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Abstract
Stackelberg games represent an important class of games in
which one player, the leader, commits to a strategy and the
remaining players, the followers, make their decision with
knowledge of the leader’s commitment. Existing algorithms
for Bayesian Stackelberg games find optimal solutions while
modeling uncertainty over follower types with an a-priori
probability distribution. Unfortunately, in real-world appli-
cations, the leader may also face uncertainty over the fol-
lower’s response which makes the optimality guarantees of
these algorithms fail. Such uncertainty arises because the
follower’s specific preferences or the follower’s observations
of the leader’s strategy may not align with the rational strat-
egy, and it is not amenable to a-priori probability distribu-
tions. These conditions especially hold when dealing with
human subjects. To address these uncertainties while pro-
viding quality guarantees, we propose three new robust algo-
rithms based on mixed-integer linear programs (MILPs) for
Bayesian Stackelberg games. A key result of this paper is
a detailed experimental analysis that demonstrates that these
new MILPs deal better with human responses: a conclusion
based on 800 games with 57 human subjects as followers. We
also provide run-time results on these MILPs.

Introduction
In Stackelberg games, one player, the leader, commits to a
strategy publicly before the remaining players, the follow-
ers, make their decision (Fudenberg & Tirole 1991). Stack-
elberg games are important in many multiagent security do-
mains such as attacker-defender scenarios and patrolling
(Brown et al. 2006; Paruchuri et al. 2007). For example,
security personnel patrolling infrastructure decide on a pa-
trolling strategy first, before their adversaries act taking this
commited strategy into account. Indeed, Stackelberg games
are at the heart of the ARMOR system deployed at the Los
Angeles International Airport to schedule security personnel
(Murr 2007; Paruchuri et al. 2008). Moreover, these games
have potential applications for network routing, pricing in
transportation systems and many others (Korilis, Lazar, &
Orda 1997; Cardinal et al. 2005).

Existing algorithms for Bayesian Stackelberg games find
optimal solutions considering an a-priori probability distri-
bution over possible follower types (Conitzer & Sandholm
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2006; Paruchuri et al. 2007; 2008). Unfortunately, to guar-
antee optimality, these algorithms make strict assumptions
on the underlying games, in particular that the players are
perfectly rational and that the followers perfectly observe
the leader strategy. However, these assumptions rarely hold
in real-world domains. Of particular interest are the secu-
rity domains mentioned earlier — even though an automated
program may determine the strategy of the leader (security
personnel), they face a human adversary. As is well known,
such human adversaries may not be utility maximizers, com-
puting optimal decisions. Instead, their preference models
may be governed by their bounded rationality (Simon 1956).
Followers may also have limited observability of the security
personnel’s strategy. Thus a follower may not provide the
game theoretic rational choice, but rather may have another
preference based on bounded rationality or uncertainty, and
cause the leader to face uncertainty over the gamut of fol-
lower’s actions. Therefore, in general, the leader in a Stack-
elberg game must commit to a strategy considering three dif-
ferent types of uncertainty, where no prior probability distri-
bution is available for the first two types: (i) follower re-
sponse uncertainty due to its bounded rationality, where the
follower may not choose utility maximizing optimal strat-
egy; (ii) follower response uncertainty due to its errors in
observing the leader’s strategy; (iii) follower reward uncer-
tainty modeled as different reward matrices with a Bayesian
a-priori distribution assumption, i.e. a Bayesian Stackelberg
game. While existing algorithms handle the third type of un-
certainty (Paruchuri et al. 2007; Conitzer & Sandholm 2006;
Paruchuri et al. 2008), the optimality guarantees of these al-
gorithms fail when faced with the first two types of uncer-
tainty, and the leader reward may degrade unpredictably.

To overcome this limitation, we propose three new algo-
rithms based on mixed-integer linear programs (MILPs) that
provide robust solutions, i.e. they provide quality guaran-
tees despite uncertainty over the follower’s choice of actions
due to its bounded rationality or observational uncertainty.
Our new robust MILPs complement the prior algorithms for
Bayesian Stackelberg games, handling all three types of un-
certainty mentioned above. We provide run-time results and
extensive experiments for 800 games with 57 human fol-
lowers. The key result of this paper is to show that our new
MILPs, while not optimal in a game-theoretic sense, per-
form better against human followers, who as is well known,
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are not utility maximizers.

Background
Stackelberg Game: In a Stackelberg game, a leader com-
mits to a strategy first, and then a follower optimizes its re-
ward, considering the action chosen by the leader. To see
the advantage of being the leader in a Stackelberg game,
consider the game with the payoff as shown in Table 1.
The leader is the row player and the follower is the col-
umn player. The only pure-strategy Nash equilibrium for
this game is when the leader plays a and the follower plays c
which gives the leader a payoff of 2. However, if the leader
commits to a mixed strategy of playing a and b with equal
(0.5) probability, then the follower will play d, leading to a
higher expected payoff for the leader of 3.5.

c d
a 2,1 4,0
b 1,0 3,2

Table 1: Payoff table for example Stackelberg game.

Bayesian Stackelberg Game: In a Bayesian game of N
agents, each agent n must be one of a given set of types.
For the two player Stackelberg games, inspired by the secu-
rity domain of interest in this paper we assume there is only
one leader type (e.g. only one police force enforcing secu-
rity), although there are multiple follower types (e.g. multi-
ple types of adversaries), denoted by l ∈ L. However, the
leader does not know the follower’s type. For each agent
(leader or follower) n, there is a set of strategies σn and a
utility function un : L × σ1 × σ2 → <. Our goal is to
find the optimal mixed strategy for the leader given that the
follower knows this strategy when choosing its own strategy.

DOBSS: While the problem of choosing an optimal strat-
egy for the leader in a Stackelberg game is NP-hard for
a Bayesian game with multiple follower types (Conitzer
& Sandholm 2006), researchers have continued to provide
practical improvements. DOBSS is currently the most effi-
cient algorithm for such games (Paruchuri et al. 2008) and in
use for security scheduling at the Los Angeles International
Airport. It operates directly on the compact Bayesian rep-
resentation, giving exponential speedups over (Conitzer &
Sandholm 2006) which requires conversion of the Bayesian
game into a normal-form game by the Harsanyi transforma-
tion (Harsanyi & Selten 1972). Furthermore, unlike the ap-
proximate approach of (Paruchuri et al. 2007), DOBSS pro-
vides an exact optimal solution.

We present DOBSS first in its more intuitive form as a
mixed-integer quadratic program (MIQP) and then show its
linearization into an MILP. DOBSS finds the optimal mixed
strategy for the leader while considering an optimal follower
response for this leader strategy. Note that we need to con-
sider only the reward-maximizing pure strategies of the fol-
lowers, since if a mixed strategy is optimal for the follower,
then so are all the pure strategies in the support of that mixed
strategy. We denote by x the leader’s policy, which consists
of a vector of the leader’s pure strategies. The value xi is
the proportion of times in which pure strategy i is used in

the policy. For a follower type l ∈ L, ql denotes its vec-
tor of strategies, and Rl and Cl the payoff matrices for the
leader and the follower respectively, given this follower type
l. Furthermore, X and Q denote the index sets of the leader
and follower’s pure strategies, respectively. LetM be a large
positive number. Given a priori probabilities pl, with l ∈ L,
of facing each follower type, the leader solves the following
problem (Paruchuri et al. 2008):

maxx,q,a
∑
i∈X

∑
l∈L

∑
j∈Q

plRlijxiq
l
j

s.t.
∑
i∈X xi = 1∑
j∈Q q

l
j = 1

0 ≤ (al −
∑
i∈X C

l
ijxi) ≤ (1− qlj)M

xi ∈ [0 . . . 1]
qlj ∈ {0, 1}
a ∈ <

(1)

Where for a set of leader’s actions x and actions ql for
each follower type, the objective represents the expected re-
ward for the leader considering the a-priori distribution over
different follower types pl. Constraints 1 and 4 define the set
of feasible solutions x as probability distributions over the
set of actions X . Constraints 2 and 5 limit the vector ql of
actions of follower type l to be a pure distribution over the
set Q (i.e., each ql has exactly one coordinate equal to one
and the rest equal to zero). The two inequalities in constraint
3 ensure that qlj = 1 only for a strategy j that is optimal for
follower type l. In particular, the leftmost inequality ensures
that for all j ∈ Q, al ≥

∑
i∈X C

l
ijxi, which means that

given the leader’s vector x, al is an upper bound on follower
type l’s reward for any action. The rightmost inequality is
inactive for every action where qlj = 0, since M is a large
positive quantity. For the action that has qlj = 1 this inequal-
ity states that the follower’s payoff for this action must be
≥ al, which combined with the previous inequality shows
that this action must be optimal for follower type l. We can
linearize the quadratic programming problem 1 through the
change of variables zlij = xiq

l
j , thus obtaining the following

equivalent MILP (Paruchuri et al. 2008) :

maxq,z,a
∑
i∈X

∑
l∈L
∑
j∈Q p

lRlijz
l
ij

s.t.
∑
i∈X

∑
j∈Q z

l
ij = 1∑

j∈Q z
l
ij ≤ 1

qlj ≤
∑
i∈X z

l
ij ≤ 1∑

j∈Q q
l
j = 1

0 ≤ (al −
∑
i∈X C

l
ij(
∑
h∈Q z

l
ih)) ≤ (1− qlj)M∑

j∈Q z
l
ij =

∑
j∈Q z

1
ij

zlij ∈ [0 . . . 1]
qlj ∈ {0, 1}
a ∈ <

(2)

Robust Algorithms
There are two fundamental assumptions underlying current
algorithms for Stackelberg games, including DOBSS. First,
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the follower is assumed to act with perfect utility maxi-
mizing rationality, choosing the absolute optimal among its
strategies. Second if the follower faces a tie in its strategies’
rewards, it will break it in favor of the leader, choosing the
one that gives a higher reward to the leader. This standard
assumption is also shown to follow from the follower’s ra-
tionality and optimal response under some conditions (von
Stengel & Zamir 2004). Unfortunately, in many real-world
domains the follower does not respond optimally: this is due
to the follower’s preferences, which arise from bounded ra-
tionality, or its uncertainty. In essence, the leader faces un-
certainty over follower responses — the follower may not
choose the optimal but from a range of possible responses
— potentially significantly degrading leader rewards. For
example, in Table 1, despite the leader’s committing to a
strategy of playing a and b with equal probability, if the fol-
lower plays c instead of its optimal d, the leader’s reward
degrades from 3.5 to 1.5. Notice that no a-priori probabil-
ity distributions are available or assumed for this follower
response uncertainty.

To remedy this situation, we draw inspiration from ro-
bust optimization methodology, in which the decision maker
optimizes against the worst outcome over the uncertainty
(Aghassi & Bertsimas 2006; Nilim & Ghaoui 2004). In
our Stackelberg problem the leader will make a robust deci-
sion considering that the boundedly rational follower could
choose a strategy from its range of possible responses, or
with imperfect observations of leader strategy, that degrades
the leader rewards the most. We introduce three mixed-
integer linear programs (MILPs) to that end. Our first MILP,
BRASS (Bounded Rationality Assumption in Stackelberg
Solver) addresses follower’s bounded rationality. Our sec-
ond robust MILP, BOSS (Bounded Observability in Stack-
elberg Solver), is a heuristic approach for robust leader strat-
egy despite the follower’s observational uncertainty. Our
third MILP, MAXIMIN, provides a robust response no mat-
ter the uncertainty faced.

BRASS
When employing this MILP, we assume a boundedly ratio-
nal follower who does not strictly maximize utility. As a
result, the follower may select a ε-optimal response strat-
egy, i.e. the follower may choose any of the responses
within ε-reward of the optimal strategy. Given multiple ε-
optimal responses, the robust approach is to assume that
the follower could choose the one that provides the leader
the worst reward — not necessarily because the follower at-
tends to the leader’s reward, but to robustly guard against
the worst case outcome. This worst case assumption con-
trasts with those of other Stackelberg solvers that given
a tie the follower will choose a strategy that favors the
leader (Conitzer & Sandholm 2006; Paruchuri et al. 2007;
2008). The following MILP maximizes the minimum re-
ward that we obtain given such a worst-case assumption.

In the following MILP, we use the same variable nota-
tion as in MILP (1). In addition, the variables hlj identify
the optimal strategy for follower type l with a value of al
in constraints 3 and 4. Variables qlj represent all ε optimal

strategies for follower type l; the second constraint now al-
lows selection of more than one policy per follower type.
The fifth constraint ensures that qlj = 1 for every action j
such that al −

∑
i∈X C

l
ij < ε, since in this case the middle

term in the inequality is < ε and the left inequality is then
only satisfied if qlj = 1. The sixth constraint helps define the
worst objective value against follower type l, γl, which has
to be lower than any leader reward for all actions qlj = 1.
Note that in this case we do not have a quadratic objective
so no linearization step is needed.

maxx,q,h,a,γ
∑
l∈L

plγl

s.t.
∑
i∈X xi = 1∑
j∈Q q

l
j ≥ 1∑

j∈Q h
l
j = 1

0 ≤ (al −
∑
i∈X C

l
ijxi) ≤ (1− hlj)M

ε(1− qlj) ≤ al −
∑
i∈X C

l
ijxi ≤ ε+ (1− qlj)M

M(1− qlj) +
∑
i∈X R

l
ijxi ≥ γl

hlj ≤ qlj
xi ∈ [0 . . . 1]
qlj , h

l
j ∈ {0, 1}

a ∈ <
(3)

Proposition 1 The optimal reward of BRASS is decreasing
in ε.

Proof sketch:Since the fifth constraint in (3) makes qlj = 1
when that action has a follower reward between (al − ε, al],
increasing ε would increase the number of follower strate-
gies set to 1. Having more active follower actions in con-
straint 6 can only decrease the minimum value γl. �

BOSS
BOSS considers the case where the follower may deviate
from the optimal response because it obtains garbled or lim-
ited observations. Thus, the follower’s model of the leader’s
strategy may deviate by δi from the exact strategy xi that the
leader is playing causing a non-optimal response. Using the
robust approach we consider that the follower could select
the strategy that degrades the leader reward the most out of
the strategies possible because of the observational uncer-
tainty. The following MILP finds the optimal leader strategy
given a bounded error δi in the observations:

max
∑
l∈L

plγl

s.t.
∑
i∈X xi = 1

zki = xi + δki∑
j∈Q q

lk
j = 1

0 ≤ alk −
∑
i∈X C

l
ijz

k
i ≤ (1− qlkj )M

M(1− qlkj ) +
∑
i∈X R

l
ijxi ≥ γl

xi ∈ [0 . . . 1]
qlkj ∈ {0, 1}
a ∈ <

(4)
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MILP (4) is a heuristic approach that discretely samples
the space of strategies that the follower may observe given
its obseration errors; vector zk represents the k-th erroneous
observation by the follower. The errors in observation for the
k-th observation are pre-defined and are specified by the vec-
tor δk, where

∑
i δ
k
i = 0. Constraint 4 in the above MILP

sets qlkj to 1 if and only if j is the best response of follower
type l to the observed leader strategy zk. As in BRASS,
γ helps us define the worst objective value against follower
type l. Then, in the fifth constraint, we maximize against
all the qlkj ’s that have been set to 1, thus maximizing our re-
ward against any of the possible best follower responses for
various possibly erroneous observations.

MAXIMIN
If we combine the uncertainty in the follower’s response due
to the follower’s bounded rationality and limited observabil-
ity, the uncertainty over the follower’s response grows sig-
nificantly — the follower might potentially take one of a
very large set of actions. The MAXIMIN approach consid-
ers the possibility that the follower may indeed choose any
one of its actions. The objective of the following LP is to
maximize the minimum reward γ the leader will obtain irre-
spective of the follower’s action.

max
∑
l∈L p

lγl
s.t.

∑
i∈X xi = 1∑
i∈X R

l
ijxi ≥ γl

xi ∈ [0 . . . 1]

(5)

Complexity: BRASS and BOSS, like DOBSS, require
the solution of a MILP, whereas MAXIMIN is a linear pro-
gramming problem. Therefore the complexity of MAX-
IMIN is polynomial. BRASS and BOSS on the other hand,
like DOBSS, face an NP-hard problem (Conitzer & Sand-
holm 2006). In practice, a number of effective solution
packages for MILP can be used, however their performance
depends on the number of integer variables. We note that
DOBSS considers |Q| |L| integer variables, while BRASS
doubles that, and BOSS has |Q| |L|K integer variables, with
K the total number of discrete samples of the strategy space.
Thus we anticipate MAXIMIN to be the most efficient, fol-
lowed by DOBSS with BRASS close behind, and BOSS
even slower depending on the sample size K.

Proposition 2 If 1
3ε ≥ C ≥ |Clij | for all i, j, l, then BRASS

is equivalent to MAXIMIN.

Note that |al| in (3) ≤ C. The leftmost inequality of con-
straint 5 in (3) shows that all qlj must equal 1, which makes
BRASS equivalent to MAXIMIN. Suppose some qlj = 0,
then that inequality states that −C ≤

∑
i∈X C

l
ijxi ≤ al −

ε < C − 3C = −2C a contradiction. �

Experiments
We now present results comparing runtimes and quality of
BRASS, BOSS, and MAXIMIN with DOBSS. The goal of

our new MILPs was to address followers that may be bound-
edly rational or have limited observations. To that end, ex-
periments were set up to play against human subjects (stu-
dents) as followers, with varying observability conditions.

First, we constructed a domain inspired by the security
domain (Paruchuri et al. 2008), but converted it into a pirate-
and-treasure theme. The domain had three pirates — jointly
acting as the leader — guarding 8 doors, and each individual
subject acted as a follower. The subject’s goal was to steal
treasure from behind a door without getting caught. Each of
the 8 doors gave a different positive reward and penalty to
both the subjects as well as to the pirates — a non zero-sum
game. If a subject chose a door that a pirate was guarding,
the subject would incur the penalty and the pirate would re-
ceive the reward, else vice-versa. This setup led to a Stack-
elberg game with

(
8
3

)
= 56 leader actions, and 8 follower

actions. Subjects were given full knowledge of their rewards
and penalties and those of the pirates in all situations.

Runtime Results
For our run-time results, in addition to the original 8-door
game, we constructed a 10-door game with

(
10
3

)
= 120

leader actions, and 10 follower actions. To average our run-
times over multiple instances, we created 19 additional re-
ward structures for each of the 8-door and 10-door games.
Furthermore, since our algorithms handle Bayesian games,
we created 8 variations of each of the resulting 20 games to
test scale-up in number of follower types.

In Figure 1(a), we summarize the runtime results for our
Bayesian game using DOBSS, BRASS and MAXIMIN. The
x-axis in Figure 1(a) varies the number of follower types the
leader faces, from 1 to 8. The y-axis of the graph shows the
runtime of each algorithm in seconds. Experiments were run
using CPLEX 8.1. All experiments that were not concluded
in 20 minutes (1200 seconds) were cut off since these run-
times are unusable in a real world setting. The results show
that while, as anticipated, DOBSS was faster than BRASS in
the 8-door domain, in the 10-door domain, BRASS (despite
its larger number of integer variables) was faster on aver-
age. For example, for 6 follower types in the 10-door case,
DOBSS ran for 577.3 seconds on average, while BRASS ran
for 383.4 seconds. Overall trends suggest that DOBSS and
BRASS should run within the same time frame, with neither
one strictly dominating the other. MAXIMIN is also shown
on this graph, however, it appears as a straight line along
the x-axis in Figure 1(a), with maximum runtime of 0.054
seconds on average in the 10-door case. BOSS in contrast
showed a surprising slowness even with one follower type.
Figure 1 (b) shows the runtime of BOSS when the number of
erroneous observations(K) is increased from 12 to 200. The
y-axis shows the average runtime in seconds over 5 different
reward structures and the x-axis denotes the value of k. For
example, when k is 60, BOSS takes 257.40 seconds on aver-
age. Given this extreme slowness, BOSS was excluded for
further experiments.

Quality Comparison
We now compare four algorithms, DOBSS, BRASS, MAX-
IMIN and UNIFORM using the 8-door 3-pirate domain.
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(a) DOBSS, BRASS, MAX-
IMIN

(b) BOSS

Figure 1: Comparing Runtimes

UNIFORM is our baseline uniformly random strategy; if
the algorithms performed worse than UNIFORM, then the
mixed strategies computation provided no benefits. In all
of the experiments the value of ε for BRASS was set to 3.
Each algorithm was tested with two reward structures for
the 8-door domain. The second reward structure relaxed the
penalty structure for the leader — to test its effect on our
robust algorithms. Each combination of algorithm and re-
ward structure was tested with four separate observability
conditions where the subject observed the pirates’ strategy
under the current condition and then made their decision.
A single observation consisted of seeing where the three pi-
rates were stationed behind the eight doors, having the doors
close, and then having the pirates restation themselves ac-
cording to their mixed strategy. The four different observa-
tion conditions tested were: (i) The subject does not get any
observations; (ii) Get 5 observations; (iii) Get 20 observa-
tions; (iv) Get infinite observations — simulated by reveal-
ing the exact mixed strategy of the pirate to the subject. In
all cases the subject was given both their’s and the pirates’
full reward structure.

Each of our 32 game settings (two reward structures, four
algorithms, four observability conditions) were played by 25
subjects, i.e. in total there were 800 total trials involving 57
subjects. Each subject played a total of 14 unique games and
the games were presented in random orderings to avoid any
order bias. For a given algorithm we computed the expected
leader reward for each follower action, i.e. for each choice
of door by subject. We then found the average expected re-
ward for a given algorithm using the actual door selections
from the 25 subject trials. For each game, the objective of a
subject was to choose the door that would maximize his/her
reward; and once a door was chosen that game was over
and the subject played the next game. Starting with a base
of 8 dollars, each reward point within the game was worth
15 cents for the subject and each penalty point deducted 15
cents. This was incorporated to give the subjects incentive
to play as optimally as possible. On average, subjects earned
$13.81.

Figure 2(a) shows the average expected leader reward for
our first reward structure, with each data-point averaged over
25 runs. Figure 2(b) shows the same for the second reward
structure (In both figures that a lower bar is better since
all strategies have a negative average). In both figures, the
x-axis shows the amount of observations allowed for each

strategy and y-axis shows the average expected reward each
strategy obtained. Examining Figure 2(a) for instance we
can see in the unlimited observation case, BRASS scores an
average expected leader reward of -1.10, whereas DOBSS
suffers a 56% degradation of reward, obtaining an average
score of -1.72.

We can observe the following from Figure 2. First,
BRASS outperforms DOBSS under all conditions except for
the unobserved condition of reward structure 2. Thus, given
boundedly rational followers with any amount of observa-
tion — 5, 20 or unlimited — BRASS appears superior to
DOBSS. Second, while MAXIMIN outperforms DOBSS in
most conditions, BRASS outperforms MAXIMIN in all ex-
cept two cases. In these two cases, BRASS is within 6% of
MAXIMIN’s rewards, while MAXIMIN in the worst case
is 200% worse than BRASS (unobservability condition of
reward structure 2). Combined with the earlier observation,
BRASS thus appears to be the best among our new algo-
rithms. Third, all of DOBSS, BRASS and MAXIMIN out-
perform UNIFORM, illustrating the benefits of mixed strate-
gies over simple non-weighted randomization.

(a) Reward Structure One (b) Reward Structure Two

Figure 2: Expected Average Reward

Significance: Since our results critically depend on sig-
nificant differences among DOBSS, BRASS and MAX-
IMIN, we ran the Friedman test (Friedman 1937); the non-
normal distribution of our data precluded other tests such as
ANOVA. Given that we have 2 reward structures the Fried-
man test is well suited — it’s a two ways non-parametric test
for when one of the ways (in our case, the strategy) is nested
in the other way (the structure) — to test for significant dif-
ferences in group means. The p-value obtained for the un-
limited observations case was 0.0175, for the 20 observation
was 0.0193 and for the 5 observation 0.002, indicating sig-
nificant differences.

Unlimited 20 5 Unobserved
DOBSS .08 .12 .20 .16
BRASS .96 .80 .92 .56

Table 2: Follower optimal choice percentage

Why does BRASS outperform DOBSS? DOBSS provides
a leader strategy that maximizes the leader’s expected re-
ward, assuming an optimal follower response. Focusing on
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reward structure 1, for DOBSS’s leader strategy, assuming
the follower will choose the optimal response of door 3,
the leader obtains an expected reward of 0.79. If the fol-
lower’s response is not door 3, the leader’s expected reward
decreases substantially (minimum of -4.21). BRASS max-
imizes the leader’s expected reward assuming that the fol-
lower may choose the worst among its ε-optimal strategies.
In reward structure 1, given BRASS’s leader strategy, four
of the doors (door 0,2,3,6) may give the follower a reward
within ε of the follower’s optimal strategy (door 3). If a fol-
lower chooses any of these four doors, BRASS guarantees
the leader a minimum expected reward of -1.09. Thus, if all
our subjects chose the optimal, DOBSS would obtain 0.79
in average expected reward, and BRASS -1.09 — DOBSS
would win with perfectly rational followers. However, Ta-
ble 2 shows the percentage of times subjects followed the
optimal strategy in DOBSS vs the ε-optimal strategy in
BRASS for our four observability conditions. For exam-
ple, even with unlimited observability, where subjects could
have computed their maximum expected utility, they choose
their optimal strategy only 8% of times when playing the
game with DOBSS’s randomization reducing the reward in
DOBSS to -1.72; but they choose BRASS’s ε-optimal strate-
gies 96% of times, keeping BRASS’s rewards close to -1.09.
These results are as expected due to the bounded rationality
and preferences of humans.

Summary and Related Work
Stackelberg games are crucial in many multiagent applica-
tions, and particularly for security applications; the DOBSS
algorithm is applied for security scheduling at the Los Ange-
les International Airport (Brown et al. 2006; Paruchuri et al.
2008). In such applications automated Stackelberg solvers
may create an optimal leader strategy. Unfortunately, the
bounded rationality and limited observations of the (human)
followers in a Stackelberg game challenge a critical assump-
tion — that followers will act optimally — in DOBSS or any
other existing Stackelberg solver, demolishing their guaran-
tee of optimality of leader strategy. To apply Stackelberg
games to any setting with people, this limitation must be
addressed. This paper provides the following key contribu-
tions to address this limitation. First, it provides three new
robust algorithms, BRASS, BOSS and MAXIMIN, to ad-
dress followers with bounded rationality and limited obser-
vation power. Second, it provides run-time analysis of these
algorithms. Third, it tests these algorithms with humans, in
800 games played with 57 students over 4 observability con-
ditions and two rewards structures, and shows that BRASS
outperforms optimal Stackelberg solvers in quality.

In terms of related work, we earlier discussed other algo-
rithms for Stackelberg games. Here we first discuss related
work in robust game theory, first introduced for nash equilib-
ria in (Aghassi & Bertsimas 2006) and adapted to wardrop
network equilibria in (Ordóñez & Stier-Moses 2007). These
prior works show that an equilibrium exists and how to com-
pute it when players act robustly to parameter uncertainty.
Another area of related work is approaches to bounded ra-
tionality in game theory (Rubinstein 1998) — the key ques-
tion remains how to precisely to model it in game theoretic

settings (Simon 1969). In addition to mathematical mod-
els (Rubinstein 1998), empirical analysis shows that people
dont play equilibrium strategies. For example, the winners
at the International World Championships conducted by the
World Rock Paper Scissors Society were never equilibrium
players (Shoham, Powers, & Grenager 2007). We comple-
ment these works via robust solutions for Bayesian Stackel-
berg game.
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