
Adapting to Resident Preferences in Smart Environments

Parisa Rashidi, Diane J. Cook

Washington State University
Pullman, WA
USA, 99163

{prashidi, cook}@eecs.wsu.edu

Abstract
In the past decade, smart home technologies have been a
topic of interest for many researchers with the aim of
automating daily activities. However, despite increasing
progress in this area, less attention has been paid to smart
environments that can adapt to changes in residents’
preferences over time. Here we introduce CASAS, an
adaptive smart home system that discovers and adapts to
changes in the resident’s preferences in order to generate
satisfactory automation policies. The adaptation capability
of CASAS is achieved by utilizing data mining methods as
well as learning strategies that adapt to the resident’s
explicit and implicit preference feedback. In this paper, we
present a description of the adaptation models employed by
CASAS together with the results of experiments applied to
both synthetic and real smart environment data.

Introduction
In recent years, smart homes have been a topic of interest
for many researchers with the aim of automating home
activities to achieve greater comfort, productivity, and
energy efficiency (Abowd 2005, Helal 2005, Youngblood
2007). In a smart home, networked sensors and controllers
try to assist residents' lives by acquiring and applying
knowledge about residents and their physical surroundings
(Cook 2004). The long-term goal of many smart home
projects is to automate resident interactions with the
environment that are repetitive or, in the case of
individuals with physical limitations, are difficult to
perform. To achieve a successful automation, it is
important to consider the resident’s preferences regarding
different aspects of automations, such as events and their
relative sequential order, each event’s start time, and its
duration. Unfortunately, despite progress in smart home
research, less attention has been paid to the design of a
smart home that can adapt to changes in the residents’
preferences over time.

One of the few works done in this area is a primitive
approach proposed by Vainio et al. (Vainio 2007), where a
fuzzy controller adjusts the weights of a few predefined
factors that determine whether performing a specific action
is in accordance with the user’s preferences or not, e.g.

Copyright © 200 , Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

turning on the lamp if the light level is less than a certain
amount. However, they do not consider the problem of
adapting to more complex sequential activities, and do not
discuss how such changes can be discovered from daily
activity data. In addition, they consider a set of predefined
factors, but in the real world, it is not possible to determine
such factors in advance.

In our work, we consider automation of sequential
complex activities that adapts to the user’s preference. Our
approach does not make any assumptions about the activity
structure or other underlying model parameters, but leaves
it completely to our algorithms to discover relevant
patterns. This significantly increases the flexibility of our
approach, particularly since we allow for different aspects
of the resident’s preference to be modeled, such as the
activity structure and sequence order, start time, and
duration. In addition, our model takes into account the
resident’s feedback by considering various levels of user
involvement; the resident can guide the system by
providing explicit preference feedback, or s/he can leave it
to the system to automatically discover changes in
preferences.

Input to CASAS consists of various sensor data
collected by the smart environment, such as motion
sensors, light sensors, and so forth. This data is mined by
our mining algorithm called FPAM to discover activity
patterns of interest for automation; and later these patterns
are modeled by our Hierarchal Activity Model (HAM) to
further utilize the underlying temporal and structural
preferences. To achieve preference adaptation, the
Preference Adaptation Miner (PAM) algorithm adapts to
any changes in those patterns and responds to user
guidance. The preference adaptation mechanism is based
on using four different mechanisms: direct manipulation,
guidance, request, and smart detection. Each method
requires a certain balance between user collaboration and
system autonomy, from no collaboration in smart detection
method to no autonomy in direct manipulation method.
Putting all the preference adaptation methods together, we
are able to provide an adaptive smart environment solution
which adapts to its residents’ preferences over time, and
which provides a wide range of collaboration and feedback
methods such that residents can choose to act proactively
or be passive. 8

79

 FPAM Model
CASAS’s first step to automate daily activities in a

smart home is to discover user preferences regarding
different aspects of automated activities. To achieve this,
our mining algorithm called the Frequent and Periodic
Activity Miner (FPAM) discovers patterns in the resident’s
daily activities that may provide a basis for automation.
FPAM also learns basic temporal information associated
with the patterns that later will be used by HAM to extract
more comprehensive temporal information. In our
discussion, we define an event as a single action such as
turning on the light, while an activity is a sequence of such
events, e.g. turning on the light – turning on coffee maker,
which is composed of two events. The events can represent
data generated by different sensors such as motion sensors
or by a device that is manipulated by a powerline
controller. Discovering how the resident performs these
activities in daily life facilitates dedication of the resident’s
preferences for home automation. We consider frequent
and periodic activities, as automating these activities
makes the environment responsive to the resident. Such
automation also removes the burden of manually
performing these long repetitive sequences, and opens up
the possibility for the environment agent to find better
ways of accomplishing tasks, such as a more energy-
efficient method for heating heavily-used portions of a
home. FPAM is able to find frequent and periodic activity
patterns with inexact periods, arbitrary length, and
predictable timing constraints. Such a flexible mining
method makes it easy to discover resident’s preferences
about structure, period and temporal constraints of
activities.

We assume that the input data is a sequence of event
tuples in the form of <di, vi, ti>, where i represents a single
event, di denotes the event’s data source (e.g., motion
sensor), vi denotes the state of the source (e.g., off, on), and
ti denotes the time that event i occurred. A window of size
ω (initialized to 2) is passed over the data and every
sequence of length equal to the window size, is recorded
together with its frequency, fi. (i.e., number of times the
sequence occurs in the dataset) and initial periodicity (i.e.,
regularity of occurrence, such as every three hours)

After the initial frequent and periodic sequences have
been identified, FPAM incrementally builds candidates of
larger size. Instead of scanning the data again, FPAM
extends sequences that made the cutoff in the previous
iteration by one event that occurs before or after the current
sequence. FPAM continues to increase the window size
until no more frequent or periodic sequences within the
new window size are found. Drawing on results from
information theory, we evaluate the frequency of a

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sequence based on its ability to compress the dataset, by
replacing occurrences of the pattern with pointers to the
pattern definition (Rissanen 1989). We compute the
compression value according to Equation 1, where fa
represents frequency of sequence a, t represents the input
data length in hours and C represents the compression
threshold. Therefore for a sequence to be considered as
frequent, the following condition should hold:

C
t

fa a >
∗

 (1)

 To calculate the periodicity of each pattern, FPAM
computes elapsed time between consecutive occurrences of
the pattern. Two periodicity granules are considered:
coarse-grained expressed in number of days and fine-
grained expressed in number of hours. To construct
periods, a lazy clustering method is used; if a sequence’s
period does not match previous periods (with a tolerance of
one hour for fine-grained and one day for coarse-grained
periods), a new candidate period is constructed. If the
periodicity of a sequence is consistent a threshold number
of times, the pattern is reported as periodic.

Hierarchical Activity Model: HAM
After activity structure and periods have been discovered
by FPAM, the sequences will be organized in a Hierarchal
Activity Model (HAM) structure, which filters out
activities according to two temporal granule levels of day
and hour (see Figure 1). Such an organization helps to
deduce temporal preferences from basic temporal
information provided by FPAM in form of timestamps.
HAM also captures temporal relationships between events
in an activity by explicitly representing sequence ordering
in a Markov model. Each activity will be placed in a HAM
leaf node according to its day and time of occurrence. For
each activity at each node, we describe the start time and
the duration of each individual event using a normal
distribution that will be updated every time FPAM mines
newly-generated data. If an activity is located in different
time/day nodes within the HAM model, multiple Gaussian
distributions for that activity will be computed, allowing
HAM to more accurately approximate the start time and
duration values, by using multiple simple local functions.
 After the hierarchical model is constructed, HAM
considers appropriate activities to be automated. Such
automation should reflect our preference adaptation policy,
such that recently discovered activities will not miss their
chance of being selected for automation simply because
enough time has not passed to allow them be explored by
the learning algorithm. To achieve this, we require the
following conditions to hold: 1) the highest-likelihood
activities are given a greater chance of being automated, 2)
less likely activities retain a chance of being automated
(especially recently discovered ones) and 3) the temporal
relationships between activities are preserved. CASAS is
not currently designed to handle the intricacies associated
with interleaving multiple automation activities that

80

overlap in time. As a result, not all actions that appear in
the hierarchy for a particular time can necessarily be
automated.

Figure 1. Example HAM model.

 HAM selects activities for automation that maximize the
expected utility (Sutton 1998), as shown:

)()()(AQAPAEU T= (2)

 In Equation 2, Q(A) is A’s potential value which is the
same for all of its component events, and PT(A) is the total
occurrence probability of activity A, defined as:

)()()()(APAPAPAP rtdT ××= (3)

 In the above equation, Pd(A), the daily probability,
reflects the occurrence probability of A on a given day of
the week. The time probability, Pt(A), reflects the
occurrence probability of A in a given time interval (node);
and the relative probability, Pr(A), reflects the occurrence
probability, with respect to the other activities that fall
within the same time node. The daily and time probabilities
are estimated using frequencies computed by FPAM and
the relative probability is computed using Pdi and Pti.
 To select an activity, CASAS balances between
exploration and exploitation where exploring potential
automated activities allows for potential improvement of
the smart home, and exploitation avoids user frustration
due to too many wrong choices. The probability of
selecting a particular activity A for automation is calculated
according to Equation 4. Here EU(j) is the expected utility
of activity j as defined before, β*D(A) is a term that favors
recently-added activities, D(A) represents how recently
activity A occurred (as a reciprocal of the number of days
since its discovery); β adjusts the relative importance of
recently-added activities vs. highly expected activities; and
k is a parameter which initially is set high to promote
exploration, but over time decreases, to allow for
exploitation of stabilized automations.

∑ ∗+

∗+

=

j

jDjEU

ADAEU

k
kAP

)()(

)()(

)(
β

β

 (4)

Dynamic Adaptation
Most smart environments assume a static learned model,
i.e., once the resident’s activity preference patterns have
been learned, no changes are applied to maintain the model
over time. However, as we know, humans are likely to
change their preferences over time, depending on many
factors, such as social relations, seasonal and weather
conditions and even emotional states. Therefore, a static
model can not serve the purpose of a long term solution for
a smart home; instead, we need to find a way to adapt to
the changes that occur over time. Such adaptation should
occur in response to resident’s preferences, either by
observing behavior changes, or by adopting explicit
advices given by users.
 CASAS achieves adaptation based on the resident’s
explicit preference feedback, provided through the CASAS
user interface, or based on implicit preference feedback
which can be described as any alteration in the resident’s
habits and lifestyle. For example, consider a resident that
used to turn on the coffee maker every day at 7:30am, but
later changes his habit and turns it on at 6:30am. This is an
example of implicit user preference feedback that should
be detected by CASAS.
 We employ four different adaptation mechanisms to
consider the resident’s explicit and implicit preference
feedback: direct manipulation, guidance, request and smart
detection. In direct manipulation, residents provide the
system with the most explicit form of preference feedback,
by manipulating automated activities using the CASAS
user interface. Using the guidance method, residents guide
CASAS by rating the automated activities based on their
preferences on scale of 1..5, thus providing CASAS with
explicit feedback or advice. With the request method,
residents can highlight any activity to be monitored by
CASAS for possible changes, therefore providing a
mixture of explicit and implicit preference feedback. In the
last approach, called smart detection, CASAS utilizes the
most implicit form of feedback by monitoring resident
activities and updating the HAM model. The difference
between the last two methods is first how fast the changes
will be detected; and second the required amount of user
interaction, as smart detection method doesn’t require any
user interaction. Using the request method, the change
detection process starts immediately and hence residents
do not have to wait for the regular mining schedule.
CASAS uses all of these mechanisms to provide a flexible,
user-centric solution to the dynamic preference adaptation
problem that allows for various degrees of resident
involvement. Residents can choose any of above methods
to provide feedback to CASAS, and can choose to act
proactively or be passive.
 For every activity, we maintain a potential value, Q,
which reflects the amount of evidence against or for an
activity as being frequent or periodic, in other words the
degree to which it should be considered for automation.
The potential value can be increased or decreased through
a compensation effect or a decay effect, as will be
described. If potential value falls below a certain activity

81

threshold, the activity is discarded from the model, in other
words it will be forgotten. Maintaining a potential value for
each discovered activity can help us distinguish transient
changes from long-term changes that still might be
accompanied by a noise element. The potential value is
increased by using the following formula:

)(rQQ ∗+= α (5)

 In the above equation, r∈ [-1...+1] denotes the
preference value, and]1,0[∈α denotes the learning rate.
To simulate the overriding nature of learning in direct
manipulation, and guidance methods, we set the learning
rate to a relatively high value; while for request and smart
detection methods we set it to a small value to simulate
their gradual history-preserving nature. Note that when
updating the potential value, we do not differentiate
between different events that comprise an activity and
consider it as a whole; therefore we assign a single value to
an activity.
 In addition to the compensation effect, we also employ a
decay effect which subtracts a small value ε from all
activities’ values at each time step θ. Applying decay
function, the value of any activity during an arbitrary time
interval Δt is decreased by:

θ
ε tQQ Δ∗

−=
(6)

 The decay effect allows for those activity patterns that
have not been perceived over a long period of time to
descend toward a vanishing value over time, or in an
intuitive sense to be forgotten. This helps to adapt to
changing preferences of residents. The effect of the decay
function is compensated through compensation effect in a
way that the potential value remains bounded.

Explicit Preference Feedback
As we already mentioned, residents can directly
manipulate automated activities by changing event start
times and durations to their preferred values. They can also
add activities, delete activities, or modify entire activities
by adding, deleting, or reorder the events that comprise the
activity. Residents can also designate an activity as a
priority activity that overrides other activities. We call this
preference feedback method as direct manipulation
approach, which involves the highest degree of user
collaboration. Considering given complexity of each
activity’s definition, it is essential to provide the user with
adequate guidance. In our system, whenever a user wants
to define or modify an activity, s/he is guided through a
series of wizard dialogs where each dialog asks the
appropriate question based on previous steps and in each
step, a brief description about that step is provided in order
to help users better understand the underlying conceptual
model.
 A less demanding yet collaborative approach, called
guidance method, works based on rating of the automated
activities by users on a scale of 1 to 5, where 5 represents
that the resident likes the automated activity. These ratings
are mapped into corresponding preference values, to

increase or decrease potential value of an activity, and help
CASAS decide what activities to automate next time.

Implicit Guidance
In this method, whenever an activity is highlighted to be
monitored for any changes in user preferences, a mining
algorithm called Preference Adaptation Mining (PAM)
analyzes recent event data and looks for any changes in the
preferences pattern, such as the start time, durations,
periods, or the activity structure (the component events
with their temporal relationships). Without loss of
generality, we refer to two different categories of
preference changes: changes that preserve the structure and
changes that alter the structure.
 Structure change is detected by finding new patterns that
occur during the same times we expect the old pattern to
occur; assuming that start time can act as a discriminative
attribute. First, PAM looks for an activity pattern, a, such
that its start time, sa, is contained within the interval Δδ =
μa ± σa, where μo and σa denote the mean and standard
deviation of the original pattern’s start time distribution.
PAM is looking for different activity patterns within the
same start time interval in which we expect to see the
original activity pattern, and marks the beginning of all
such intervals. It then moves a sliding window of size ω
(initially set to 2) over the interval and incrementally
increases the window size at every iteration. The window
size does not increase when no more frequent or periodic
patterns of length ω can be found. PAM does not examine
all of the data, rather just the marked points. A frequent
pattern can easily be extended beyond the marked point, as
we require only its start time to be contained within the
marked interval. This process results in finding a new
pattern which may be longer, shorter, or have different
properties than the original one.
 In the case where structure is preserved, we first mark
all the occurrences of the original activity in the data, and
based on these occurrences calculate properties such as
new durations, new start times or new periods. After
results from both cases have been collected, the PAM
algorithm reports the list of changes that can be accepted or
rejected by the user.

Smart Detection
In the smart detection method, CASAS automatically
mines data regularly to update the preference model. This
approach doesn’t need any collaboration from user and is
slower than the three previous approaches because there is
no explicit user feedback and changes might not be
detected until the next scheduled mining session. After
every mining session, the discovered activities will include
a mixture of new and previously-discovered activities. For
new activities, we simply can add them to the HAM model.
For previously existing patterns, if the pattern shows no
change, then PAM applies the compensation effect to
indicate observation of more evidence for this pattern.
However, if the pattern shows some changes, we will add

82

the modified patterns to the model, while also preserving
the original pattern, as there is no explicit evidence that
this change is a permanent preference change. To achieve
adaptation in this case, we will leave it to the compensation
effect and decay functions to decide over time which
version is more likely. The compensation effect will
increase the value of the more frequently-observed version
of the pattern while the decay function will be dominating
for a less-observed pattern. As a result, the value of
patterns that have not been observed for a long time will
fall below the activity threshold σ; and will eventually be
removed from the model.
 If we denote the original pattern as P and the modified
version of the pattern as C, then we can calculate the
number of times the decay function should be applied for P
to be dominated by C. Assume at time ti, pattern C is
discovered for the first time and its potential value is
assigned an initial value of Qi

C. After time ti, the decay
function will periodically decrease the value of both
patterns while Qi

C also increases each time C is observed.
Therefore, P’s chance of being automated decreases while
C’s chance increases due to the increase in its potential
value. Even as C emerges it has an opportunity to be
selected for automation as a recently-discovered pattern.
The potential value for pattern P, Qu

P, after j applications
of the decay function and at time tu, will be:

θ
ε tQQ P

i
P
u

Δ∗
−= (7)

 We also know that in order for the original pattern to be
perfectly forgotten, its potential value should be below an
activity threshold, i.e. Q1

P< σ. Substituting Equation 7 into
Q1

P< σ leads to:

j
Q P

i <
−
ε
σ

(8)

 The above inequality shows the minimum number of
times that the decay function should be applied to a pattern
before it’s forgotten. At the same time, if we consider l
observation-based learning cycles due to regular mining
sessions, Qi

C will be changed as following:
εα jrlQQ oo

C
i

C
u −+= (9)

 In order for Qi
C to have a value greater than the activity

threshold, we require that Qu
C > σ. If we consider ∆T as an

arbitrary time interval, and m as the period of regular
mining (e.g. every week), then l can be defined in terms of
m and ∆T, as ∆T/m. Substituting Equation 9 into Qu

C > σ
and considering ∆T and m leads to:

C
oo

Qj
Tr

m
1

*
−+

Δ
<

εσ
α (10)

 Equation 10 shows how frequently the PAM mining
algorithm should be performed in order for the decay effect
to be compensated by the reinforcement function.

Generalizing to Similar Cases
The above procedures showed how preference feedback
can guide the automation of a specific activity, ai. This

might raise a question regarding similar activities, such as
activities that have the same structure, but different time
constraints. To address this problem, we consider the
degree of similarity between two activities as the degree to
which we generalize user preference feedback. Here we
focus on attributes of duration D, start time s and period P.
The similarity, Θ, is defined as shown in Equation 11.

PsD Δ+Δ+
=Θ

Δμ
1 (11)

 In this equation, μΔD is defined to be the average
difference between the durations of all of the events in the
two activities of interest, Δs represents the average
difference in start times, and ΔP represents the average
period difference. We will use the similarity degree to
determine to what extent to generalize the given user
feedback. To use compensation equation for activity aj
based on feedback given to a similar activity ak, we
compute its preference value according to Equation 12:

kj rr ∗Θ∗= β (12)

 In this equation, β is a tuning parameter that can adjust
the degree of generalization.

Experimental Results
In order to evaluate CASAS’ ability to adapt to new
activity preferences, we tested it on both synthetic and real
data obtained from a smart home system. We hypothesize
that CASAS can adapt to changes in resident behavior
patterns as well as to explicit advice. To test the
hypothesis, we designed a synthetic data generator that
generates event data corresponding to a set of specified
activity descriptions with a specified percentage of
randomly interjected events to give the data realism. In
addition to synthetic data, we evaluate CASAS on real-
world collected data from a physical smart environment
test-bed at Washington State University. This physical test-
bed is equipped with motion sensors, rug sensors, light
sensors, and controllers for the lamps (see Figure 2).
 For our first experiment with synthetic data, we
generated one month of synthetic data with six embedded
activities (see Table 1). After FPAM and HAM constructed
corresponding models of these activities, we highlighted
the third activity to be monitored for changes. We then
changed the activity description in the data generator such
that all event durations were set to 7 minutes, instead of 5
minutes. CASAS detected the changes accordingly by
finding a new duration of 6.44 minutes, which is quite
close to the actual 7 minute change. The data generator
does have an element of randomness, which accounts for
the discrepancy between the specified and detected time
change. In similar tests, PAM was also able to detect start
time changes from 13:00 to 13:30, and structure changes
(omission or addition). These results support our
hypothesis that the CASAS provides the ability for the
smart home to adapt to changes in resident preference
patterns.

83

Figure 2 Sensor Layout of Washington State Univ. test-bed.

Start
Time

Period
(hourly)

Events

13:00 2 DoorLight, LeftDeskLamp
13:30 3 WhiteboardLight, OpenDoor
14:25 5 RightDeskLamp, WhiteboardLight
14:55 2 LeftDeskLamp, OpenDoor,

RightDeskLamp
15:35 3 LeftDeskLamp, WhiteboardLight
15:55 3 RightDeskLamp, DoorLight

Table 1 Activities simulated by synthetic data generator.

 In the next step, we tested CASAS on real world data
using our smart environment test-bed. A volunteer
participant entered the room and executed two different
activities:

 Turn on right lamp(1 min), perform random actions
 Turn on left lamp(1 min), perform random actions

The first activity was repeated 10 times over the course of
two hours with random events in between. Then the
participant highlighted the activity for monitoring and
performed the second scripted version by changing the
duration from 1 to 2 minutes. CASAS detected the duration
change as 1.66 minutes. The change was made to the
correct parameter and in the correct direction, but did not
converge on an accurate new value due to the detection of
other similar patterns with different durations. These
experiments validate that PAM can successfully adapt to
resident’s preference changes even in real-world data.
 We also empirically validated our theoretical analysis to
see how fast original preference patterns will be replaced
by modified versions. To evaluate this, we designed an
experiment in which we generated two sets of synthetic
data similar to the first experiment. We then validated the
adaptation capability for different decay values and
different initial potential value (see Figure 3). Our findings

are consistent with our expectation, validating that PAM
can successfully adapt to resident changes even in real-
world data.

Pattern adaptation

0
10

20
30

40
50

60
70

0 0.1 0.2 0.3 0.4 0.5

Decay Rate

Re
qu

ir
ed

 d
ec

ay
 e

ffe
ct

s

Analytical Results
Experimental Results

Figure 3 Changes in decay rate.

Conclusions
In this paper we presented a method of adapting to user’s
dynamic preferences. We introduced these concepts in the
context of a smart home design and describe CASAS as a
learning-based approach that can adapt according to its
residents habits or advice. Our hypothesis was validated by
our experiments in which CASAS successfully detected
and adapted to the changes in resident preference patterns.
In our ongoing work, we plan to add additional features
such as voice recognition capability to increase CASAS’
ease of use, and to enable users to express their preferences
regarding automations more easily.

References
G.D. Abowd and E.D. Mynatt. Designing for the human

experience in smart environments. In Smart
Environments: Technology, Protocols nd Applications,
pages 153-174, 2005.

R. Agrawal and R. Srikant. Mining Sequential Patterns,
Proc. 11th Int'l Conf. Data Eng., pp. 3-14, 1995.

D. Cook and S. Das. Smart Environments: Technology,
Protocols and Applications. Wiley, 2004.

S. Helal, W. Mann..The Gator Tech Smart House: A
programmable pervasive space. IEEE Computer,
38(3):50-60, 2005.

R. Sutton, A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

J. Rissanen. Stochastic Complexity in Statistical Inquiry.
Series in Computer Science-Vol. 15. World Scientific,
Singapore, 1989.

V Vainio, A.-M., Vanhala, J. Continuous-time Fuzzy
Control and Learning Methods. In: Proceedings of the
7th International Symposium on Communications and
Information Technologies, ISCIT 2007. October 16.-
19., 2007. Sydney, Australia.

G.M. Youngblood and D.J. Cook. Data mining for
hierarchical model creation.IEEE Transactions on
Systems, Man, and Cybernetics, Part C, 37(4):1-12,
2007.

84

