
Decision Policy Design as Pareto-Minimization of InfeasibleLower Bounds

Ulrich Junker
ILOG

1681, route des Dolines
06560 Valbonne

France
ujunker@ilog.fr

Alexis Tsoukiàs
LAMSADE-CNRS

Universite Paris Dauphine
75775 Paris Cedex 16

France
tsoukias@lamsade.dauphine.fr

Abstract

A decision policy chooses an outcome dependent on given
input parameters. Policies can adequately be represented by
production rules, which are at the heart of modern business
rule management systems. Classic ways of policy design are
rule authoring by experts or learning from data. In this pa-
per, we show that policies can also be derived from a model
consisting of constraints and preferences. We can design a
policy that respects the given preferences by solving a par-
ticular combinatorial Pareto-optimization problem. We con-
sider a combined parameter and decision space and introduce
a rule for each Pareto-minimal infeasible lower bound in this
space. The approach gives interesting insights in the relation-
ships between combinatorial optimization under preferences
and rule-based decision making.

Introduction
A decision policy defines which outcome is chosen depen-
dent on given input. For example, consider an automated
pricing system that has to assign discounts depending on
the customer profile and the shopping cart. Discounts may
significantly depend on the input parameters and production
rules are a convenient way to represent complex policies that
make different decisions depending on which conditions are
met by the parameters (Feigenbaum 1977). As production
rules constitute a very natural representation of the decision
making policies, they can directly be acquired from the ex-
perts. Another method for rule acquisition is learning from
historical data and the whole breadth of data mining tech-
niques can be applied for this purpose. However, the rule-
based representation of policies also has drawbacks. There
is no guarantee that a set of rules is consistent and complete,
meaning that there may be cases where multiple decisions
are made or no decision is made at all. However, even when
a rule-set is consistent and complete, there is no guarantee
that it represents a policy which is a rational choice function
(Arrow 1959) and which makes the decisions in agreement
with a given preference order.

These problems become even more apparent if the deci-
sion space is combinatorial. For example, we want to design
a recommender system for configuring computers. To keep
things simple, we suppose that the computer consists of a PC

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and an external disk. The recommender system will ask the
user for budget limitations and the minimal speed and will
return the disk space provided by the configuration. Even
in this simple setting, there may be numerous combinations
of the PC type and the disk type and the ideal combination
will strongly vary depending on the budget and the required
speed. It may not be easy to establish a rule set that is con-
sistent, complete, and rational as explained above. But now
suppose that such a desired rule-set is given, but the product
catalog changes slightly. If a new product is added to the
catalog, it may lead to better configurations under certain
parameter configurations, but not under others. The simple
change may affect several rules and a tedious rule updating
process is necessary for this purpose (Barker et al. 1989).

Those changes are easy to incorporate into a model which
describes the possible configurations in terms of variables,
constraints, and preferences. For example, there will be
constraints that model the product catalogs and others that
describe the costs, speed, and memory of a given compo-
nent. Those catalogs can directly be imported from data-
bases and mapped to constraints. A constraint-based config-
urator (Junker 2006a) can directly determine a best configu-
ration depending on the user input. In this case, the decision
is determined by solving a combinatorial optimization prob-
lem for each user request. Whereas this process implements
a policy in a desired way, the policy is not represented ex-
plicitly and cannot be inspected and refined by experts.

Decision-making policies can thus be represented explic-
itly by rules or implemented by an optimizer. Both ap-
proaches have desirable properties and are complementary.
In spite of this, it is difficult to conciliate both approaches
and to move from combinatorial optimization to rules or vice
versa. In this paper, we show that work in multi-criteria deci-
sion analysis and multi-objective optimization provides the
necessary concepts and methods to provide an interesting
link between combinatorial optimization and rules.

We first define policies and their representation in form
of rules. We then discuss policy design for combinato-
rial decision making problems. We map this problem to
a Pareto-minimization problem over a space of infeasible
lower bounds. Duality results about Pareto-optimization
allow us to deduce the minimal bounds from a standard
Pareto-frontier, which can be computed by existing meth-
ods.

67

Policies and Rules
We consider repetitive decision making problems as they
occur in (web) services for business automation and in on-
line recommender systems. In those problems, a decision
has to be made in function of parameter values, which cap-
ture the characteristics of a particular request. For exam-
ple, a limit on the budget is one typical parameter occur-
ring in online configuration services for cars and computers.
Minimal speed may be another parameter in those systems.
The parameters determine which decisions are possible in
the problem under consideration. We thus obtain adeci-
sion space X which contains all the possible decisions and
aparameter space P which describes the possible combina-
tions of parameter values. The decision space is restricted
by the parameter values, which is modelled by a mapping
X : P → 2X from the parameter space to the powerset of
the decision space.X(p) describes the set of decisions that
are feasible under the parameter valuep.

A decision policy is choosing a decision fromX(p) de-
pending on the parameter valuesp. We can also describe
a policy by a functionπ : P → X that maps a parameter
valuep to a decisionπ(p) from X(p). Hence, we define
policies as in Markov decision processes, but use them in a
simpler setting. Usually, the parameters have the character
of bounds or limits, meaning that less options are obtained
if the parameter values are replaced by stricter values. For
example, smaller budget usually means that less options are
available. We model this by a (partial) preorder%p on the
parameter spaceP , i.e. a transitive and reflexive relation,
and require thatX is monotonic under this order:

p1 %p p2 implies X(p1) ⊆ X(p2) (1)

We may also require that policies make optimal choices un-
der a given weak preference order%x on the decision space,
which is again a preorder. The strict part of this preorder
is the strict partial order≻x that satisfiesx1 ≻x x2 iff
x1 %x x2 holds, but notx2 %x x1. A policy makes an
optimal (or best) choice for parameter valuep iff there is
no decisionx∗ in the restricted setX(p) that dominates the
chosen decisionπ(p) w.r.t. the preference order (i.e. there
is nox∗ ∈ X(p) s.t. x∗ ≻x π(p)). A policy is rational iff
it makes optimal choices for all parameter values under the
same preference order%x. If the preference order%x is a
total order, then there is a single best decision in each option
set. Hence, there is a unique rational policy in this case.

As policies describe which decisions are made under
which parameter values, they are of highest importance for
the provider of a decision-making service. In order to un-
derstand and control the service, the provider must be able
to analyze the policies and to adapt them if needed. An ex-
plicit representation of policies is therefore desirable. Pro-
duction rules provide a compact representation of complex
policies as they specify which decision will be made under
which conditions.

A simple example is that of choosing a customer category
x such as Silver, Gold, and Platinum in a customer fidelity
program. The set of options depends on the amountp of
goods that have been bought by the customer. If the cus-
tomer buys for less than$500, then only the category Silver

Table 1: Catalogs for componentsa andb

ya y1,a y2,a y3,a

a1 10 20 30
a2 20 30 10

yb y1,b y2,b y3,b

b1 10 10 30
b2 20 30 10

Table 2: Updated catalogs

ya y1,a y2,a y3,a

a1 10 20 30
a2 20 30 10
a3 20 20 10

yb y1,b y2,b y3,b

b1 10 10 30
b2 20 30 10
b3 10 30 20

is possible. If he buys goods for an amount between$500
and$1000, then Silver and Gold are possible. Finally, if
the customer buys for more than$1000, then all options are
possible. Furthermore, suppose that Platinum is preferred
to Gold, which is preferred to Silver. Then there is a sin-
gle rational policy, which can be described by the following
rules:

if p ≤ 500 then x := Silver.
if p > 500 ∧ p ≤ 1000 then x := Gold.
if p > 1000 then x := Platinum.

Given the amount bought by a customer, these rules can
then be applied to choose the category. For example, if the
customer has bought for$600, the chosen category will be
Gold. The policy makes this choice directly and does not
need to determine the set of feasible options and its optimal
elements. Indeed, the policy neither describes the mapping
X , nor the preference order%x. In simple problems, it is
even possible to write down those policies without speci-
fying the set of feasible options for each case and without
specifying a preference order.

Policies and Combinatorial Optimization
In more complex problems, policies cannot be determined so
easily. If data about historical decisions are available, then
learning and classification methods can be used to induce a
decision policy. For example, the dominance-based rough
set approach in (Greco, Matarazzo, and Slowinski 2001) de-
termines a policy that respects a total preference order on the
decision space. In other problems, the set of feasible options
may be too large to be described explicitly. A good example
is product configuration where multiple components have to
be chosen such that given customer requirements are satis-
fied and technical compatibility constraints are respected. In
this case, the set of feasible options is implicitly described
in form of variables and constraints. As a policy determines
the best option depending on the parameter values, finding
an explicit representation of this policy is a non-trivial task.
In this paper, we adapt the framework of (Greco, Matarazzo,
and Slowinski 2001) to this policy design problem.

We describe the set of feasible options in terms of a con-
straint satisfaction problem. We considerm variables with
finite and non-empty domainsD1, . . . , Dm. We suppose

68

that n < m and thatP := D1 × . . . × Dn is the param-
eter space and thatX := Dn+1 is the decision space. All
the other domainsDn+2, . . . , Dm are the domains of aux-
iliary variables. The overall problem space is the Cartesian
productD := D1 × . . . × Dm of all these domains. We
also suppose that there is a total order≥i on each param-
eter domainDi (for i = 1, . . . , n). The preorder on the
parameter space is defined by a weak Pareto-ordering%p on
this space:(p∗1, . . . , p

∗
n) %p (p1, . . . , pn) holds iff p∗i ≥i pi

for all i = 1, . . . , n. Furthermore, we suppose that there is
a total order≥x on the decision spaceX . The worst ele-
ment in this decision space is denoted byx⊥. Given a tuple
y := (y1, . . . , ym) from D, we writeyp for the parameter
values(y1, . . . , yn) andyx for the decisionyn+1.

The problem space is restricted by a set of constraints.
Each constraint has a scopei1, . . . , ik consisting of in-
dexes from1, . . . , m and a relationR which is a sub-
set of Di1 × . . . × Dik

. A tuple y from D satisfies this
constraint iff (yi1 , . . . , yik

) is an element of the relation
R. A constraint respects the preorder%p on the param-
eter space iff the following property holds for all tuples
y∗, y ∈ D: if (y∗

1 , . . . , y∗
n) %p (y1, . . . , yn), y∗

j = yj for
j = n + 1, . . . , m, andy∗ satisfies the constraint, theny
satisfies the constraint.

In the sequel, we consider a set of constraintsC that re-
spect the preorder%p. The set of solutionsSol(C) is the set
of all tuples fromD that satisfy all constraints inC.

The parameter valuep ∈ P reduces the set of solutions
of C to those elementsy ∈ Sol(C) that supportp, i.e. that
satisfy the propertyyp = p. The set of feasible optionsX(p)
consists of all elementsx in the decision spaceX that are
supported by an elementy of this reduced solution space
meaning that the propertyyx = x holds. Furthermore, the
worst elementx⊥ is an element ofX(p):

X(p) := {x⊥} ∪ {x ∈ X | there isy ∈ Sol(C)
s.t.yp = p andyx = x}

(2)

It can easily be shown that the setsX(p) of feasible options
satisfy the monotonicity property (1).

A rational policy will choose the best element ofX(p)
under the order≥x. For a givenp ∈ P , this problem corre-
sponds to a classic single-objective combinatorial optimiza-
tion problem. If this problem has no solution for a parameter
valuep, then the worst decisionx⊥ will be chosen. Hence,
there is a unique policy which determines an optimal de-
cision for each combination of parameter valuesp. In this
paper, we study the problem of finding an explicit represen-
tation of this policy.

As an example, we consider a simple product configu-
ration problem. A customer wants to buy a product con-
sisting of two componentsa and b. Each componenti
has a product typeyi and three positive integer attributes
y1,i, y2,i, y3,i such as price, power consumption, disk space
capacity. Componenta may have typea1 or a2 and com-
ponentb may have typeb1 or b2. These product types and
their attribute values are specified by the two product cata-
logs in table 1. The product catalog for componenti defines
a constraint on the variablesyi, yi,1, yi,2, yi,3 such that the
table entries are the admissible tuples that may be assigned

to the variables of this constraint. The customer does not
want any combination of those product types, but requires
that the sum of they1,j ’s exceeds a parameterp1 and the
sum of they2,j ’s exceeds a parameterp2.

y1,a + y1,b ≥ p1

y2,a + y2,b ≥ p2

Furthermore, the customer wants to maximize the sumx of
they3,j ’s.

y3,a + y3,b = x

Each variable has a positive integer domain which is limited
by a suitably chosen upper bound. Greater parameter values
lead to stricter problems meaning that the orders≥i corre-
spond to the order≥ of the integers. Similarly, the order≥x

on the decision space corresponds to this order since greater
values are preferred.

This example is kept small for didactic reasons. Real
configuration problems in the car and computer industries
will have more components, additional constraints such as
compatibility constraints between the component types, and
much larger product catalogs. However, the number of pa-
rameters and decision variables will usually be small.

We give a rational policy for this example. It may hap-
pen that there is no configuration that meets the customer
request. In this case, the policy chooses the worst valuex⊥

in the decision space, which is0 in this example. In this
case, the request will be rejected. Furthermore, the resulting
policy does not include the values of the auxiliary variables
as they do not impact the choice behaviour of the system.
As the preference order≥x is not expressed on the auxiliary
variables, two solutionsy andy′ that differ in the values of
the auxiliary variables, but have the same decisionyx = y′

x,
are indifferent under the order≥x. Any of these solution
can be kept as a support for this decision and displayed to
the user. We do not detail this step in this paper. We thus
obtain a policy that determines a decision depending on the
parameters:

if p1 ≥ 0 ∧ p1 ≤ 20 ∧ p2 ≥ 0 ∧ p2 ≤ 30 then x := 60.
if p1 ≤ 30 ∧ p2 ≥ 31 ∧ p2 ≤ 50 then x := 40.
if p1 ≤ 40 ∧ p2 ≥ 51 ∧ p2 ≤ 60 then x := 20.
if p1 ≥ 0 ∧ p2 ≥ 61 then x := 0.
if p1 ≥ 21 ∧ p1 ≤ 30 ∧ p2 ≤ 50 then x := 40.
if p1 ≥ 31 ∧ p1 ≤ 40 ∧ p2 ≤ 60 then x := 20.
if p1 ≥ 41 ∧ p2 ≥ 0 then x := 0.

(3)
As explained above, experts can easily analyze and refine
such a policy. Hence, the rules are sufficient as long as no
question about the rationality of the policy is asked. But
now suppose that two new component typesa3 andb3 are
introduced as shown in table 2. Is the policy still rational?

Policy Design by Exhaustive Optimization
This question is not trivial as the set of options is speci-
fied implicitly in form of a constraint satisfaction problem.
A naive approach consists in exploring the parameter space
completely and to solve a combinatorial optimization prob-
lem for each valuev in the parameter space.

69

We can formulate this problem as that of finding a best
lower bound for the decision with respect to the order≥x.
The valuel is a lower bound forx under parameter valuesv
iff there is a solutiony ∈ Sol(C) that satisfiesyp = v and
yx ≥x l. Alternatively, we can also consider strict upper
bounds and determine a worst element among those bounds.
A valueu is a strict upper bound for the decision under pa-
rameter valuesv iff there is no solutiony ∈ Sol(C) that
satisfies the conditionsyp = v andyx ≥x u. Now let l∗

be the best lower bound andu∗ the worst strict upper bound
with respect to the order≥x

Asu∗ is a strict upper bound, the following property holds
for all solutionsy ∈ Sol(C):

yp = v ⇒ yx <x u∗ (4)

This rule will reduce the set of possible decisions to the set
{x ∈ X | x ≤x l∗} if yp = v holds. Hence,l∗ is the optimal
decision in this case and it is feasible. We can therefore
incorporate the following rule in our policy:

If p = v thenx := l∗

Repeating this process for the other parameter values will
produce the unique rational policy.

Although the combinatorial problem specified by con-
straints and preferences has a unique rational policy, there
are different ways to represent it by rules. The naive ap-
proach generates a rule for each element of the parameter
space. This is costly in space and also in time since each
rule requires to solve a combinatorial optimization problem.

Policy Design by Pareto-Optimization
In this section, we will show how to compute compact rep-
resentations of policies for problems where the set of feasi-
ble options satisfies the monotonicity property (1). In this
case, we can replace the value assignments to parameters by
bounds on the parameters and eliminate redundant rules.

First, we reconsider rules of the formyp = v ⇒ yx <x

u∗. The monotonicity assumption (1) means that we cannot
obtain better decisions when replacingv by any valuev′ that
is stricter thanv. Hence, the following property holds for all
those values and all solutionsy of C:

yp = v′ ⇒ yx <x u∗ (5)

Hence, we obtain an equivalent rule if we replace the condi-
tion yp = v by the relaxed conditionyp %p v:

yp %p v ⇒ yx <x u∗ (6)

These rules are in a format proposed in (Greco,
Matarazzo, and Slowinski 2001). Ifyp is at least as good
asv, thenyx is strictly worse thanu∗. They can be encoded
in production rule systems by using the best lower boundl∗:

if p %p v thenx := min(x, l∗)

Those rules are confluent, meaning that there is a unique
result, which complies to the rational policy. Hence, the first
step has transformed the rules into a format which is easier
to manipulate. When we reformulate the policy (3) in this

format, the upper-bound conditions disappear:

if p1 ≥ 0 ∧ p2 ≥ 0 then x := min(x, 60).
if p1 ≥ 0 ∧ p2 ≥ 31 then x := min(x, 40).
if p1 ≥ 0 ∧ p2 ≥ 51 then x := min(x, 20).
if p1 ≥ 0 ∧ p2 ≥ 61 then x := min(x, 0).
if p1 ≥ 21 ∧ p2 ≥ 0 then x := min(x, 40).
if p1 ≥ 31 ∧ p2 ≥ 0 then x := min(x, 20).
if p1 ≥ 41 ∧ p2 ≥ 0 then x := min(x, 0).

(7)

Now consider two valuesv and v∗ from the parameter
space and two valuesu andu∗ from the decision space. We
consider the combined spaceZ := P×X and define a weak
Pareto-ordering%z on this space by combining%p and≥x.
We definevu %z v∗u∗ iff v %p v∗ andu ≥x u∗. Now
consider two rules such thatvu is as least as good asv∗u∗

w.r..t the weak Pareto-order:
yp %p v ⇒ yx <x u

yp %p v∗ ⇒ yx <x u∗ (8)

Sincev %p v∗, the conditionyp %p v of the first rule implies
the conditionyp %p v∗ of the second rule. Moreover, since
u ≥x u∗, we also haveu∗ ≤x u and the conclusionyx <x

u∗ of the second rule implies the conclusionyx <x u of
the first rule. Hence, the first rule is redundant and can be
removed if it is different to the second one. When removing
the redundant rules, we obtain a rule-set which is logically
equivalent to the original one, but contains only rules for
critical pairs(v∗, u∗). As a consequence, we obtain a more
compact representation of the rational policy.

We can obtain those pairs as results of the following opti-
mization problem. We consider the set of all candidate vec-
torsv andu such that the following condition is satisfied by
all solutionsy of C:

yp %p v ⇒ yx <x u (9)

and we determine those that are worst w.r.t. the Pareto-
ordering for%p and≥x. The candidate pairs are exactly
those vectorsv andu for which there is no solutiony of C
that satisfies the following condition:

yp %p v ∧ yx ≥x u (10)

As this condition is equivalent toypyx %z vu, we can also
say that we seek vectorsw from Z that are not dominated
by any solution w.r.t. to the combined Pareto-order%z and
which thus constitute infeasible lower bounds. Among all
those infeasible lower bounds, we want to determine the
worst elements w.r.t. the Pareto-ordering. Hence, we end
up with the problem of doing a Pareto-minimization over
the space of infeasible lower bounds.

Computing the Policy by a Dual Approach
In this section, we map the Pareto-minimization problem
over the space of infeasible lower bounds to a Pareto-
maximization problem over the solution space. This will
allow us to solve the original policy design problem.

Given a vectory from D, we writeyz for ypyx, i.e. for
the tuple(y1, . . . , yn, yn+1). We consider the elements ofZ
that are supported by solutionsy of Sol(C):

S := {w ∈ Z | there isy ∈ Sol(C) s.t. yz = w} (11)

70

s2

s3

s1

Figure 1: Pareto-frontier.

s2

s3

s1

Figure 2: Dominated space.

c4

c3

c2

c1

s2

s3

s1

Figure 3: Dual frontiers.

r1

r2

r3

r4

Figure 4: Rules.

An elementw of Z is a Pareto-maximal element ofS iff
there is no other elementw∗ of S that dominatesw w.r.t. to
the strict part≻z of the preorder%z (i.e. w∗ %z w holds,
but notw %z w∗). We denote the set of Pareto-maximal
elements ofS by Max (S, %z). Figure 1 shows the Pareto-
maximal solutions for a two-dimensional space.

The Pareto-frontier of the constraint problemC can be
computed by different methods. We briefly explain the
method in (Junker 2006b). This method does an outer
branching which splits the Pareto-frontier in disjoint parts
and which is thus different from the usual inner branching
which splits the solution set ofC in disjoint parts. In each
branching step, we compute one Pareto-optimal solution by
solving an ordinary lexicographical optimization problem.
If w∗ is the optimal value obtained from this step, then we
consider all Pareto-optimal solutions that assignw∗ to yz in
the left branch and all other solutions in the right branch.
The left branch is already solved. In the right branch, we
add the constraintyz 6-z w∗ to the constraint setC and re-
peat the approach. The algorithm is summarized in figure
5. It enumerates the Pareto-optimal solutions in decreasing
lexicographical order.

We now divide the spaceZ into two disjoint subspaces:

• The space of feasible lower bounds:

P := {w ∈ Z | there isy ∈ Sol(C) s.t.yz %z w} (12)

• The space of infeasible lower bounds:

N := {w ∈ Z | there is noy ∈ Sol(C) s.t. yz %z w}
(13)

The space of feasible lower bounds contains all elements
of Z that are weakly dominated by some Pareto-maximal
element ofZ. Hence, the setP can be characterized in terms
of the Pareto-maximal elements ofS:

P = {w ∈ Z | there isw∗ ∈ Max (S, %z) s.t.w∗ %z w}
(14)

Figure 2 illustrates this property. As a consequence, the
set of Pareto-maximal elements ofS and the set of Pareto-
maximal elements ofP coincide.

We now consider the dual problem, namely that of find-
ing minimal elements in the space of infeasible bounds (see
figure 3). This is the set of all elements ofN which do not
dominate any other element ofN w.r.t. the strict part of the

order%z. We denote this set byMin(N, %z). It contains the
Pareto-minimal infeasible lower bounds which are needed to
generate the rules as explained in the last section. The setN
contains exactly those elements ofZ that weakly dominate
such an infeasible lower bound:

N = {w ∈ Z | there isw∗ ∈ Min(N, %z) s.t.w %z w∗}
(15)

Hence the spaceZ is partitioned into a partP that is weakly
dominated by the Pareto-frontier w.r.t. the order%z and a
partN that is weakly dominated by the dual frontier w.r.t.
the inverse order-z as illustrated in Figure 3. Hence,
there is a duality between the minimization of the infeasi-
ble lower bounds and the maximization of the feasible lower
bounds under a preorder%. For the particular case of Pareto-
ordering, the duality result leads to the following equiva-
lence, which holds for each elementy of D:

∨

w∗∈Min(N,%)

∧

i

yi ≥ w∗
i ≡

∧

w∗∈Max(P,%)

∨

i

yi > w∗
i (16)

A detailled study of duality notions can be found in the lit-
erature of multiobjective programming. For example, the
duality result above has been stated in (Hanne 2006). It can
also be derived from propositions 4 and 5 in (Junker 2006c).

We now exploit this duality property to determine the set
Min(N, %z). We first determineN by using (14):

N = {w ∈ Z | w∗ 6%z w for all w∗ ∈ Max (S, %z)} (17)

As the preorder%z is a Pareto-ordering, we can describe
this space in terms of constraints. For each element
w∗ of Max (P, %z), we introduce a constraint with scope
1, . . . , n, n+1. The constraint is violated by the vectors that
are weakly dominated byw∗. Hence, its relation contains all
elementsw of Z that satisfy the conditionw 6-z w∗, which
is equivalent to

∨
i wi > w∗

i as %z is a Pareto-ordering.
We denote the set of all those constraints byCN . The so-
lutions ofCN contain all vectorsy from D that satisfy the
condition

∧
w∗∈Max(P,%z)

∨
i yi > w∗

i . The setN is ob-
tained by projecting these solutions to the indexesz, i.e.
N = {yz | y ∈ Sol(CN).

We are now able to compute the Pareto-minimal solu-
tions of the new problemCN and to extract the dual fron-
tier Min(N, %z) from it. We use outer branching again for
this step. We then introduce a rule for each element of this

71

Algorithm Pareto-OB (z, %z, C)

1. R := ∅;
2. let≻z be the strict part of%z;
3. let> be a lexicographic order extending≻z;
4. repeat
5. if C has no solutionthen returnR;
6. find a>-optimal solutiony of C;
7. letw beyz;
8. R := R ∪ {w};
9. C := C ∧

∨
i zi >i wi;

Figure 5: Computing Pareto-maximal solutions.

frontier in the format of (Greco, Matarazzo, and Slowinski
2001). The policy design algorithm in figure 6 performs
these steps and computes the rational policy.

In the configuration example, there are five Pareto-
optimal solutions after the update of the catalog, namely
(20, 30, 60), (30, 50, 40), (20, 50, 50), (40, 60, 20),
(30, 60, 30). Consequently, each elementy of N satisfies
the following constraints:

y1 > 20 ∨ y2 > 30 ∨ y3 > 60
y1 > 30 ∨ y2 > 50 ∨ y3 > 40
y1 > 20 ∨ y2 > 50 ∨ y3 > 50
y1 > 40 ∨ y2 > 60 ∨ y3 > 20
y1 > 30 ∨ y2 > 60 ∨ y3 > 30

(18)

Pareto-minimization under these constraints yields the min-
imal infeasible lower bounds:

Min(N, -z) = {(0, 0, 61), (0, 31, 51), (0, 51, 31),
(0, 61, 0), (21, 0, 41), (31, 0, 21), (41, 0, 0)}

(19)

As a result, we obtain a new policy (note thaty1 corresponds
to the parameterp1, y2 corresponds to the parameterp2 and
y3 corresponds to the decisionx):

if p1 ≥ 0 ∧ p2 ≥ 0 then x := min(x, 60).
if p1 ≥ 0 ∧ p2 ≥ 31 then x := min(x, 50).
if p1 ≥ 0 ∧ p2 ≥ 51 then x := min(x, 30).
if p1 ≥ 0 ∧ p2 ≥ 61 then x := min(x, 0).
if p1 ≥ 21 ∧ p2 ≥ 0 then x := min(x, 40).
if p1 ≥ 30 ∧ p2 ≥ 0 then x := min(x, 20).
if p1 ≥ 41 ∧ p2 ≥ 0 then x := min(x, 0).

(20)

The second and third rules now assign a better value thanks
to the new product types. The policy designer thus discovers
meaningful changes of the policies, which are difficult to
detect manually.

Conclusion
Decision-making policies as used in business automation
and recommender systems can explicitly be represented in
forms of rules. Those rules can directly be acquired from
the experts or learned from historical data. In this paper, we
elaborated a third method of policy design, which consists in
deriving the rules from a domain model which is described
in terms of variables, constraints and preferences. Our ap-
proach consists in two step. Firstly, we determine Pareto-
optimal solutions of the constraint problem, which represent

Algorithm PolicyDesigner(C, p, %p, x, ≥x)

10. let%z be the weak Pareto-order for%p and≥x;
11. letL be the result of Pareto-OB(px, %z, C);
12. letCN be

∧
v∈L

∨
i vi > zi;

13. letU be the result of Pareto-OB(px, -z, CN);
14. R := ∅;
15. for eachvw ∈ U do
16. addyp %p v ⇒ yx <x w to R;
17. returnR;

Figure 6: Policy design.

the interesting trade-offs between the possible input and out-
put of the system. Secondly, we convert the Pareto-frontier
into a dual frontier by a logical transformation. Each point
in the dual frontier creates a rule. Not only the resulting
policy is consistent and complete, but also makes optimal
choices under the given preference order. The approach is
interesting for configuration problems and complex pricing
problems where explicit representations of policies are de-
sired, but frequent changes in product catalogs or market-
ing strategies make it difficult to establish those rules. The
paper provides a preliminary study of methods that derive
those policies automatically. As the generated rule-sets may
be large in size, future work is needed to study other rule
formats or approximation techniques to obtain rule-sets of
manageable size.

References
Arrow, K. 1959. Rational choice functions and orderings.
Economica 26:121–127.
Barker, V. E.; O’Connor, D. E.; Bachant, J.; and Soloway,
E. 1989. Expert systems for configuration at Digi-
tal: XCON and beyond.Commununications of the ACM
32(3):298–318.
Feigenbaum, E. A. 1977. The art of artificial intelligence:
Themes and case studies of knowledge engineering. InIJ-
CAI, 1014–1029.
Greco, S.; Matarazzo, B.; and Slowinski, R. 2001. Rough
sets theory for multicriteria decision analysis.European
Journal of Operational Research 129:1–47.
Hanne, T. 2006. On utilizing infeasibility in multiobjective
evolutionary algorithms. InMOPGP’06.
Junker, U. 2006a. Configuration. InHandbook of Con-
straint Programming. Elsevier. 837–873.
Junker, U. 2006b. Outer branching: How to optimize un-
der partial orders? InECAI-06 Workshop on Advances in
Preference Handling, 58–64.
Junker, U. 2006c. Preference-based inconsistency proving:
When the failure of the best is sufficient. InECAI, 118–
122.

72

