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Abstract 

Partial CP-nets extend the standard CP-nets framework to 
allow users to express indifference about the values of some 
variables. Prior work has shown that linear-time forward 
sweep algorithms for outcome optimization in classic CP-
nets can also be used with partial CP-nets when there is no 
evidence that fixes the values of one or more variables. In 
this paper we prove that, in the more general case where 
evidence is present, outcome optimization in partial CP-nets 
is, unfortunately, NP-complete. Fortunately, we are able to 
describe a polynomial-time backward sweep algorithm that 
finds optimal outcomes for a specialized class of partial CP-
net structures (to be defined). Furthermore, by comparison 
to a GSAT-style random-walk algorithm and an exhaustive 
search, we empirically demonstrate that the backward sweep 
algorithm finds approximately optimal outcomes for general 
partial CP-nets and is faster by several orders of magnitude. 

Introduction 

CP-nets (Boutilier, et al. 2004a) are a useful representation 
of users' preferences in part because they facilitate 
preference elicitation without excessively burdening users. 
However, for scheduling problems where a user's 
preferences might be "I prefer a morning meeting to an 
afternoon meeting," it can be cumbersome to require the 
user to express distinct preferences over all possible 
meeting times.  Instead, it is more natural if a user can say 
"I am indifferent between meeting at 9, 10, or 11 AM."  
 
Partial CP-nets (Rossi, et al. 2004) address this concern by 
allowing the presence of unranked variables (variables for 
which the user expresses no preference) in a CP-net. This 
addresses the representational issue, but complicates the 
optimization task. Rossi et al. (2004) demonstrate that the 
linear-time forward sweep algorithm for finding optimal 
outcomes in CP-nets translates directly to partial CP-nets 
when the agent is able to control the value of every 
variable. In general, however, external evidence might 
determine the value of one or more variables, so that those 
variables are not settable by the agent. (The term evidence 
is borrowed from the Bayes-net literature.)  
_____________________ 

Copyright © 2008, Association for the Advancement of Artificial 

Intelligence (www.aaai.org). All rights reserved. 

When evidence is present, the problem becomes much 

harder. We prove that for even a very restricted class of 
partial CP-networks, the problem of outcome optimization 
in the presence of evidence is NP-complete. 
 
 
The remainder of the paper is structured as follows. We 
first provide a brief overview of the CP-nets formalism. 
For a fuller description, we encourage consulting Boutilier 
et al. (2004a). We then summarize the partial CP-nets 
extension introduced by Rossi et al. (2004), and 
demonstrate why the standard forward sweep is 
insufficient when some evidence is present, proving the 
NP-completeness of outcome optimization in this case. 
Although this result is somewhat limiting, we describe an 
algorithm based on the classic forward sweep that notably 
includes a backward sweep phase that uses evidence to 
determine the values for unranked variables. We describe 
the restricted class of partial CP-net structures for which 
this algorithm is provably optimal. Finally, we compare the 
performance on random CP-nets of this backward sweep 
algorithm with an exhaustive outcome-space search and 
with a random-walk algorithm that is similar to the well-
known GSAT SAT-solver (Selman, et al. 1992), and find 
that even when partial CP-nets lack the special structure 
that is necessary to guarantee optimality, the backward 
sweep algorithm remains a good approximation. 

CP-nets Overview 

Boutilier et al. (2004a) present a model (called a CP-net, 
short for Conditional Preference Network) that describes 
an agent's conditional ceteris paribus preferences. Briefly, 
a CP-net is a directed graph, in which each node is 
annotated with a conditional preference (CP) table that 
indicates the preferred value for that node's variable, 
conditioned on the values of its parent variables (the nodes 
that point to it). In this way, CP-nets are analogous to 
belief networks (Kim and Pearl, 1983), but express 
conditional preference instead of conditional probability. 
 
Figure 1 shows a simple CP-net for Boutilier's example of 
a diner. We have two variables, and name them with 
capital letters: D for DinnerIsFish and W for WineIsWhite. 
Lowercase letters (and their negations) denote values that 
are assumed by variables. Thus, d and d' represent, 
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respectively, fish and non-fish (meat) dinner, while w and 
w' stand for white and non-white (red) wine. For 
simplicity, we assume throughout that variables are binary. 
 
 
 

 
 Figure 1. The CP-net for the diner example 

Outcome Optimization 

Boutilier et al. (2004a) describe how, given some (possibly 
empty) set of evidence, the most-preferred outcome that is 
consistent with that evidence can be found in time that is 
proportional to the number of variables in the CP-net. The 
algorithm for doing this, called a forward sweep, is very 
straightforward: proceeding in (any) topological order, 
each variable is assigned the value that is most preferable 
given the existing assignment(s) to its parent(s). The 
semantics of the CP-net representation guarantee that the 
forward sweep constructs an outcome that is preferable to 
any other outcome that is consistent with the evidence. 

The Induced Preference Graph 

CP-nets induce associated preference graphs that partially 
order outcomes. In the induced preference graph for a CP-
net, there is a directed edge between every pair of 
outcomes that differ on the value of only a single variable. 
For any pair of outcomes O1 and O2 that differ only on the 
value of a single variable V, the CP-table for V indicates 
which of the competing values of V is preferred. Under the 
ceteris paribus semantics of the CP-net, the outcome in 
which V assumes a preferred value is the preferred 
outcome, all else being equal. By convention, we draw 
edges from more preferable outcomes to less preferable.  

Figure 2. Induced preference graph for diner example 
 
In Figure 2, the induced preference graph for the diner 
example, we observe that (d w) > (d w') > (d' w') > (d' w). 
We rank (d, w') over (d, w) since w' > w when D has the 
value d. Similarly, we rank (d, w) over (d', w) because 
when W has the value w, then d is preferable to d'. Finally, 
(d', w) > (d', w'), because w > w' when D takes the value 
d'. The final relationship, between (d, w') and (d', w'), can 
be directly established based on the differing values of D, 
and also can be inferred as a transitive relationship. 
 

One consequence of the definition of the induced 
preference graph is that every CP-net has a single best 
outcome that corresponds to the node in the graph for 
which changing any variable value worsens the outcome. 
This makes certain natural preference relationships 
inexpressible, as the following example shows. 

 
 
 
 
 
 
 
Figure 3. Preference graph with two "best" outcomes 
 
Assume that the diner has no particular preference for 
either the choice of food or of wine, but instead cares only 
that they go well together. The preference graph in Figure 
3 shows this preference: the outcomes in which the food 
matches the wine are better than those in which there is no 
match, but there is no preference between the outcomes in 
which there is a match. This outcome graph has two 
different "best" outcomes, and therefore, cannot be induced 
by a standard (acyclic) CP-net. One way to express this 
preference is to explicitly model the diner's indifference 
over the particular choice of food and of wine. 

Partial CP-nets  

Partial CP-nets were originally devised by Rossi et al. 
(2004) as a way to allow the preferences that one agent has 
to depend on the value of a variable that is important only 
to some other agent. The introduction of unranked 
variables has the main consequence of expanding the ways 
in which two outcomes that differ by just one variable 
value can be related. As in traditional CP-nets, when two 
outcomes differ on the value of exactly one variable, then 
(since all else is equal) the outcome where that variable has 
its preferred value is preferred to the other outcome. If 
however, the differing variable is unranked, then 
preference over the outcomes is not so easily determined: 
even though neither value is directly preferred, one value 
might match better with the values of the variable's 
children.  For an unranked node U, Rossi et al. (2004) call 
a change to its value is worsening if it makes the values for 
all variables that depend on U less preferred. Similarly, a 
change called indifferent if it results in the value for each 
dependent variable being just as good. Finally, 
incomparable changes are those that are neither worsening 
nor indifferent.  
 
In addition to defining the semantics of partial CP-nets, 
Rossi et al. (2004) show that, in cases when no evidence is 
present, outcome optimization can still be done with a 
linear forward sweep by choosing values (arbitrarily) for 
unranked nodes as they are encountered, and then 
assigning the downstream variables with a standard 
forward sweep. In the more general case, when evidence 
fixes the values of some variables, such a forward sweep is 
no longer guaranteed to be successful. 
 
As an example of this, consider Figure 4, which shows a 
very simple partial CP-net and its induced outcome graph 
(which is reproduced from Figure 3). This network 

d : w > w 

d' : w' > w  
d > d' D W 

d w  d' w' 

 d' w  d w' 

d w 

d w' 

d' w 

d' w' 
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describes someone's preferences for a food-wine pairing. 
For this individual, the particular choice of food is 
unimportant; her preference is rather that the food and 
wine go well together. This can be represented in several 
ways; here, the diner is indifferent as to choice of food, but 
expresses a preference for the type of wine that depends on 
what entrée is chosen. 
 
 
 
 
 
 
  
Figure 4. Partial CP-net for indifferent diner 
 
Provided that the diner can choose all of the variable 
values, the procedure described by Rossi et al. (2004) finds 
one of the most preferred meals. It can simply choose a 
value for D, and no matter the choice, the CP-table for W 
provides a value that ensures a successful pairing. If, 
however, the restaurant is out of white wine (fixing the 
value of W to be w'), the forward sweep is no longer 
guaranteed to find the optimal outcome. When the value of 
w' is fixed, the diner can still be maximally satisfied, but to 
do so with a forward sweep requires having made the right 
"guess" and choosing red meat before finding out that the 
restaurant is out of white wine. To avoid the need for 
omniscience, a general optimization algorithm must allow 
for backtracking. 
 
This small example can be solved with a backward sweep 
that uses the evidence to determine the proper value for the 
unranked variable. However, as the CP-net structure 
becomes more complex, a backward sweep would 
encounter the same need for backtracking as needed by a 
forward sweep. In fact, we show that even for a very 
restricted class of problems, making assignments to the 
unranked nodes so as to ensure that the value of each 
evidence node is preferred is NP-complete. 

NP-Completeness of Outcome Optimization 

In this section, we demonstrate that outcome optimization 
when some evidence is present is NP-complete for a very 
specialized class of partial CP-nets.  
 
 
 
 
 
 
Figure 5. Example CP-net showing bi-partite structure 
 
We consider partial CP-nets, as in Figure 5, that have a 
bipartite graph structure <U, E, D>, where U is a set of 
unranked nodes, E is a set of evidence nodes, and D is a set 
of directed edges from nodes in U to nodes in E. (We use 

"node" and "variable" interchangeably.) Finally, we restrict 
the variables in these specialized networks to be binary. 
 
Theorem 1. Outcome optimization in partial CP-nets in 
the presence of evidence is NP-complete. 
 
Proof: As is standard, we establish NP-completeness by 
separately demonstrating that outcome optimization is both 
NP-hard and contained in NP, using the following two 
lemmas. 
 
 Lemma 1. Outcome optimization is NP-hard. 
 
Proof: We show hardness by reducing 3SAT to the 
problem of finding the optimal outcome in a bipartite 
graph as we have defined. We observe that the evidence 
nodes are analogous to the clauses of a SAT instance: we 
say that an evidence variable is satisfied when its parents 
are chosen in such a way that the value of the evidence is 
preferred by the agent. By mapping 3SAT clauses to 
evidence nodes and carefully choosing the parent nodes 
and the CP-tables for the evidence nodes, we ensure that 
each evidence variable is satisfied IFF the 3SAT clause is 
satisfied. 
 
Consider a particular 3SAT clause, say (U1 OR U2 OR U3'). 
To translate this to our CP-net, we create an evidence node 
E, with three parents U1, U2, and U3. To construct the CP-
table for E, say w.l.o.g. that a value of e (rather than e') 
satisfies the node. Then, because E has three binary-valued 
parents, there are eight entries in its CP-table. We fill in the 
table so that e is preferred to e' in exactly the rows that 
correspond to satisfying assignments to the SAT clause. In 
fact, for each evidence node, seven of the eight possible 
parent assignments will satisfy that evidence. In this case, 
only for (u1', u2', u3) do we set e' preferable to e.  
 
The general reduction, then, is a 3-step procedure. First, we 
create one unranked node for each variable in the SAT 
instance, and one evidence node for each clause. Second, 
for each clause Ci of the 3SAT instance, which contains 
variables Xj, Xk, and Xm, we connect the corresponding 
unranked nodes Uj, Uk, and Um to the corresponding 
evidence node Ei. Finally, for each evidence node Ei, we 
construct the CP-table so that ei is preferred to ei' in the 
seven cases that would satisfy the corresponding SAT 
clause, as in the example above.  
 
Then, for a network constructed in this way, an assignment 
to the unranked nodes that makes the value ei conditionally 
preferred to ei' for each evidence node is also a satisfying 
assignment for the 3SAT instance. Likewise, if no 
assignment can simultaneously satisfy each evidence node, 
then the original 3SAT instance is unsatisfiable as well. 
Thus, this partial CP-net outcome optimization in the 
presence of evidence can be no easier than 3SAT, and must 
be NP-hard.  
 

D d w  d' w' 

W  d' w  d w' 

d ~ d' 

d : w > w' 

d': w' > w 

E1 E2 E3 

U3 U2 U1 
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Lemma 2. Outcome optimization is contained in NP. 
 
Proof: A solution certificate or "witness" can be produced 
by nondeterministically choosing an assignment to the 
unranked nodes. Then, this certificate can be checked to 
see if it simultaneously satisfies the evidence nodes in 
polynomial time (with respect to the number of evidence 
nodes) by inspecting the CP-table for each evidence node.  

The Backward Sweep Algorithm 

While outcome optimization in partial CP-nets is hard to 
solve in full generality, it can done efficiently in special 
cases. As we observed earlier with the simple diner 
example, a backward sweep that uses the evidence to 
decide on values for the unranked variables can sometimes 
be effective. In fact, we identify an entire class of network 
structures for which such a linear-time algorithm will find 
an optimal outcome. 
 
Our backward sweep algorithm is actually a three-phase 
algorithm that consists of two (partial) forward sweeps 
surrounding a backward sweep phase that moves from 
evidence nodes to unranked nodes. In contrast to the 
bipartite networks from the previous section, we now 
consider completely arbitrary CP-nets in which ranked, 
unranked, and evidence nodes can all be interconnected. 
We continue to assume that all variables are binary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Backward sweep first assigns triply-circled 
nodes, then doubly-circled, then singly-circled 
 
The first phase of the algorithm is a classic CP-nets 
forward sweep, beginning with all the unconditional 
(parentless) variables. This phase only assigns values to 
ranked variables whose ancestors are all also ranked and/or 
evidence variables. The algorithm does not yet assign 
values to unranked variables, and thus, by definition cannot 
assign a value to any descendants of those variables. 
Finally, each evidence node encountered in this pass (those 
with only ranked ancestors) becomes marked. Since 
marked evidence nodes aren't influenced by unranked 
variables, they can safely be ignored in the next phase of 
the algorithm. 
 
After this first phase of the algorithm, the nodes of the CP-

net that remain unassigned are unranked nodes and nodes 
descended from unranked nodes, terminating at either 
evidence nodes or graph leaves. Figure 6 shows an 
example network after this phase. The node labels 
distinguish unranked variables (U), ranked variables (R), 
and evidence variables (E). The triply-circled nodes are 
those that were assigned a value (or marked as seen, in the 
case of evidence nodes) in the first phase.  
 
The second phase of the algorithm departs from the 
algorithm proposed by Rossi et al. (2004), and is the 
operation that provides the name backward sweep. In this 
phase, the algorithm begins at the unmarked evidence 
nodes and works backwards to their ancestral unranked 
nodes. The CP-table for each evidence node describes the 
combinations of assignments to its parents that result in its 
being satisfied. Then, this process can be repeated for those 
parent variables, until eventually encountering an unranked 
node. In this way, values can be chosen for unranked nodes 
that will satisfy their descendent evidence nodes.  
 
Figure 7 shows a simple example of this procedure 
Assume evidence specifies that the value of E is e. Then, 
this value is preferred when R has the value of r. Similarly 
r is preferred to r' when U has the value of u. Thus, we find 
that the outcome (u r e) satisfies both the intermediate 
variable and the evidence and is an optimal assignment. 
Most importantly, we have identified that u is the proper 
setting for U to ensure optimality. We will shortly define 
conditions that must hold for a partial CP-net to guarantee 
that the procedure described here will be effective. 
 
 
 
 
 
 
Figure 7.  Partial CP-net solvable by a backward sweep 
 
In Figure 6, the second phase finds a value for the doubly-
circled node in the upper left. After the second phase, 
unranked nodes without any descendent evidence nodes 
remain unassigned, as do the ranked nodes that have 
unranked ancestors. (These are the singly-circled nodes in 
Figure 6.) Since all the evidence variables have been 
considered, the algorithm can finally assign arbitrary 
values to any remaining unranked variables just as 
described by Rossi et al. (2004). A final forward sweep 
phase then assigns the ranked descendants of the unranked 
nodes, completing the algorithm.  

Properties Sufficient for Correctness 

As illustrated by the proof of NP-completeness, a 
backward-sweep is not in general guaranteed to make the 
right assignments, but as shown in the Figure 6 example, in 
some cases it can.  Each evidence node determines the 
values that all of its parents must take if it is to be satisfied. 
In turn, for those parent variables to also be satisfied, the 

U E 

u ~ u' r : e > e' 

r': e' > e 

R 

u : r > r' 

u': r' > r 

R R 

E 

R 
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  R 
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algorithm must be able to independently assign their 
parents' values. And so on. In order to guarantee that each 
node's parents can be assigned values that will result in its 
being satisfied, the algorithm requires that two properties 
hold. First, it must be the case that each unranked node 
begins at most one sub-path that ends in an evidence node. 
This ensures that in the backward sweep phase of the 
algorithm, no ancestor of an evidence node has multiple 
influences on its "correct" value that might end up in 
conflict.  
 
The second property concerns the CP-tables of every 
evidence node and every ranked node that is on the path 
backward from an evidence node to an unranked node. For 
each such node X, divide its parents Pa(X) into two sets, 
PR(X) and PU(X), Pa(X) = PR(X) U PU(X), where PR(X) 
are those parents with no unranked ancestor, and PU(X) are 
those parents that have an unranked ancestor. Notably, the 
variables in PR(X) are assigned values in the initial 
forward sweep phase of the algorithm. Then, the desired 
property is that for any assignment to PR(X), there must be 
some assignment to PU(X) that makes x preferred to x' and 
some assignment to PU(X) that makes x' preferred to x. 
This property insures that no matter how the first forward 
sweep phase assigns variables, the backward sweep phase 
will be able to find a satisfying assignment to the parents at 
each backward step.  
 
When these properties hold, our three-phase backward 
sweep algorithm provably finds an optimal outcome. (The 
proof follows directly from the specified properties, but 
space limits preclude a full formalization of the proof 
here.) Furthermore, the time required for the algorithm 
remains linear in the number of variables. In addition, even 
when specified properties do not hold, the algorithm 
continues to give useful, approximately optimal outcomes, 
as the next section shows. 

Empirical Performance 

The close correspondence between our problem of 
outcome optimization and Boolean satisfiability provides 
us with a large number of off-the shelf tools against which 
to compare the performance of the backward sweep 
algorithm. GSAT is one such well-known algorithm that 
finds SAT solutions through greedy local search combined 
with random restarting. 
 
We implemented a GSAT-style random walk that performs 
local search over the possible configurations of the 
unranked nodes. Each step constitutes the flip of one such 
node's value; these flips are chosen greedily to maximize 
the number of satisfied evidence nodes. The initial 
configuration of the unranked nodes was chosen at 
random. We allowed the algorithm to run for 100 steps 
before restarting, and performed 20 random restarts per 
trial. 
 

We generated sample problems using the Bayes-net 
generator from the University of Sao Paolo Decision 
Making Lab (available at http://www.pmr.poli.usp.br/ltd/). 
We generated five random 50-node networks, and then for 
20 trials, we chose nodes at random to be unranked and to 
be set as evidence, resulting in a total of 100 experiments 
for each ratio of unranked to evidence nodes. We then 
compared the performance of the backward sweep with 
GSAT on such problems. In addition, in the case with 15 
unranked nodes, we compared our results to a complete 
exhaustive search. With 25 unranked nodes, time 
limitations became an issue, but we did run seven iterations 
of the complete search to verify that the approximation 
algorithms continue to be nearly optimal. The results are 
summarized below. 
 

 Average Satisfied 
Evidence Nodes 

Average 
Time (sec) 

Backward Sweep 10.27 0.005 

GSAT 9.43 37.65 

Complete Search 10.62 6.5 

15 evidence nodes, 15 unranked, 20 ranked 
 

 Average Satisfied 
Evidence Nodes 

Average 
Time (sec) 

Backward Sweep 9.55 0.003 

GSAT 8.4 56.85 

Complete Search 10.04 5775 

12 evidence nodes, 25 unranked, 13 ranked 
 

 Average Satisfied 
Evidence Nodes 

Average 
Time (sec) 

Backward Sweep 6.25 0.003 

GSAT 6.15 69.5 

8 evidence nodes, 32 unranked, 10 ranked 
 
The quality of the solutions found by the competing 
approximation algorithms turns out to be quite similar, 
with the backward sweep holding a small advantage. 
Although both algorithms are incomplete, for the problems 
with 15 unranked nodes, their performance is nearly 
identical to that of an exhaustive search. Similarly, the few 
experiments with 25 unranked nodes show that the 
approximations remain good ones, although this is less 
conclusive because of the small number of data point 
available. Finally, as expected from a linear algorithm, the 
backward sweep enjoys a substantial advantage in running 
time that makes it appear to be a good choice as an 
approximation algorithm. 

Related and Future Work 

Expressing preferences in a way that permits indifference 
is certainly not a new idea. Formal treatment of 
indifference in axiomatic utility theory dates back at least 
to Auman (1962). Our work retains the usual distinctions 
that separate CP-nets from classical utility theory, 
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including naturalness of expression, ease of elicitation, and 
the ability to leverage the graphical structure to perform 
certain reasoning tasks efficiently. 
 
Our backward sweep algorithm is provably optimal for 
certain restricted network topologies. This design was 
inspired by similar ideas that are common to belief 
networks. In particular, the Kim and Pearl (1983) work 
describes an inference algorithm that achieves efficiency 
by being restricted to operate only on polytrees, even 
though such reasoning is intractable for arbitrary networks.  
 
External evidence can be viewed as a hard constraint 
placed on the preferential optimization problem. In this 
respect, our work bears some resemblance to the problem 
of CP-nets-based constrained optimization addressed in 
Boutilier et al., (2004b). However, the constraints 
considered in that work are richer than simply fixing the 
values of some variables, and the resulting optimization 
problem becomes quite different. With the addition of 
richer constraints, the problem naturally takes on the 
character (and complexity) of traditional constraint 
processing, and solution techniques involve some variety 
of pruned backtracking search. 
 
The CP-nets considered in this paper are all assumed to be 
acyclic. Permitting cycles is another way to provide greater 
representational power; for example, the outcome graph in 
Figure 4 can be induced by a cyclic CP-net instead of a 
partial one. However, Domshlak and Brafman (2002) show 
that even consistency checking is NP-hard when a CP-net 
may have cycles. To our knowledge, categorizing the 
representational power of either cyclic or acyclic CP-
networks remains an open problem. The space of 
representable preference functions has yet to be fully 
understood. 
 
Despite the theoretical NP-completeness of outcome 
optimization in the face of indifference, the backward-
sweep algorithm offers performance that is more than 
adequate for our eventual problem domain. We are looking 
at modeling hybrid (finite-domain and temporal) 
preferences using CP-nets. While indifference can be a 
useful tool in representing preferences for finite-domain 
variables, it is especially valuable when describing 
temporal preferences. In this context, the use of 
indifference empowers users to choose the proper level of 
granularity at which to specify their temporal preferences. 
 
As the model evolves, the modeling of indifference will 
need to become more sophisticated. In this paper, we 
follow Rossi et al. (2004) in restricting variables to be 
either totally ranked or totally unranked. In practice, users 
will often have preferences for, say, a scheduling task, that 
violate this assumption. For example, the user who prefers 
an afternoon meeting to one in the morning (with no 
further preference over the time of the meeting) cannot be 
modeled in the current formalism. 

Conclusion 

In this paper, we have shown that the combination of 
indifference and evidence in CP-nets makes outcome 
optimization intractable in general. Because we are faced 
with these kinds of problems in our application domain, we 
have developed approaches for handling such cases. In 
particular, we have defined a polynomial-time algorithm 
for networks with a particular restricted structure. In 
addition, we have empirically evaluated our backward 
sweep algorithm in comparison to both efficient SAT-
solving tools and complete exhaustive search and 
established that algorithm quickly finds approximately 
optimal solutions even in the unrestricted case. 
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