
Adapting to Resident Preferences in Smart Environments 

Parisa Rashidi, Diane J. Cook 
 

Washington State University  
Pullman, WA 
USA, 99163 

{prashidi, cook}@eecs.wsu.edu 
 

Abstract 
In the past decade, smart home technologies have been a 
topic of interest for many researchers with the aim of 
automating daily activities. However, despite increasing 
progress in this area, less attention has been paid to smart 
environments that can adapt to changes in residents’ 
preferences over time. Here we introduce CASAS, an 
adaptive smart home system that discovers and adapts to 
changes in the resident’s preferences in order to generate 
satisfactory automation policies. The adaptation capability 
of CASAS is achieved by utilizing data mining methods as 
well as learning strategies that adapt to the resident’s 
explicit and implicit preference feedback. In this paper, we 
present a description of the adaptation models employed by 
CASAS together with the results of experiments applied to 
both synthetic and real smart environment data.  

Introduction   
In recent years, smart homes have been a topic of interest 
for many researchers with the aim of automating home 
activities to achieve greater comfort, productivity, and 
energy efficiency (Abowd 2005, Helal 2005, Youngblood 
2007).  In a smart home, networked sensors and controllers 
try to assist residents' lives by acquiring and applying 
knowledge about residents and their physical surroundings 
(Cook 2004). The long-term goal of many smart home 
projects is to automate resident interactions with the 
environment that are repetitive or, in the case of 
individuals with physical limitations, are difficult to 
perform. To achieve a successful automation, it is 
important to consider the resident’s preferences regarding 
different aspects of automations, such as events and their 
relative sequential order, each event’s start time, and its 
duration. Unfortunately, despite progress in smart home 
research, less attention has been paid to the design of a 
smart home that can adapt to changes in the residents’ 
preferences over time.  

One of the few works done in this area is a primitive 
approach proposed by Vainio et al. (Vainio 2007), where a 
fuzzy controller adjusts the weights of a few predefined 
factors that determine whether performing a specific action 
is in accordance with the user’s preferences or not, e.g. 
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turning on the lamp if the light level is less than a certain 
amount. However, they do not consider the problem of 
adapting to more complex sequential activities, and do not 
discuss how such changes can be discovered from daily 
activity data. In addition, they consider a set of predefined 
factors, but in the real world, it is not possible to determine 
such factors in advance.  

In our work, we consider automation of sequential 
complex activities that adapts to the user’s preference.  Our 
approach does not make any assumptions about the activity 
structure or other underlying model parameters, but leaves 
it completely to our algorithms to discover relevant 
patterns. This significantly increases the flexibility of our 
approach, particularly since we allow for different aspects 
of the resident’s preference to be modeled, such as the 
activity structure and sequence order, start time, and 
duration. In addition, our model takes into account the 
resident’s feedback by considering various levels of user 
involvement; the resident can guide the system by 
providing explicit preference feedback, or s/he can leave it 
to the system to automatically discover changes in 
preferences.  

Input to CASAS consists of various sensor data 
collected by the smart environment, such as motion 
sensors, light sensors, and so forth. This data is mined by 
our mining algorithm called FPAM to discover activity 
patterns of interest for automation; and later these patterns 
are modeled by our Hierarchal Activity Model (HAM) to 
further utilize the underlying temporal and structural 
preferences. To achieve preference adaptation, the 
Preference Adaptation Miner (PAM) algorithm adapts to 
any changes in those patterns and responds to user 
guidance. The preference adaptation mechanism is based 
on using four different mechanisms: direct manipulation, 
guidance, request, and smart detection. Each method 
requires a certain balance between user collaboration and 
system autonomy, from no collaboration in smart detection 
method to no autonomy in direct manipulation method. 
Putting all the preference adaptation methods together, we 
are able to provide an adaptive smart environment solution 
which adapts to its residents’ preferences over time, and 
which provides a wide range of collaboration and feedback 
methods such that residents can choose to act proactively 
or be passive.  8
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  FPAM Model   
CASAS’s first step to automate daily activities in a 

smart home is to discover user preferences regarding 
different aspects of automated activities. To achieve this, 
our mining algorithm called the Frequent and Periodic 
Activity Miner (FPAM) discovers patterns in the resident’s 
daily activities that may provide a basis for automation.  
FPAM also learns basic temporal information associated 
with the patterns that later will be used by HAM to extract 
more comprehensive temporal information. In our 
discussion, we define an event as a single action such as 
turning on the light, while an activity is a sequence of such 
events, e.g. turning on the light – turning on coffee maker, 
which is composed of two events. The events can represent 
data generated by different sensors such as motion sensors 
or by a device that is manipulated by a powerline 
controller. Discovering how the resident performs these 
activities in daily life facilitates dedication of the resident’s 
preferences for home automation. We consider frequent 
and periodic activities, as automating these activities 
makes the environment responsive to the resident.  Such 
automation also removes the burden of manually 
performing these long repetitive sequences, and opens up 
the possibility for the environment agent to find better 
ways of accomplishing tasks, such as a more energy-
efficient method for heating heavily-used portions of a 
home. FPAM is able to find frequent and periodic activity 
patterns with inexact periods, arbitrary length, and 
predictable timing constraints. Such a flexible mining 
method makes it easy to discover resident’s preferences 
about structure, period and temporal constraints of 
activities.  

We assume that the input data is a sequence of event 
tuples in the form of <di, vi, ti>, where i represents a single 
event, di denotes the event’s data source (e.g., motion 
sensor), vi denotes the state of the source (e.g., off, on), and 
ti denotes the time that event i occurred. A window of size 
ω (initialized to 2) is passed over the data and every 
sequence of length equal to the window size, is recorded 
together with its frequency, fi. (i.e., number of times the 
sequence occurs in the dataset) and initial periodicity (i.e., 
regularity of occurrence, such as every three hours) 

After the initial frequent and periodic sequences have 
been identified, FPAM incrementally builds candidates of 
larger size. Instead of scanning the data again, FPAM 
extends sequences that made the cutoff in the previous 
iteration by one event that occurs before or after the current 
sequence. FPAM continues to increase the window size 
until no more frequent or periodic sequences within the 
new window size are found. Drawing on results from 
information theory, we evaluate the frequency of a 
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sequence based on its ability to compress the dataset, by 
replacing occurrences of the pattern with pointers to the 
pattern definition (Rissanen 1989). We compute the 
compression value according to Equation 1, where fa 
represents frequency of sequence a, t represents the input 
data length in hours and C represents the compression 
threshold. Therefore for a sequence to be considered as 
frequent, the following condition should hold: 

C
t

fa a >
∗

 (1)

 To calculate the periodicity of each pattern, FPAM 
computes elapsed time between consecutive occurrences of 
the pattern. Two periodicity granules are considered: 
coarse-grained expressed in number of days and fine-
grained expressed in number of hours. To construct 
periods, a lazy clustering method is used; if a sequence’s 
period does not match previous periods (with a tolerance of 
one hour for fine-grained and one day for coarse-grained 
periods), a new candidate period is constructed. If the 
periodicity of a sequence is consistent a threshold number 
of times, the pattern is reported as periodic. 

Hierarchical Activity Model:  HAM 
After activity structure and periods have been discovered 
by FPAM, the sequences will be organized in a Hierarchal 
Activity Model (HAM) structure, which filters out 
activities according to two temporal granule levels of day 
and hour (see Figure 1). Such an organization helps to 
deduce temporal preferences from basic temporal 
information provided by FPAM in form of timestamps. 
HAM also captures temporal relationships between events 
in an activity by explicitly representing sequence ordering 
in a Markov model. Each activity will be placed in a HAM 
leaf node according to its day and time of occurrence. For 
each activity at each node, we describe the start time and 
the duration of each individual event using a normal 
distribution that will be updated every time FPAM mines 
newly-generated data. If an activity is located in different 
time/day nodes within the HAM model, multiple Gaussian 
distributions for that activity will be computed, allowing 
HAM to more accurately approximate the start time and 
duration values, by using multiple simple local functions.  
 After the hierarchical model is constructed, HAM 
considers appropriate activities to be automated. Such 
automation should reflect our preference adaptation policy, 
such that recently discovered activities will not miss their 
chance of being selected for automation simply because 
enough time has not passed to allow them be explored by 
the learning algorithm. To achieve this, we require the 
following conditions to hold: 1) the highest-likelihood 
activities are given a greater chance of being automated, 2) 
less likely activities retain a chance of being automated 
(especially recently discovered ones) and 3) the temporal 
relationships between activities are preserved. CASAS is 
not currently designed to handle the intricacies associated 
with interleaving multiple automation activities that 
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overlap in time. As a result, not all actions that appear in 
the hierarchy for a particular time can necessarily be 
automated. 

  
Figure 1. Example HAM model. 

 HAM selects activities for automation that maximize the 
expected utility (Sutton 1998), as shown:   

)()()( AQAPAEU T=  (2)

 In Equation 2, Q(A) is A’s potential value which is the 
same for all of its component events, and PT(A) is the total 
occurrence probability of activity A, defined as: 

)()()()( APAPAPAP rtdT ××=  (3)

 In the above equation, Pd(A), the daily probability, 
reflects the occurrence probability of A on a given day of 
the week. The time probability, Pt(A), reflects the 
occurrence probability of A in a given time interval (node); 
and the relative probability, Pr(A), reflects the occurrence 
probability, with respect to the other activities that fall 
within the same time node. The daily and time probabilities 
are estimated using frequencies computed by FPAM and 
the relative probability is computed using Pdi and Pti. 
 To select an activity, CASAS balances between 
exploration and exploitation where exploring potential 
automated activities allows for potential improvement of 
the smart home, and exploitation avoids user frustration 
due to too many wrong choices. The probability of 
selecting a particular activity A for automation is calculated 
according to Equation 4. Here EU(j) is the expected utility 
of activity j as defined before, β*D(A) is a term that favors 
recently-added activities, D(A) represents how recently 
activity A occurred (as a reciprocal of the number of days 
since its discovery); β adjusts the relative importance of 
recently-added activities vs. highly expected activities; and 
k is a parameter which initially is set high to promote 
exploration, but over time decreases, to allow for 
exploitation of stabilized automations.  
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Dynamic Adaptation  
Most smart environments assume a static learned model, 
i.e., once the resident’s activity preference patterns have 
been learned, no changes are applied to maintain the model 
over time. However, as we know, humans are likely to 
change their preferences over time, depending on many 
factors, such as social relations, seasonal and weather 
conditions and even emotional states. Therefore, a static 
model can not serve the purpose of a long term solution for 
a smart home; instead, we need to find a way to adapt to 
the changes that occur over time. Such adaptation should 
occur in response to resident’s preferences, either by 
observing behavior changes, or by adopting explicit 
advices given by users.  
 CASAS achieves adaptation based on the resident’s 
explicit preference feedback, provided through the CASAS 
user interface, or based on implicit preference feedback 
which can be described as any alteration in the resident’s 
habits and lifestyle. For example, consider a resident that 
used to turn on the coffee maker every day at 7:30am, but 
later changes his habit and turns it on at 6:30am. This is an 
example of implicit user preference feedback that should 
be detected by CASAS. 
 We employ four different adaptation mechanisms to 
consider the resident’s explicit and implicit preference 
feedback: direct manipulation, guidance, request and smart 
detection. In direct manipulation, residents provide the 
system with the most explicit form of preference feedback, 
by manipulating automated activities using the CASAS 
user interface. Using the guidance method, residents guide 
CASAS by rating the automated activities based on their 
preferences on scale of 1..5, thus providing CASAS with 
explicit feedback or advice. With the request method, 
residents can highlight any activity to be monitored by 
CASAS for possible changes, therefore providing a 
mixture of explicit and implicit preference feedback. In the 
last approach, called smart detection, CASAS utilizes the 
most implicit form of feedback by monitoring resident 
activities and updating the HAM model. The difference 
between the last two methods is first how fast the changes 
will be detected; and second the required amount of user 
interaction, as smart detection method doesn’t require any 
user interaction. Using the request method, the change 
detection process starts immediately and hence residents 
do not have to wait for the regular mining schedule. 
CASAS uses all of these mechanisms to provide a flexible, 
user-centric solution to the dynamic preference adaptation 
problem that allows for various degrees of resident 
involvement. Residents can choose any of above methods 
to provide feedback to CASAS, and can choose to act 
proactively or be passive. 
 For every activity, we maintain a potential value, Q, 
which reflects the amount of evidence against or for an 
activity as being frequent or periodic, in other words the 
degree to which it should be considered for automation. 
The potential value can be increased or decreased through 
a compensation effect or a decay effect, as will be 
described. If potential value falls below a certain activity 
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threshold, the activity is discarded from the model, in other 
words it will be forgotten. Maintaining a potential value for 
each discovered activity can help us distinguish transient 
changes from long-term changes that still might be 
accompanied by a noise element. The potential value is 
increased by using the following formula: 

)( rQQ ∗+= α  (5) 

 In the above equation, r∈ [-1...+1] denotes the 
preference value, and ]1,0[∈α  denotes the learning rate. 
To simulate the overriding nature of learning in direct 
manipulation, and guidance methods, we set the learning 
rate to a relatively high value; while for request and smart 
detection methods we set it to a small value to simulate 
their gradual history-preserving nature. Note that when 
updating the potential value, we do not differentiate 
between different events that comprise an activity and 
consider it as a whole; therefore we assign a single value to 
an activity. 
 In addition to the compensation effect, we also employ a 
decay effect which subtracts a small value ε from all 
activities’ values at each time step θ. Applying decay 
function, the value of any activity during an arbitrary time 
interval Δt is decreased by: 

θ
ε tQQ Δ∗

−=  
(6) 

 The decay effect allows for those activity patterns that 
have not been perceived over a long period of time to 
descend toward a vanishing value over time, or in an 
intuitive sense to be forgotten. This helps to adapt to 
changing preferences of residents. The effect of the decay 
function is compensated through compensation effect in a 
way that the potential value remains bounded. 

Explicit Preference Feedback 
As we already mentioned, residents can directly 
manipulate automated activities by changing event start 
times and durations to their preferred values. They can also 
add activities, delete activities, or modify entire activities 
by adding, deleting, or reorder the events that comprise the 
activity. Residents can also designate an activity as a 
priority activity that overrides other activities. We call this 
preference feedback method as direct manipulation 
approach, which involves the highest degree of user 
collaboration. Considering given complexity of each 
activity’s definition, it is essential to provide the user with 
adequate guidance. In our system, whenever a user wants 
to define or modify an activity, s/he is guided through a 
series of wizard dialogs where each dialog asks the 
appropriate question based on previous steps and in each 
step, a brief description about that step is provided in order 
to help users better understand the underlying conceptual 
model.  
 A less demanding yet collaborative approach, called 
guidance method, works based on rating of the automated 
activities by users on a scale of 1 to 5, where 5 represents 
that the resident likes the automated activity. These ratings 
are mapped into corresponding preference values, to 

increase or decrease potential value of an activity, and help 
CASAS decide what activities to automate next time.   

Implicit Guidance 
In this method, whenever an activity is highlighted to be 
monitored for any changes in user preferences, a mining 
algorithm called Preference Adaptation Mining (PAM) 
analyzes recent event data and looks for any changes in the 
preferences pattern, such as the start time, durations, 
periods, or the activity structure (the component events 
with their temporal relationships). Without loss of 
generality, we refer to two different categories of 
preference changes: changes that preserve the structure and 
changes that alter the structure. 
 Structure change is detected by finding new patterns that 
occur during the same times we expect the old pattern to 
occur; assuming that start time can act as a discriminative 
attribute. First, PAM looks for an activity pattern, a, such 
that its start time, sa, is contained within the interval Δδ = 
μa ± σa, where μo and σa denote the mean and standard 
deviation of the original pattern’s start time distribution. 
PAM is looking for different activity patterns within the 
same start time interval in which we expect to see the 
original activity pattern, and marks the beginning of all 
such intervals. It then moves a sliding window of size ω 
(initially set to 2) over the interval and incrementally 
increases the window size at every iteration. The window 
size does not increase when no more frequent or periodic 
patterns of length ω can be found. PAM does not examine 
all of the data, rather just the marked points. A frequent 
pattern can easily be extended beyond the marked point, as 
we require only its start time to be contained within the 
marked interval. This process results in finding a new 
pattern which may be longer, shorter, or have different 
properties than the original one.  
 In the case where structure is preserved, we first mark 
all the occurrences of the original activity in the data, and 
based on these occurrences calculate properties such as 
new durations, new start times or new periods. After 
results from both cases have been collected, the PAM 
algorithm reports the list of changes that can be accepted or 
rejected by the user. 

Smart Detection 
In the smart detection method, CASAS automatically 
mines data regularly to update the preference model. This 
approach doesn’t need any collaboration from user and is 
slower than the three previous approaches because there is 
no explicit user feedback and changes might not be 
detected until the next scheduled mining session. After 
every mining session, the discovered activities will include 
a mixture of new and previously-discovered activities. For 
new activities, we simply can add them to the HAM model. 
For previously existing patterns, if the pattern shows no 
change, then PAM applies the compensation effect to 
indicate observation of more evidence for this pattern. 
However, if the pattern shows some changes, we will add 
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the modified patterns to the model, while also preserving 
the original pattern, as there is no explicit evidence that 
this change is a permanent preference change. To achieve 
adaptation in this case, we will leave it to the compensation 
effect and decay functions to decide over time which 
version is more likely. The compensation effect will 
increase the value of the more frequently-observed version 
of the pattern while the decay function will be dominating 
for a less-observed pattern. As a result, the value of 
patterns that have not been observed for a long time will 
fall below the activity threshold σ; and will eventually be 
removed from the model. 
 If we denote the original pattern as P and the modified 
version of the pattern as C, then we can calculate the 
number of times the decay function should be applied for P 
to be dominated by C. Assume at time ti, pattern C is 
discovered for the first time and its potential value is 
assigned an initial value of Qi

C. After time ti, the decay 
function will periodically decrease the value of both 
patterns while Qi

C also increases each time C is observed. 
Therefore, P’s chance of being automated decreases while 
C’s chance increases due to the increase in its potential 
value. Even as C emerges it has an opportunity to be 
selected for automation as a recently-discovered pattern. 
The potential value for pattern P, Qu

P, after j applications 
of the decay function and at time tu, will be: 

θ
ε tQQ P

i
P
u

Δ∗
−=  (7) 

 We also know that in order for the original pattern to be 
perfectly forgotten, its potential value should be below an 
activity threshold, i.e. Q1

P< σ. Substituting Equation 7 into 
Q1

P< σ leads to: 

j
Q P

i <
−
ε
σ  

(8) 

 The above inequality shows the minimum number of 
times that the decay function should be applied to a pattern 
before it’s forgotten. At the same time, if we consider l 
observation-based learning cycles due to regular mining 
sessions, Qi

C will be changed as following: 
εα jrlQQ oo

C
i

C
u −+=  (9) 

 In order for Qi
C to have a value greater than the activity 

threshold, we require that Qu
C > σ. If we consider ∆T as an 

arbitrary time interval, and m as the period of regular 
mining (e.g. every week), then l can be defined in terms of 
m and ∆T, as ∆T/m. Substituting Equation 9 into Qu

C > σ 
and considering ∆T and m leads to: 

C
oo

Qj
Tr

m
1

*
−+

Δ
<

εσ
α  (10) 

 Equation 10 shows how frequently the PAM mining 
algorithm should be performed in order for the decay effect 
to be compensated by the reinforcement function. 

Generalizing to Similar Cases 
The above procedures showed how preference feedback 
can guide the automation of a specific activity, ai. This 

might raise a question regarding similar activities, such as 
activities that have the same structure, but different time 
constraints. To address this problem, we consider the 
degree of similarity between two activities as the degree to 
which we generalize user preference feedback. Here we 
focus on attributes of duration D, start time s and period P. 
The similarity, Θ, is defined as shown in Equation 11. 

PsD Δ+Δ+
=Θ

Δμ
1  (11) 

 In this equation, μΔD is defined to be the average 
difference between the durations of all of the events in the 
two activities of interest, Δs represents the average 
difference in start times, and ΔP represents the average 
period difference. We will use the similarity degree to 
determine to what extent to generalize the given user 
feedback. To use compensation equation for activity aj 
based on feedback given to a similar activity ak, we 
compute its preference value according to Equation 12: 

kj rr ∗Θ∗= β  (12) 

 In this equation, β is a tuning parameter that can adjust 
the degree of generalization.  

Experimental Results 
In order to evaluate CASAS’ ability to adapt to new 
activity preferences, we tested it on both synthetic and real 
data obtained from a smart home system. We hypothesize 
that CASAS can adapt to changes in resident behavior 
patterns as well as to explicit advice. To test the 
hypothesis, we designed a synthetic data generator that 
generates event data corresponding to a set of specified 
activity descriptions with a specified percentage of 
randomly interjected events to give the data realism. In 
addition to synthetic data, we evaluate CASAS on real-
world collected data from a physical smart environment 
test-bed at Washington State University. This physical test-
bed is equipped with motion sensors, rug sensors, light 
sensors, and controllers for the lamps (see Figure 2). 
 For our first experiment with synthetic data, we 
generated one month of synthetic data with six embedded 
activities (see Table 1). After FPAM and HAM constructed 
corresponding models of these activities, we highlighted 
the third activity to be monitored for changes. We then 
changed the activity description in the data generator such 
that all event durations were set to 7 minutes, instead of 5 
minutes. CASAS detected the changes accordingly by 
finding a new duration of 6.44 minutes, which is quite 
close to the actual 7 minute change.  The data generator 
does have an element of randomness, which accounts for 
the discrepancy between the specified and detected time 
change. In similar tests, PAM was also able to detect start 
time changes from 13:00 to 13:30, and structure changes 
(omission or addition). These results support our 
hypothesis that the CASAS provides the ability for the 
smart home to adapt to changes in resident preference 
patterns. 
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Figure 2  Sensor Layout of Washington State Univ. test-bed. 

Start 
Time 

Period 
(hourly) 

Events 

13:00 2 DoorLight, LeftDeskLamp 
13:30 3 WhiteboardLight, OpenDoor 
14:25 5 RightDeskLamp, WhiteboardLight  
14:55 2 LeftDeskLamp, OpenDoor, 

RightDeskLamp 
15:35 3 LeftDeskLamp, WhiteboardLight 
15:55 3 RightDeskLamp, DoorLight 

Table 1 Activities simulated by synthetic data generator. 

 In the next step, we tested CASAS on real world data 
using our smart environment test-bed. A volunteer 
participant entered the room and executed two different 
activities: 

 Turn on right lamp(1 min), perform random actions  
 Turn on left lamp(1 min), perform random actions 

The first activity was repeated 10 times over the course of 
two hours with random events in between. Then the 
participant highlighted the activity for monitoring and 
performed the second scripted version by changing the 
duration from 1 to 2 minutes. CASAS detected the duration 
change as 1.66 minutes.  The change was made to the 
correct parameter and in the correct direction, but did not 
converge on an accurate new value due to the detection of 
other similar patterns with different durations. These 
experiments validate that PAM can successfully adapt to 
resident’s preference changes even in real-world data. 
 We also empirically validated our theoretical analysis to 
see how fast original preference patterns will be replaced 
by modified versions. To evaluate this, we designed an 
experiment in which we generated two sets of synthetic 
data similar to the first experiment. We then validated the 
adaptation capability for different decay values and 
different initial potential value (see Figure 3). Our findings 

are consistent with our expectation, validating that PAM 
can successfully adapt to resident changes even in real-
world data. 
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Figure 3 Changes in decay rate. 

Conclusions 
In this paper we presented a method of adapting to user’s 
dynamic preferences. We introduced these concepts in the 
context of a smart home design and describe CASAS as a 
learning-based approach that can adapt according to its 
residents habits or advice. Our hypothesis was validated by 
our experiments in which CASAS successfully detected 
and adapted to the changes in resident preference patterns. 
In our ongoing work, we plan to add additional features 
such as voice recognition capability to increase CASAS’ 
ease of use, and to enable users to express their preferences 
regarding automations more easily.  
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