
NP-Completeness of Outcome Optimization for Partial CP-nets

Keith Purrington and Edmund H. Durfee

Computer Science and Engineering

University of Michigan

Ann Arbor, Michigan 48109 USA

purringk@umich.edu, durfee@umich.edu

Abstract

Partial CP-nets extend the standard CP-nets framework to
allow users to express indifference about the values of some
variables. Prior work has shown that linear-time forward
sweep algorithms for outcome optimization in classic CP-
nets can also be used with partial CP-nets when there is no
evidence that fixes the values of one or more variables. In
this paper we prove that, in the more general case where
evidence is present, outcome optimization in partial CP-nets
is, unfortunately, NP-complete. Fortunately, we are able to
describe a polynomial-time backward sweep algorithm that
finds optimal outcomes for a specialized class of partial CP-
net structures (to be defined). Furthermore, by comparison
to a GSAT-style random-walk algorithm and an exhaustive
search, we empirically demonstrate that the backward sweep
algorithm finds approximately optimal outcomes for general
partial CP-nets and is faster by several orders of magnitude.

Introduction

CP-nets (Boutilier, et al. 2004a) are a useful representation
of users' preferences in part because they facilitate
preference elicitation without excessively burdening users.
However, for scheduling problems where a user's
preferences might be "I prefer a morning meeting to an
afternoon meeting," it can be cumbersome to require the
user to express distinct preferences over all possible
meeting times. Instead, it is more natural if a user can say
"I am indifferent between meeting at 9, 10, or 11 AM."

Partial CP-nets (Rossi, et al. 2004) address this concern by
allowing the presence of unranked variables (variables for
which the user expresses no preference) in a CP-net. This
addresses the representational issue, but complicates the
optimization task. Rossi et al. (2004) demonstrate that the
linear-time forward sweep algorithm for finding optimal
outcomes in CP-nets translates directly to partial CP-nets
when the agent is able to control the value of every
variable. In general, however, external evidence might
determine the value of one or more variables, so that those
variables are not settable by the agent. (The term evidence
is borrowed from the Bayes-net literature.)

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

When evidence is present, the problem becomes much

harder. We prove that for even a very restricted class of
partial CP-networks, the problem of outcome optimization
in the presence of evidence is NP-complete.

The remainder of the paper is structured as follows. We
first provide a brief overview of the CP-nets formalism.
For a fuller description, we encourage consulting Boutilier
et al. (2004a). We then summarize the partial CP-nets
extension introduced by Rossi et al. (2004), and
demonstrate why the standard forward sweep is
insufficient when some evidence is present, proving the
NP-completeness of outcome optimization in this case.
Although this result is somewhat limiting, we describe an
algorithm based on the classic forward sweep that notably
includes a backward sweep phase that uses evidence to
determine the values for unranked variables. We describe
the restricted class of partial CP-net structures for which
this algorithm is provably optimal. Finally, we compare the
performance on random CP-nets of this backward sweep
algorithm with an exhaustive outcome-space search and
with a random-walk algorithm that is similar to the well-
known GSAT SAT-solver (Selman, et al. 1992), and find
that even when partial CP-nets lack the special structure
that is necessary to guarantee optimality, the backward
sweep algorithm remains a good approximation.

CP-nets Overview

Boutilier et al. (2004a) present a model (called a CP-net,
short for Conditional Preference Network) that describes
an agent's conditional ceteris paribus preferences. Briefly,
a CP-net is a directed graph, in which each node is
annotated with a conditional preference (CP) table that
indicates the preferred value for that node's variable,
conditioned on the values of its parent variables (the nodes
that point to it). In this way, CP-nets are analogous to
belief networks (Kim and Pearl, 1983), but express
conditional preference instead of conditional probability.

Figure 1 shows a simple CP-net for Boutilier's example of
a diner. We have two variables, and name them with
capital letters: D for DinnerIsFish and W for WineIsWhite.
Lowercase letters (and their negations) denote values that
are assumed by variables. Thus, d and d' represent,

73

respectively, fish and non-fish (meat) dinner, while w and
w' stand for white and non-white (red) wine. For
simplicity, we assume throughout that variables are binary.

 Figure 1. The CP-net for the diner example

Outcome Optimization

Boutilier et al. (2004a) describe how, given some (possibly
empty) set of evidence, the most-preferred outcome that is
consistent with that evidence can be found in time that is
proportional to the number of variables in the CP-net. The
algorithm for doing this, called a forward sweep, is very
straightforward: proceeding in (any) topological order,
each variable is assigned the value that is most preferable
given the existing assignment(s) to its parent(s). The
semantics of the CP-net representation guarantee that the
forward sweep constructs an outcome that is preferable to
any other outcome that is consistent with the evidence.

The Induced Preference Graph

CP-nets induce associated preference graphs that partially
order outcomes. In the induced preference graph for a CP-
net, there is a directed edge between every pair of
outcomes that differ on the value of only a single variable.
For any pair of outcomes O1 and O2 that differ only on the
value of a single variable V, the CP-table for V indicates
which of the competing values of V is preferred. Under the
ceteris paribus semantics of the CP-net, the outcome in
which V assumes a preferred value is the preferred
outcome, all else being equal. By convention, we draw
edges from more preferable outcomes to less preferable.

Figure 2. Induced preference graph for diner example

In Figure 2, the induced preference graph for the diner
example, we observe that (d w) > (d w') > (d' w') > (d' w).
We rank (d, w') over (d, w) since w' > w when D has the
value d. Similarly, we rank (d, w) over (d', w) because
when W has the value w, then d is preferable to d'. Finally,
(d', w) > (d', w'), because w > w' when D takes the value
d'. The final relationship, between (d, w') and (d', w'), can
be directly established based on the differing values of D,
and also can be inferred as a transitive relationship.

One consequence of the definition of the induced
preference graph is that every CP-net has a single best
outcome that corresponds to the node in the graph for
which changing any variable value worsens the outcome.
This makes certain natural preference relationships
inexpressible, as the following example shows.

Figure 3. Preference graph with two "best" outcomes

Assume that the diner has no particular preference for
either the choice of food or of wine, but instead cares only
that they go well together. The preference graph in Figure
3 shows this preference: the outcomes in which the food
matches the wine are better than those in which there is no
match, but there is no preference between the outcomes in
which there is a match. This outcome graph has two
different "best" outcomes, and therefore, cannot be induced
by a standard (acyclic) CP-net. One way to express this
preference is to explicitly model the diner's indifference
over the particular choice of food and of wine.

Partial CP-nets

Partial CP-nets were originally devised by Rossi et al.
(2004) as a way to allow the preferences that one agent has
to depend on the value of a variable that is important only
to some other agent. The introduction of unranked
variables has the main consequence of expanding the ways
in which two outcomes that differ by just one variable
value can be related. As in traditional CP-nets, when two
outcomes differ on the value of exactly one variable, then
(since all else is equal) the outcome where that variable has
its preferred value is preferred to the other outcome. If
however, the differing variable is unranked, then
preference over the outcomes is not so easily determined:
even though neither value is directly preferred, one value
might match better with the values of the variable's
children. For an unranked node U, Rossi et al. (2004) call
a change to its value is worsening if it makes the values for
all variables that depend on U less preferred. Similarly, a
change called indifferent if it results in the value for each
dependent variable being just as good. Finally,
incomparable changes are those that are neither worsening
nor indifferent.

In addition to defining the semantics of partial CP-nets,
Rossi et al. (2004) show that, in cases when no evidence is
present, outcome optimization can still be done with a
linear forward sweep by choosing values (arbitrarily) for
unranked nodes as they are encountered, and then
assigning the downstream variables with a standard
forward sweep. In the more general case, when evidence
fixes the values of some variables, such a forward sweep is
no longer guaranteed to be successful.

As an example of this, consider Figure 4, which shows a
very simple partial CP-net and its induced outcome graph
(which is reproduced from Figure 3). This network

d : w > w

d' : w' > w
d > d' D W

d w d' w'

 d' w d w'

d w

d w'

d' w

d' w'

74

describes someone's preferences for a food-wine pairing.
For this individual, the particular choice of food is
unimportant; her preference is rather that the food and
wine go well together. This can be represented in several
ways; here, the diner is indifferent as to choice of food, but
expresses a preference for the type of wine that depends on
what entrée is chosen.

Figure 4. Partial CP-net for indifferent diner

Provided that the diner can choose all of the variable
values, the procedure described by Rossi et al. (2004) finds
one of the most preferred meals. It can simply choose a
value for D, and no matter the choice, the CP-table for W
provides a value that ensures a successful pairing. If,
however, the restaurant is out of white wine (fixing the
value of W to be w'), the forward sweep is no longer
guaranteed to find the optimal outcome. When the value of
w' is fixed, the diner can still be maximally satisfied, but to
do so with a forward sweep requires having made the right
"guess" and choosing red meat before finding out that the
restaurant is out of white wine. To avoid the need for
omniscience, a general optimization algorithm must allow
for backtracking.

This small example can be solved with a backward sweep
that uses the evidence to determine the proper value for the
unranked variable. However, as the CP-net structure
becomes more complex, a backward sweep would
encounter the same need for backtracking as needed by a
forward sweep. In fact, we show that even for a very
restricted class of problems, making assignments to the
unranked nodes so as to ensure that the value of each
evidence node is preferred is NP-complete.

NP-Completeness of Outcome Optimization

In this section, we demonstrate that outcome optimization
when some evidence is present is NP-complete for a very
specialized class of partial CP-nets.

Figure 5. Example CP-net showing bi-partite structure

We consider partial CP-nets, as in Figure 5, that have a
bipartite graph structure <U, E, D>, where U is a set of
unranked nodes, E is a set of evidence nodes, and D is a set
of directed edges from nodes in U to nodes in E. (We use

"node" and "variable" interchangeably.) Finally, we restrict
the variables in these specialized networks to be binary.

Theorem 1. Outcome optimization in partial CP-nets in
the presence of evidence is NP-complete.

Proof: As is standard, we establish NP-completeness by
separately demonstrating that outcome optimization is both
NP-hard and contained in NP, using the following two
lemmas.

 Lemma 1. Outcome optimization is NP-hard.

Proof: We show hardness by reducing 3SAT to the
problem of finding the optimal outcome in a bipartite
graph as we have defined. We observe that the evidence
nodes are analogous to the clauses of a SAT instance: we
say that an evidence variable is satisfied when its parents
are chosen in such a way that the value of the evidence is
preferred by the agent. By mapping 3SAT clauses to
evidence nodes and carefully choosing the parent nodes
and the CP-tables for the evidence nodes, we ensure that
each evidence variable is satisfied IFF the 3SAT clause is
satisfied.

Consider a particular 3SAT clause, say (U1 OR U2 OR U3').
To translate this to our CP-net, we create an evidence node
E, with three parents U1, U2, and U3. To construct the CP-
table for E, say w.l.o.g. that a value of e (rather than e')
satisfies the node. Then, because E has three binary-valued
parents, there are eight entries in its CP-table. We fill in the
table so that e is preferred to e' in exactly the rows that
correspond to satisfying assignments to the SAT clause. In
fact, for each evidence node, seven of the eight possible
parent assignments will satisfy that evidence. In this case,
only for (u1', u2', u3) do we set e' preferable to e.

The general reduction, then, is a 3-step procedure. First, we
create one unranked node for each variable in the SAT
instance, and one evidence node for each clause. Second,
for each clause Ci of the 3SAT instance, which contains
variables Xj, Xk, and Xm, we connect the corresponding
unranked nodes Uj, Uk, and Um to the corresponding
evidence node Ei. Finally, for each evidence node Ei, we
construct the CP-table so that ei is preferred to ei' in the
seven cases that would satisfy the corresponding SAT
clause, as in the example above.

Then, for a network constructed in this way, an assignment
to the unranked nodes that makes the value ei conditionally
preferred to ei' for each evidence node is also a satisfying
assignment for the 3SAT instance. Likewise, if no
assignment can simultaneously satisfy each evidence node,
then the original 3SAT instance is unsatisfiable as well.
Thus, this partial CP-net outcome optimization in the
presence of evidence can be no easier than 3SAT, and must
be NP-hard.

D d w d' w'

W d' w d w'

d ~ d'

d : w > w'

d': w' > w

E1 E2 E3

U3 U2 U1

75

Lemma 2. Outcome optimization is contained in NP.

Proof: A solution certificate or "witness" can be produced
by nondeterministically choosing an assignment to the
unranked nodes. Then, this certificate can be checked to
see if it simultaneously satisfies the evidence nodes in
polynomial time (with respect to the number of evidence
nodes) by inspecting the CP-table for each evidence node.

The Backward Sweep Algorithm

While outcome optimization in partial CP-nets is hard to
solve in full generality, it can done efficiently in special
cases. As we observed earlier with the simple diner
example, a backward sweep that uses the evidence to
decide on values for the unranked variables can sometimes
be effective. In fact, we identify an entire class of network
structures for which such a linear-time algorithm will find
an optimal outcome.

Our backward sweep algorithm is actually a three-phase
algorithm that consists of two (partial) forward sweeps
surrounding a backward sweep phase that moves from
evidence nodes to unranked nodes. In contrast to the
bipartite networks from the previous section, we now
consider completely arbitrary CP-nets in which ranked,
unranked, and evidence nodes can all be interconnected.
We continue to assume that all variables are binary.

Figure 6. Backward sweep first assigns triply-circled
nodes, then doubly-circled, then singly-circled

The first phase of the algorithm is a classic CP-nets
forward sweep, beginning with all the unconditional
(parentless) variables. This phase only assigns values to
ranked variables whose ancestors are all also ranked and/or
evidence variables. The algorithm does not yet assign
values to unranked variables, and thus, by definition cannot
assign a value to any descendants of those variables.
Finally, each evidence node encountered in this pass (those
with only ranked ancestors) becomes marked. Since
marked evidence nodes aren't influenced by unranked
variables, they can safely be ignored in the next phase of
the algorithm.

After this first phase of the algorithm, the nodes of the CP-

net that remain unassigned are unranked nodes and nodes
descended from unranked nodes, terminating at either
evidence nodes or graph leaves. Figure 6 shows an
example network after this phase. The node labels
distinguish unranked variables (U), ranked variables (R),
and evidence variables (E). The triply-circled nodes are
those that were assigned a value (or marked as seen, in the
case of evidence nodes) in the first phase.

The second phase of the algorithm departs from the
algorithm proposed by Rossi et al. (2004), and is the
operation that provides the name backward sweep. In this
phase, the algorithm begins at the unmarked evidence
nodes and works backwards to their ancestral unranked
nodes. The CP-table for each evidence node describes the
combinations of assignments to its parents that result in its
being satisfied. Then, this process can be repeated for those
parent variables, until eventually encountering an unranked
node. In this way, values can be chosen for unranked nodes
that will satisfy their descendent evidence nodes.

Figure 7 shows a simple example of this procedure
Assume evidence specifies that the value of E is e. Then,
this value is preferred when R has the value of r. Similarly
r is preferred to r' when U has the value of u. Thus, we find
that the outcome (u r e) satisfies both the intermediate
variable and the evidence and is an optimal assignment.
Most importantly, we have identified that u is the proper
setting for U to ensure optimality. We will shortly define
conditions that must hold for a partial CP-net to guarantee
that the procedure described here will be effective.

Figure 7. Partial CP-net solvable by a backward sweep

In Figure 6, the second phase finds a value for the doubly-
circled node in the upper left. After the second phase,
unranked nodes without any descendent evidence nodes
remain unassigned, as do the ranked nodes that have
unranked ancestors. (These are the singly-circled nodes in
Figure 6.) Since all the evidence variables have been
considered, the algorithm can finally assign arbitrary
values to any remaining unranked variables just as
described by Rossi et al. (2004). A final forward sweep
phase then assigns the ranked descendants of the unranked
nodes, completing the algorithm.

Properties Sufficient for Correctness

As illustrated by the proof of NP-completeness, a
backward-sweep is not in general guaranteed to make the
right assignments, but as shown in the Figure 6 example, in
some cases it can. Each evidence node determines the
values that all of its parents must take if it is to be satisfied.
In turn, for those parent variables to also be satisfied, the

U E

u ~ u' r : e > e'

r': e' > e

R

u : r > r'

u': r' > r

R R

E

R

R

R

U

 U

 R E R

 R

 R

 R

76

algorithm must be able to independently assign their
parents' values. And so on. In order to guarantee that each
node's parents can be assigned values that will result in its
being satisfied, the algorithm requires that two properties
hold. First, it must be the case that each unranked node
begins at most one sub-path that ends in an evidence node.
This ensures that in the backward sweep phase of the
algorithm, no ancestor of an evidence node has multiple
influences on its "correct" value that might end up in
conflict.

The second property concerns the CP-tables of every
evidence node and every ranked node that is on the path
backward from an evidence node to an unranked node. For
each such node X, divide its parents Pa(X) into two sets,
PR(X) and PU(X), Pa(X) = PR(X) U PU(X), where PR(X)
are those parents with no unranked ancestor, and PU(X) are
those parents that have an unranked ancestor. Notably, the
variables in PR(X) are assigned values in the initial
forward sweep phase of the algorithm. Then, the desired
property is that for any assignment to PR(X), there must be
some assignment to PU(X) that makes x preferred to x' and
some assignment to PU(X) that makes x' preferred to x.
This property insures that no matter how the first forward
sweep phase assigns variables, the backward sweep phase
will be able to find a satisfying assignment to the parents at
each backward step.

When these properties hold, our three-phase backward
sweep algorithm provably finds an optimal outcome. (The
proof follows directly from the specified properties, but
space limits preclude a full formalization of the proof
here.) Furthermore, the time required for the algorithm
remains linear in the number of variables. In addition, even
when specified properties do not hold, the algorithm
continues to give useful, approximately optimal outcomes,
as the next section shows.

Empirical Performance

The close correspondence between our problem of
outcome optimization and Boolean satisfiability provides
us with a large number of off-the shelf tools against which
to compare the performance of the backward sweep
algorithm. GSAT is one such well-known algorithm that
finds SAT solutions through greedy local search combined
with random restarting.

We implemented a GSAT-style random walk that performs
local search over the possible configurations of the
unranked nodes. Each step constitutes the flip of one such
node's value; these flips are chosen greedily to maximize
the number of satisfied evidence nodes. The initial
configuration of the unranked nodes was chosen at
random. We allowed the algorithm to run for 100 steps
before restarting, and performed 20 random restarts per
trial.

We generated sample problems using the Bayes-net
generator from the University of Sao Paolo Decision
Making Lab (available at http://www.pmr.poli.usp.br/ltd/).
We generated five random 50-node networks, and then for
20 trials, we chose nodes at random to be unranked and to
be set as evidence, resulting in a total of 100 experiments
for each ratio of unranked to evidence nodes. We then
compared the performance of the backward sweep with
GSAT on such problems. In addition, in the case with 15
unranked nodes, we compared our results to a complete
exhaustive search. With 25 unranked nodes, time
limitations became an issue, but we did run seven iterations
of the complete search to verify that the approximation
algorithms continue to be nearly optimal. The results are
summarized below.

 Average Satisfied
Evidence Nodes

Average
Time (sec)

Backward Sweep 10.27 0.005

GSAT 9.43 37.65

Complete Search 10.62 6.5

15 evidence nodes, 15 unranked, 20 ranked

 Average Satisfied
Evidence Nodes

Average
Time (sec)

Backward Sweep 9.55 0.003

GSAT 8.4 56.85

Complete Search 10.04 5775

12 evidence nodes, 25 unranked, 13 ranked

 Average Satisfied
Evidence Nodes

Average
Time (sec)

Backward Sweep 6.25 0.003

GSAT 6.15 69.5

8 evidence nodes, 32 unranked, 10 ranked

The quality of the solutions found by the competing
approximation algorithms turns out to be quite similar,
with the backward sweep holding a small advantage.
Although both algorithms are incomplete, for the problems
with 15 unranked nodes, their performance is nearly
identical to that of an exhaustive search. Similarly, the few
experiments with 25 unranked nodes show that the
approximations remain good ones, although this is less
conclusive because of the small number of data point
available. Finally, as expected from a linear algorithm, the
backward sweep enjoys a substantial advantage in running
time that makes it appear to be a good choice as an
approximation algorithm.

Related and Future Work

Expressing preferences in a way that permits indifference
is certainly not a new idea. Formal treatment of
indifference in axiomatic utility theory dates back at least
to Auman (1962). Our work retains the usual distinctions
that separate CP-nets from classical utility theory,

77

http://www.pmr.poli.usp.br/ltd/

including naturalness of expression, ease of elicitation, and
the ability to leverage the graphical structure to perform
certain reasoning tasks efficiently.

Our backward sweep algorithm is provably optimal for
certain restricted network topologies. This design was
inspired by similar ideas that are common to belief
networks. In particular, the Kim and Pearl (1983) work
describes an inference algorithm that achieves efficiency
by being restricted to operate only on polytrees, even
though such reasoning is intractable for arbitrary networks.

External evidence can be viewed as a hard constraint
placed on the preferential optimization problem. In this
respect, our work bears some resemblance to the problem
of CP-nets-based constrained optimization addressed in
Boutilier et al., (2004b). However, the constraints
considered in that work are richer than simply fixing the
values of some variables, and the resulting optimization
problem becomes quite different. With the addition of
richer constraints, the problem naturally takes on the
character (and complexity) of traditional constraint
processing, and solution techniques involve some variety
of pruned backtracking search.

The CP-nets considered in this paper are all assumed to be
acyclic. Permitting cycles is another way to provide greater
representational power; for example, the outcome graph in
Figure 4 can be induced by a cyclic CP-net instead of a
partial one. However, Domshlak and Brafman (2002) show
that even consistency checking is NP-hard when a CP-net
may have cycles. To our knowledge, categorizing the
representational power of either cyclic or acyclic CP-
networks remains an open problem. The space of
representable preference functions has yet to be fully
understood.

Despite the theoretical NP-completeness of outcome
optimization in the face of indifference, the backward-
sweep algorithm offers performance that is more than
adequate for our eventual problem domain. We are looking
at modeling hybrid (finite-domain and temporal)
preferences using CP-nets. While indifference can be a
useful tool in representing preferences for finite-domain
variables, it is especially valuable when describing
temporal preferences. In this context, the use of
indifference empowers users to choose the proper level of
granularity at which to specify their temporal preferences.

As the model evolves, the modeling of indifference will
need to become more sophisticated. In this paper, we
follow Rossi et al. (2004) in restricting variables to be
either totally ranked or totally unranked. In practice, users
will often have preferences for, say, a scheduling task, that
violate this assumption. For example, the user who prefers
an afternoon meeting to one in the morning (with no
further preference over the time of the meeting) cannot be
modeled in the current formalism.

Conclusion

In this paper, we have shown that the combination of
indifference and evidence in CP-nets makes outcome
optimization intractable in general. Because we are faced
with these kinds of problems in our application domain, we
have developed approaches for handling such cases. In
particular, we have defined a polynomial-time algorithm
for networks with a particular restricted structure. In
addition, we have empirically evaluated our backward
sweep algorithm in comparison to both efficient SAT-
solving tools and complete exhaustive search and
established that algorithm quickly finds approximately
optimal solutions even in the unrestricted case.

Acknowledgments

The work reported in this paper was supported, in part, by
the National Science Foundation under grant IIS-0534280.
We would like to thank Jim Boerkoel and the anonymous
reviewers for valuable feedback on this work.

References

Auman, R. J. 1962. "Utility Theory without the Completeness

Axiom." Econometrica, Vol. 30, No. 3 (Jul., 1962), 445-462

Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., and

Poole, D. 2004. "CP-nets: A Tool for Representing and

Reasoning with Conditional Ceteris Paribus Preference

Statements." Journal of Artificial Intelligence Research (JAIR) 21

(2004), 135-191

Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., and

Poole, D. 2004. "Preference-based Constrained Optimization with

CP-nets." Computational Intelligence 20(2), 137-157

Domshlak, C., and Brafman, R. I. 2002. "CP-Nets - Reasoning

and Consistency Testing." Proceedings of the Eighth

International Conference on Principles of Knowledge

Representation and Reasoning, 121-132

Kim, J. H. and Pearl, J. 1983. "A Computational Model for

Combined Causal and Diagnostic Reasoning in Inference

Systems." Proceedings of the Eighth International Joint

Conference on Artificial Intelligence (IJCAI-83), 190-193

Rossi, F., Venable, K.B., and Walsh, T. 2004. "mCP Nets:

Representing and Reasoning with Preferences of Multiple

Agents." Proceedings of the 19th Conference on Artificial

Intelligence (AAAI-04), LNCS 749, 729-734

Selman, B., Levesque, H. J., and Mitchell, D. 1992. "A New

Method for Solving Hard Satisfiability Problems." Procs. of the

10th National Conf. on Artificial Intelligence (AAAI-92), 440-447

78

