables has an associated value from a (totally
or partially ordered) set. This set has two operations, which
makes it similar to a semiring, and is called a c-semiring.
More precisely, a c-semiring is a tuple〈A,+,×,0,1〉 such
that: A is a set, called the carrier of the c-semiring, and
0,1 ∈ A; + is commutative, associative, idempotent,0 is
its unit element, and1 is its absorbing element;× is associa-
tive, commutative, distributes over+, 1 is its unit element
and0 is its absorbing element.

The relation≤S over A such thata ≤S b iff a+ b = b is a
partial order, over which+ and× are monotone, and where
0 is the minimum and1 the maximum. Moreover,〈A,≤S〉
is a lattice and, for alla, b ∈ A, a + b = lub(a, b). If × is
idempotent, then〈A,≤S〉 is a distributive lattice and× is its
glb. Informally, the relation≤S gives us a way to preference
values: whena ≤S b, we say thatb is better than a. Thus,0

is the worst value and1 is the best one.
A c-semiring〈A,+,×,0,1〉 is said to beidempotent iff

the combination operator× is idempotent, i.e., for everya ∈
A, a× a = a, while it is said to bestrictly monotonic iff the
combination operator× is strictly monotonic, i.e., for every
a, b ∈ A, if a < b then, for everyc ∈ A, a × c < b × c.
If a c-semiring is totally ordered, i.e., if≤S is a total order,
then the+ operation is just max with respect to≤S . If the
c-semiring is also idempotent, then× is equal to min, and
the c-semiring is of the kind used for fuzzy constraints (see
below).

Given a c-semiringS = 〈A,+,×,0,1〉, a finite setD
(the domain of the variables), and an ordered set of variables
V , a soft constraint is a pair〈def, con〉 wherecon ⊆ V and
def : D|con| → A. Therefore, a soft constraint specifies a
set of variables (the ones incon), and assigns to each tuple of
values ofD of these variables an element of the c-semiring
setA, which will be seen as itspreference. A soft constraint
satisfaction problem (SCSP) is just a set of soft constraints
over a set of variables.

A classical CSP is just an SCSP where the chosen c-
semiring isSCSP = 〈{false, true}, ∨,∧, false, true〉.
Fuzzy CSPs (Rossi, Beek, and Walsh 2006) are instead
modeled by choosing the idempotent c-semiringSFCSP =
〈[0, 1], max,min, 0, 1〉: we want to maximize the minimum
preference. For weighted CSPs, the strictly monotonic c-
semiring isSWCSP = 〈ℜ+, min,+, +∞, 0〉: preferences
are interpreted as costs from0 to +∞, and we want to min-
imize the sum of costs.

Given an assignments to all the variables of an SCSP
P , its preference, writtenpref(P, s), is obtained by com-
bining the preferences associated by each constraint to the
subtuples ofs referring to the variables of the constraint:
pref(P, s) = Π〈idef,con〉∈Cdef(s↓con), whereΠ refers to
the× operation of the c-semiring ands↓con is the projec-
tion of tuple s on the variables incon. For example, in
fuzzy CSPs, the preference of a complete assignment is the
minimum preference given by the constraints. In weighted
constraints, it is instead the sum of the costs given by the
constraints. An optimal solution of an SCSPP is then a
complete assignments such that there is no other complete
assignments′′ with pref(P, s) <S pref(P, s′′).

Interval-valued constraint problems
Soft constraint problems require users to specify a prefer-
ence value for each tuple in each constraint. Sometimes this
is not reasonable, since a user may have a vague idea of
what preferences to associate to some tuples. In (Gelain et
al. 2007) a first generalization allowed users to specify ei-
ther a fixed preference (as in usual soft constraints) or the
complete[0,1] interval. Thus an assumption of complete
ignorance was made when the user was not able to specify
a fixed preference. Here we generalize further by allowing
users to state any interval over the preference set.

Given a set of variablesV with finite domainD, and a
totally-ordered c-semiringS = 〈A,+,×,0,1〉, aninterval-
valued constraint is a pair〈int, con〉 wherecon ⊆ V is
the scope of the constraint and int:D|con| −→ A × A
specifies an interval overA by giving its lower and upper

50

bound. If int(x) = (a, b), it must bea ≤S b. In the fol-
lowing we will denote withl(int(x)) (resp.,u(int(x))) the
first (resp., second) component ofint(x), representing the
lower and the upper bound of the preference interval. An
interval-valued constraint problem (IVCSP) is a 4-tuple
〈V,D,C, S〉, whereC is a set of interval-valued constraints
overS defined on the variables inV with domainD.

Figure 1 shows an IVCSPP defined over the fuzzy c-
semiring 〈[0, 1],max,min, 0, 1〉, that contains three vari-
ablesX1, X2, andX3, with domain{a, b}, and five con-
straints: a unary constraint on each variable, and two binary
constraints on(x1, x2) and(x2, x3). The figure shows the
definition of each constraint, giving an interval for each vari-
able assignment.

Figure 1: An IVCSP.

In an IVCSP, a complete assignment of values to all the
variables can be associated to an interval as well, by combin-
ing all the intervals of the relevant tuples in the constraints.

Given an IVCSPP = 〈V,D,C, S〉 and an assignments
to all its variables overD thepreference interval of s in P
is [L(s), U(s)], whereL(s) = Π<int,con>∈C l(int(s↓con))
andU(s) = Π<int,con>∈Cu(int(s↓con)), andΠ is the com-
bination operator of the c-semiringS.

Figure 2 shows all the complete assignments of the
IVCSP in Figure 1, together with their preference interval.
The details of the computation of the preference intervals are
shown fors1.

Figure 2: Solutions of the IVCSP shown in Figure 1.

Oncewe have an IVCSP, it is useful to consider specific
scenarios arising from choosing a preference value from
each interval.

Given an IVCSPP , a scenario of P is an SCSPP ′

obtained fromP as follows: given any constraintc =
〈int, con〉 of P , we insert in P ′ the constraintc′ =
〈def, con〉, wheredef(t) ∈ [l(int(t)), u(int(t))] for every
tuple t ∈ D|con|. We will denote withS(P) the set of all
possible scenarios ofP . Thebest scenario (BS(P)) (resp.,
worst scenario (WS(P))) of an IVCSP is obtained by re-
placing every interval with its upper (resp., lower) bound.

The preference interval of a complete assignments of an
IVCSPP contains all the preference values associated tos
by the SCSPs inS(P). The inverse does not necessarily
hold. That is, there may be values in the preference interval
of s which cannot be obtained in any scenario. However,
if the c-semiring is idempotent, then there is a one-to-one
correspondence. In the general case, we can however prove

that, if the preference interval ofs is [a, b], there exist at least
a scenario wheres has preferencea and there exist at least a
scenario wheres has preferenceb.

Interval-based optimality notions
Given an IVCSP,several notions of optimality can be given.
Since an IVCSP presents a form of uncertainty, specified
by the intervals, there are several ways to approach such an
uncertainty. For example, one could be pessimistic or opti-
mistic about the possible scenarios.

More precisely, given an IVCSPP = 〈V,D,C, S〉, an
assignments to the variables inV is said:

• lower-optimal iff, for every other complete assignment
s′, L(s) ≥ L(s′).
Thus, a lower-optimal assignment is better than or equal
to all other assignments in the worst scenario. Therefore,
lower-optimal assignments are useful in pessimistic ap-
proaches to uncertainty, since they outperform the other
assignments in the worst case. We denote withLO(P)
the set of the lower optimal assignments ofP . The IVCSP
P of Figure 1 hasLO(P) = {s1, s4}.

• upper-optimal iff, for every other complete assignemnt
s′, U(s) ≥ U(s′).
Thus, an upper-optimal assignment is better than or equal
to all other assignments in the best scenario. Therefore,
it is useful for optimistic approaches to uncertainty. We
denote withUO(P) the set of the upper optimal assign-
ments ofP . The IVCSPP of Figure 1 hasUO(P) =
{s1, s2}.

• interval-optimal iff, for every other complete assignment
s′, L(s) ≥ L(s′) or U(s) ≥ U(s′).
In words, an interval-optimal assignment is an assign-
ment with either a higher or equal lower bound, or a
higher or equal upper bound, w.r.t. all other assignments.
This means that it must be better than, or equal to, all
other assignments in either the worst or the best sce-
nario. We denote withIO(P) the set of the interval op-
timal assignments ofP . The IVCSPP of Figure 1 has
IO(P) = {s1, s2, s4}.

• lower (resp., upper) lexicographically-optimal iff, for
every other assignments′, eitherL(s) > L(s′) (resp.,
U(s) > U(s′)), or L(s) = L(s′) and U(s) ≥ U(s′)
(resp.,U(s) = U(s′) andL(s) ≥ L(s′)).
Thus, lower (resp., upper) lexicographically-optimal as-
signments are the best assignments for a pessimistic
(resp., optimistic) approach, where ties are broken op-
timistically (resp., pessimistically). We denote with
LLO(P) (resp.,ULO(P)) the set of the lower (resp.,
upper) lexicographically-optimal assignments ofP . The
IVCSPP of Figure 1 hasLLO(P) = ULO(P) = {s1}.

• weakly-interval-dominant iff, for every other assign-
ments′, L(s) ≥ L(s′) andU(s) ≥ U(s′).
Thus, weakly-interval-dominant assignments are better
than or equal to all others in both the worst and the best
scenario. We denote withWID(P) the set of the weakly
interval dominant assignments ofP . The IVCSPP of
Figure 1 hasWID(P) = {s1}.

51

• interval-dominant if f, for every other assignments′,
L(s) ≥ U(s′).
Thus, interval-dominant assignments are better than or
equal to all others in all scenarios. They are therefore very
robust w.r.t. uncertainty. We denote withID(P) the set
of the interval dominant assignments ofP . The IVCSPP
of Figure 1 has thatID(P) = ∅.

Given an IVCSP P, we have:

• (UO(P) ∪ LO(P)) ⊆ IO(P); UO(P) ∩ LO(P) =
WID(P); ID(P) ⊆ WID(P); LLO(P) ⊆ LO(P)
and ULO(P) ⊆ UO(P); ID(P) ⊆ (LLO(P) ∩
ULO(P)) = WID(P).

• IO(P), LO(P), UO(P), LLO(P), and ULO(P) are
never empty, whileWID(P) andID(P) may be empty.

• If ID(P) 6= ∅, eitherID(P) contains a single solution,
or several solutions all with the lower bound equal to the
upper bound and all equal to the same value.

Finding and testing optimal assignments
Lower and upper optimal assignments. To find a lower-
optimal solution, it is enough to take the worst scenario and
find an optimal solution. Similarly, to find an upper-optimal
solution, we can take the best scenario and find an optimal
solution. Thus finding assignments inLO(P) or UO(P) is
as complex as solving an SCSP.

To test if an assignments in LO(P) or in UO(P), it is
enough to solve the SCSP representing the worst or the best
scenario and to check if the preference of the optimal solu-
tion coincides withL(s) or U(s).

Interval optimal assignments. To find an interval optimal
assignment, it is sufficient to find a lower optimal solution
or an upper optimal solution, since(UO(P) ∪ LO(P)) ⊆
IO(P), and bothUO(P) and LO(P) cannot be empty.
Thus finding assignments ofIO(P) is as complex as solving
an SCSP.

To test if an assignments is in IO(P), if the combination
operator is idempotent, we can find the solutions of the CSP
obtained by putting together two CSPs obtained as follows:
one is obtained by considering the worst scenario and by
allowing only tuples with preference greater thanL(s), the
other one is obtained by considering the best scenario and
by allowing only tuples with preference greater thanU(s).
Then,s is in IO(P) if and only if this CSP has no solution.

If the combination operator is not idempotent, we can
consider the SCSP with the same variables, domains, and
constraint topology asP , and defined on the c-semiring
〈(A×A), (+′,+′), (×,×), (0,0), (1,1)〉, where+′ induces
the strict ordering related to+. Then,s is optimal in this
SCSP if and only if it is interval-optimal.

Lower and upper lexicographically optimal assignments.
To find the lower-lexicographically optimal solutions of an
IVCSPP defined on c-semiringS, let us consider the SCSP
with the same variables, domains, and constraint topology as
P , and with c-semiring〈A × A, lex, (×,×), (0,0), (1,1)〉,

wherelex induces the ordering�lex defined as follows: for
each(a, a′), (b, b′) ∈ (A × A), (a, a′) �lex (b, b′) iff a > b
or a = b anda′ ≥S b′. In words, the first component is
the most important, and the second one is used to break ties.
To find the upper-lexicographically optimal solutions, it is
sufficient to consider the same SCSP as defined above except
for the ordering which considers the second component as
the most important. Thus, finding assignments inLLO(P)
andULO(P) is as complex as solving an SCSP.

To test if a solutions is in LLO(P), it is enough to find
the preference pair, say(p1, p2), of the optimal solution of
the SCSP defined above and to check if(L(s), U(s)) =
(p1, p2). Similarly to test if a solution is inULO(P).

Weakly interval dominant solutions. We know that
WID(P) = LO(P) ∩ UO(P). Thus a straightforward,
but costly, way to find a solution inWID(P) is to compute
all the optimal solutions of the best and the worst scenario
and then to check if there is a solution in the intersection of
the two sets. However, if the c-semiring is idempotent, this
is not necessary. In fact, it is sufficient to do the following:

• to find the optimal preference levels of the best and worst
scenario, saylopt anduopt;

• to consider the CSP obtained from the worst (resp., best)
scenario by allowing in the constraints only tuples with
preference greater than or equal tolopt (resp.,uopt); we
will denote such two CSPs byP1 andP2;

• to solve the CSP obtained obtained by putting together the
constraints inP1 and inP2.

In this way, finding a weakly interval dominant solution
amounts to solving two SCSPs and one CSP.

To test whether a solutions is in WID(P), it is sufficient
to find the preference of the optimal solution of the worst and
best scenarios, saylopt anduopt, and to check ifL(s) = lopt

andU(s) = uopt.

Interval dominant assignments. To find an assignment in
ID(P), if the c-semiring is idempotent, we can

• compute the optimal preference of the worst scenario, say
lopt;

• consider the CSP obtained from the best scenario by
allowing in the constraints only tuples with preference
greater thanlopt;

• check the number of solutions of this CSP: if it has no
solution, thenID(P) = LO(P), thus it is enough to find
an optimal solution ofWS(P); if it has one solution, then
this solution is the only one inID(P); if it has more than
one solution, thenID(P) = ∅.

Thus, we need to solve an SCSP and then one CSP.
To test if an assignments is in ID(P), we can consider

two cases. IfL(s) 6= U(s), then, if the c-semiring is idem-
potent, we can take the best scenario and consider the CSP
obtained by allowing only tuples with preference greater
thanL(s). This CSP has onlys as solution if and only if
s is in ID(P). If insteadL(s) = U(s), we can check ifs is
an optimal solution of the best scenario.

52

Necessary and possible optimality
We will now consider more general notions of optimality,
that are applicable to any setting where the lack of preci-
sion gives rise to several possible scenarios. We will then
show how to exploit the interval-based notions of optimality
introduced above to characterize these general notions.

Necessarily optimal solutions
Given an IVCSPP = 〈V,D,C, S〉, an assignments to the
variables inV is necessarily optimal if it optimal in all sce-
narios. Given an IVCSPP , the set of its necessarily optimal
solution will be denoted byNO(P).

Necessarily optimal solutions are very attractive, since
they are very robust: they are optimal independently of the
uncertainty of the problem. Unfortunately, the setNO(P)
may be empty. More precisely, given an IVCSPP , we have:

• ID(P) ⊆ NO(P) ⊆ WID(P);

• if ID(P) 6= ∅, thenID(P) = NO(P).

It is easy to see that an interval-dominant solution is a
necessarily optimal solution. Moreover, ifID(P) 6= ∅, then
the converse holds as well. In fact, every solution not in
ID(P) has at most preference equal to the lower bound of
those inID(P) in all scenarios. If insteadID(P) = ∅,
then it may beNO(P) 6= ∅. In our running example
of Figure 1, we haveID(P) = NO(P) = ∅. How-
ever, consider the IVCSPP over the fuzzy c-semiring with
three variablesX1, X2, andX3, with domain{a, b} and
with two constraintsc1 andc2 such thatc1 = 〈int1, con1〉
with con1 = {X1, X2}, int1(a, a) = (0.4, 0.7), and
(0, 0) otherwise, whilec2 = 〈int2, con2〉 with con1 =
{X2, X3}, int2(a, a) = (0.8, 1.0), int2(a, b) = (0.9, 1.0),
and(0, 0) otherwise. We haveID(P) = ∅ while NO(P) =
{(a, a, a), (a, a, b)}.

Also, NO(P) ⊆ LO(P), since, ifs is not lower-optimal,
then in some (for sure the worst) scenario it is not optimal.
Similarly, a necessarily optimal solution must be optimal
also in the best scenario and thusNO(P) ⊆ UO(P). This
allows us to conclude thatNO(P) ⊆ LO(P) ∩ UO(P) =
WID(P).

To find a necessarily optimal solution, we can start by
trying to find an interval-dominant assignment, since, if
ID(P) 6= ∅, then ID(P) = NO(P). To this purpose,
we can use the procedure described in Section . If in-
steadID(P) = ∅, then, sinceNO(P) ⊆ WID(P), we
may check ifWID(P) is empty, since in such a case also
NO(P) is empty. If the previous steps do not allow us to
conclude, we can compute setWID(P) and, for each so-
lution in such a set, to test if it is necessarily optimal (see
below).

To test if a solutions is necessarily optimal, we can check
if s is an optimal solution of an SCSP with the same c-
semiring, variables, domains, and constraint topology asP ,
where we replace the interval of every tuple associated with
s with its lower bound and the interval of all the other tuples
with their upper bound. Ifs is not an optimal solution of this
SCSP, thens is not necessarily optimal. If the c-semiring is
strictly monotonic, this is a necessary and sufficient condi-

tion. However, this is not so when the combination operator
is idempotent.

Guaranteeing a level of preference in all scenarios

An assignments is necessarily of at least preference α if,
for all scenarios, its preference is at leastα. The set of all
solutions of an IVCSPP with this feature will be denoted by
Nec(P, α). In our running example, if we considerα = 0.5,
we haveNec(P, 0.5) = {s1, s2, s4, s6}.

If we are happy with a preference level ofα, elements
in Nec(P, α) are what we want, since they guarantee such
a preference level independently of the uncertainty of the
problem.

We can observe thats ∈ Nec(P, α) if and only if α ≤
L(s). Thus, testing whether a solutions is in Nec(P, α)
amounts at checking this condition, which can be done in
linear time.

If the c-semiring is idempotent, the elements of
Nec(P, α) are the solutions of the CSP obtained from
WS(P) by allowing only the tuples with preference at least
α. Therefore, to find a solution inNec(P, α), it is sufficient
to solve a CSP.

If the combination operator is not idempotent, we can
solve the worst scenario and compute the preference level
of an optimal solution, saylopt. Then,s ∈ Nec(P, α) if and
only if α ≤ lopt. Thus, in the general case, we must solve
an SCSP.

Let α∗ be the maximumα such that there exists a solution
in Nec (P, α). In our running example, we haveα∗ = 0.6,
andNec(P, 0.6) = {s1, s4}.

It is possible to show that the elements inNec(P, α∗)
are the solutions ofLO(P). This implies NO(P) ⊆
Nec(P, α∗). Thus, to find a solution inNec(P, α∗), it is
sufficient to find an optimal solution of the worst scenario of
P .

Possibly Optimal Solutions

An assignments is possibly optimal if it optimal in some
scenario. The set of possibly optimal solutions ofP will
be denoted byPO(P). In our running example, we have
PO(P) = {s1, s2, s3, s4, s6}.

To find a solution inPO(P), we can observe thatLO(P),
UO(P), LLO(P), orULO(P) are all contained inPO(P),
and are never empty. Thus we may find an element in any of
such sets.

To test if a solutions is in PO(P), if the combination
operator is strictly monotonic,s is in PO(P) if and only if
s wins in the scenario where all its unknowns are set to the
upper bound and the other unknowns to the lower bound.
If instead the combination operator is idempotent, we have
to consider the worst scenario and compute the preference
level of its optimal solutions, saylopt. Thens is in PO(P)
if and only if s wins in the worst scenario or in the scenario
obtained by the worst one by raising all the unknowns ofs
to the levellopt (if this is not possible,s is not inPO(P)).
Thus, finding or testing possible optimality requires solving
an SCSP.

53

Guaranteeing a level of preference in at least one
scenario
An assignments is possibly of at least preference α if there
exists a scenario such that the preference ofs in that sce-
nario is at leastα. The set of all solutions of an IVCSPP
with this feature will be denoted byPos(P, α). In our run-
ning example, if we takeα = 0.3, we havePos(P, 0.3) =
{s1, s2, s3, s4, s6, s7, s8}.

An assignments is in Pos(P, α) if and only if α ≤ U(s).
Thus, to test whether a solution is inPos(P, α), it is enough
to check this condition, that takes linear time.

To find an assignment inPos(P, α), if the c-semiring is
idempotent, we can consider the CSP obtained from the best
scenario by allowing only the tuples with preference at least
α. Therefore, it is sufficient to solve a particular CSP.

Let α∗ be the maximumα such thatPos(P, α) is not
empty. In our running example, we haveα∗ = 0.9 and
Pos(P, 0.9) = {s1, s2}.

It is possible to show thatPos(P, α∗) = UO(P). Thus
NO(P) ⊆ Pos(P, α∗) ⊆ PO(P). Thus, to find a solution
in Pos(P, α∗), it is sufficient to find an optimal solution of
the best scenario ofP , and thus to solve an SCSP.

Necessary and possible dominance
Besides finding or testing for optimality, it may sometimes
be useful to know if a solution dominates another one.

Given a scenarioS, we say that a solutions strictly
dominates (resp., dominates) a solutions′ if and only if
pref(S, s) > pref(S, s′) (resp.,pref(S, s) ≥ pref(S, s′))
in the ordering of the considered c-semiring. Also, a solu-
tion s possibly dominates a solutions′ if and only if there is
at least one scenario wheres strictly dominatess′. Instead,
a solutions necessarily dominates a solutions′ if and only
if, in all scenarios,s dominatess′, and there is at least one
scenario wheres strictly dominatess′.

In our running example,s1 necessarily dominatess8. In
the best scenario,s2 strictly dominateds4, while in the worst
scenarios4 strictly dominatess2. Thuss2 possibly domi-
natess4, and viceversa.

The maximal elements in the partial ordering given by
the necessary dominance are the possibly optimal solutions.
Also, the ”possibly dominates” ordering may have cycles
(see the cycle betweens2 ands4 in our example), thus it may
have no undominated elements. However, if it has undomi-
nated elements, they are the necessarily optimal solutions.

To test ifs possibly dominatess′ we can set each interval
associated withs but not withs′ to its upper bound; letλ be
the combination of these values. Then we set each interval
associated withs′ but not withs to its lower bound; letµ
be the combination of these values. Finally, we compare
the preference values ofs ands′, by testing if the condition
λ×u1×· · ·×uk > µ×u1×· · ·×uk holds for any selections
of valuesu1, . . . , uk in the intervals of boths ands′.

If we have strict monotonicity, testing this condition
amounts to testing ifλ > µ. If we have idempotence, we
can replace eachui with its upper bound, and then test the
condition.

To test if s necessarily dominatess′, we first check ifs′

possibly dominatess. If so, we can conclude negatively.

Otherwise, we check ifs possibly dominatess′. If so, we
conclude positively, otherwise negatively.

Final considerations
Given an IVCSPP , the solutions in NO(P) are certainly the
most attractive, since they are the best one in every scenario.
However, if there is none, we can pass to consider the so-
lutions in Nec(P, α∗): they may be suboptimal, but they
guarantee a preference levelα∗ in all scenarios. Ifα∗ is too
low, and we feel optimistic, we can consider the solutions in
Pos(P, α∗): they guarantee it is possible to reach a higher
level of preference, but not in all scenarios.

If we allowed users to associate to each partial assign-
ment in the constraints not just a single interval, but a dis-
joint set of intervals, this would reduce the uncertainty of
the problem. However, all the optimality notions would give
the same set of optimals. The main reason for this result
is the assumption of working with monotonic combination
operators. This means that a level of precision greater than
a single interval does not add any useful information when
looking for an optimal solution.

This paper considers only totally ordered preferences.
IVCSPs can be defined also for a partially ordered setting.
We plan to extend the analysis of the optimality notions also
to this more general setting.

References
Bistarelli, S.; Montanari, U.; and Rossi, F. 1997.
Semiring-based constraint solving and optimization.JACM
44(2):201–236.
Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans, D.
2006. Constraint-based optimization and utility elicitation
using the minimax decision criterion.Artif. Intell. 170(8-
9):686–713.
Braziunas, D., and Boutilier, C. 2006. Preference elicita-
tion and generalized additive utility. InAAAI. AAAI Press.
Dechter, R. 2003.Constraint processing. Morgan Kauf-
mann.
Faltings, B., and Macho-Gonzalez, S. 2005. Open con-
straint programming.AI Journal 161(1-2):181–208.
Fishburn, P. 1985.Interval Orders and Interval Graphs.
John Wiley & Sons, New York.
Gelain, M.; Pini, M. S.; Rossi, F.; and Venable, K. B.
2007. Dealing with incomplete preferences in soft con-
straint problems. InProc. CP’07, volume 4741 ofLNCS,
286–300. Springer.
Gonźalez, S. M.; Anśotegui, C.; and Meseguer, P. 2005.
On the relation among open, interactive and dynamic CSP.
In The Fifth Workshop on Modelling and Solving Problems
with Constraints (IJCAI’05).
Rossi, F.; Beek, P. V.; and Walsh, T., eds. 2006.Handbook
of Constraint Programming. Elsevier.
Wilson, N.; Grimes, D.; and Freuder, E. C. 2007. A cost-
based model and algorithms for interleaving solving and
elicitation of csps. InProc. CP’07, volume 4741 ofLNCS,
666–680. Springer.

54

