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Abstract

The problem of learning rankings is receiving increased
attention from several research communities. In this pa-
per we empirically evaluate an adaptation of the algo-
rithm of learning decision trees for rankings. Our ex-
periments are carried out on some metalearning prob-
lems, which consist of relating characteristics of learn-
ing problems to the relative performance of learning al-
gorithms. We obtain positive results which, somewhat
surprisingly, indicate that the method predicts more ac-
curately the top ranks.

Introduction
The prediction of the class to which an object (i.e., an ex-
ample) belongs based on a set of measures that describe it
(i.e., attributes) is a problem investigated in several scientific
areas, including pattern recognition, statistics and machine
learning (Mitchell 1997). As an example, the objects could
be customers, the attributes could be socio-demographic
variables (such as age or income) and the class could be the
product that he/she will buy, from the portfolio of a com-
pany. Many different applications exist in areas such as
medicine, retail, banking and finance, e-business and gov-
ernment.

Many algorithms exist to induce from existing data, mod-
els for prediction problems, which can be referred to as
learning algorithms. One of the simplest and most success-
ful learning algorithms are decision trees. Decision trees
represent a set of classification rules from the root node to
the terminal nodes (leaves), which provide the classification
for the corresponding objects or examples. Each node of the
tree specifies a test of some attribute used to describe the ex-
ample, and each branch of the node corresponds to one of
the possible values for this attribute. The prediction for an
example is generated by first applying the test of the root
node of the tree and, based on the value for the correspond-
ing attribute, following one of the branches of the node. This
process is repeated for the sub-tree rooted at the node the
branch leads to. Generally, a decision tree is a disjunction of
conjunctions of restrictions on the value of attributes. Each
path from the root to a leaf node is a combination of tests of
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attributes, and the tree is a disjunction of these conjunctions
(Mitchell 1997).

In some cases, the prediction may be more useful if pro-
vided in the form of ranking. In the example above, rather
than recommending a single product, it may be more use-
ful to provide a ranking of the products in decreasing order
of expected customer preference, i.e., the probability that
he/she will buy it. Other examples include medical diagno-
sis, prediction of diseases in agricultural products, predic-
tion of the ranking of financial analysts and metalearning.

In general, a ranking represents a preference relation on
a set of items (Fürnkranz and Hüllermeier 2005). In the
case of predicting the ranking of financial analysts, analyst
A is preferable to analyst B if the A’s recommendations have
been more accurate than the recommendations of analyst B.

Due to its simplicity and popularity, it is no surprise that
decision trees were one of the first algorithms adapted for the
task of learning rankings (Todorovski, Blockeel, and Dze-
roski 2002). A ranking tree is a decision tree where the
leaves do not predict one from a set of possible class val-
ues but, instead, predict a ranking of the set of class values.
The adaptation of this algorithm to the task of predicting
rankings implies several adaptation, including the splitting
criterion and generation of the prediction.

In this paper, we empirically evaluate ranking trees on the
problem of metalearning (Brazdil, Soares, and Costa 2003).
This problem consists of providing recommendations con-
cerning which algorithm(s) will obtain the best results on
learning problems.

This paper is structured as follows. We start by present-
ing the problem of recommending learning algorithms and
discuss why it can be better handled as a ranking problem.
Next, we describe the problem of learning rankings and dis-
cuss three evaluation measures. The following section de-
scribes the ranking trees algorithm, identifying the issues
involved in its adaptation for this purpose. The results are
presented in the following section the paper ends with some
conclusions and ideas future work.

Recommendation of Learning Algorithms
Many different learning algorithms are available to data an-
alysts nowadays. For instance, decision trees, neural net-
works, linear discriminants, support vector machines among
others can be used in classification problems. The goal of
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a1 a2 a3 a4

d1 90% 61% 82% 55%
d2 84% 86% 60% 79%

Table 1: Accuracy of four learning algorithms on two clas-
sification problems.

data analysts is to use the one that will obtain the best perfor-
mance on the problem at hand. Given that the performance
of learning algorithms varies for different datasets, data an-
alysts must select carefully which algorithm to use for each
problem, in order to obtain satisfactory results.

Therefore, we can say that a performance measure estab-
lishes a preference relation between learning algorithms for
each problem. For instance, Table 1 illustrates the prefer-
ence relations between four classification algorithms (ai) on
two datasets (dj) defined by estimates of the classification
accuracy of those algorithms on those datasets.

Selecting the algorithm by trying out all alternatives is
generally not a viable option, as explained in (Todorovski,
Blockeel, and Dzeroski 2002):

In many cases, running an algorithm on a given task
can be time consuming, especially when complex tasks
are involved. It is therefore desirable to be able to pre-
dict the performance of a given algorithm on a given
task from description and without actually running the
algorithm.

The learning approach to the problem of algorithm recom-
mendation consists of using a learning algorithm to model
the relation between the characteristics of learning problems
(e.g., application domain, number of examples, proportion
of symbolic attributes) and the relative performance of a set
of algorithms (Brazdil, Soares, and Costa 2003). We refer to
this approach as metalearning because we are learning about
the performance of learning algorithms.

Metalearning approaches commonly cast the algorithm
recommendation problem as a classification task. Therefore,
the recommendation provided to the user consists of a sin-
gle algorithm. However, this is not the most suitable form of
recommendation. Although the computational cost of exe-
cuting all the algorithms is very high, it is often the case that
it is possible to run a few of the available algorithms. There-
fore, it makes more sense to provide recommendation in the
form of a ranking. The user can then execute the algorithms
in the suggested order, until no computational resources (or
time) are available.

Learning Rankings
The problem of predicting rankings has similarities with the
problem of supervised classification. In classification we
have a set of examples, caracterized by attributes and each
one is assigned to one of a set of classes. Given a new exam-
ple, described by the values of the attributes, the objective
in supervised classification is to predict the class it belongs
to. On the other hand, in ranking the goal is to predict the
order of the classes as applicable to each example. Thus, the
input to a problem of learning rankings is a set of examples

as described by a set of attributes and with a known ranking
of the classes (the target ranking). The goal is to obtain a
model that, given a new example, generates a ranking of all
the classes (or items).

In general, a ranking represents a preference function over
a set of items. Therefore, given a set of n items,

X = (X1, X2, ..., Xn−1, Xn)
we define a ranking as a vector,

R = (R1, R2, ..., Rn−1, Rn)
where Ri is the rank of item Xi and the item with rank Ri

is preferred to item with rank Rj if Ri < Rj (Soares 2004).

A number of methods have been proposed for learning
rankings (Fürnkranz and Hüllermeier 2005). Some of these
methods are based on existing learning algorithms such as
the k-Nearest Neighbors (KNN) (Brazdil, Soares, and Costa
2003) and Decision Trees (Todorovski, Blockeel, and Dze-
roski 2002), which is the method tested in this work.

The generalization ability of ranking methods, i.e., their
ability to accurately predict the rankings on unseen exam-
ples, can be estimated using the same strategies that are used
for other learning problems. Here we have used Leave-one-
out Cross Validation, which consists of iteratively, for each
example, computing the accuracy of the prediction made for
the selected example of a model obtained on all the remain-
ing examples (Witten and Frank 2000).

We assess the accuracy of the predictions by compar-
ing the ranking predicted by the method for a given ex-
ample with the corresponding target ranking. In classifica-
tion problems there is a natural measure of accuracy. The
classifier provides a class for each example: if it is cor-
rect, it is counted as a success; otherwise, it is counted
as a mistake. Thus, the accuracy is the proportion of cor-
rect predictions relative to the number of examples (Witten
and Frank 2000). We have used three measures of rank-
ing accuracy: Spearman’s Rank Correlation Coefficient, the
Weighted Rank Correlation coefficient and the Log Ranking
Accuracy which are presented below.

Spearman Coefficient (CS)
Spearman’s rank correlation coefficient, rS , has been pro-
posed in the early 20th century by Charles Spearman and is
given by the expression:

rS = 1−
6

∑n
i=1(R(Xi)−R(Yi))2

n3 − n
(1)

where X and Y are two sets of n values and R(Xi) repre-
sents the rank of element i in the series X . Nothing is as-
sumed about the distribution of values of the variables. The
coefficient simply evaluates the monotonicity of two sets of
values, i.e., if their variations are related. If they tend to in-
crease or decrease together, the variables are positively cor-
related. However, if one tends to increase while the other
decreases then they are negatively correlated. This is more
general than other coefficients, such as Pearson’s because it
does not assume that the relationship between the two vari-
ables is represented by a particular type of function (Neave
and Worthington 1992).
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The expression above is valid only if there are no ties
(the same numerical value in two or more observations), al-
though in the case of a small number of ties it can still be
applied (after using average ranks for the tied observations).
If the number of ties is very large, then it is better to use
the expression of Pearson’s correlation coefficient of the two
vectors of ranks, as this is an alternative way of finding the
Spearman’s coefficient in all situations.

rS(X, Y ) =

∑n

i=1
(R(Xi)− ¯R(Xi))(R(Yi)− ¯R(Yi))√∑n

i=1
(R(Xi)− ¯R(Xi))2

∑n

i=1
(R(Yi)− ¯R(Yi))2

(2)

It is, however, computationally less efficient that the one
above.

Weighted Rank Correlation (WRC)
Given a ranking of learning algorithms, it can be expected
that the higher an algorithm is ranked, the higher the proba-
bility that it will be executed by the user. Similar scenarios
are expected in other ranking applications. Generally, this is
true in ranking problems where the prediction is only used
as a recommendation. Therefore, the evaluation of rank-
ing algorithms should assign greater importance to higher
ranks. However, Spearman’s coefficient treats all ranks
equally. An alternative coefficient is the Weighted Rank
Correlation Coefficient (Pinto da Costa and Soares 2005;
da Costa and Roque 2006). Let d2

i = (R(Xi) − R(Yi))2
and

W 2
i = d2

i ((n−R(Xi) + 1) + (n−R(Yi) + 1)) (3)

The first term of this product d2
i represents the quadratic

error of rank, exactly as in rS , and represents the distance
between R(Xi) and R(Yi). The second term weighs the
error of rank by the importance of the two ranks involved
R(Xi) and R(Yi). Based on these expressions, the Weighted
Rank Correlation coefficient is defined as:

rW (X, Y ) = 1−
6

∑n
i=1 W 2

i

n4 + n3 − n2 − n
(4)

Log Ranking Accuracy (LRA)
Another weighted measure of accuracy, that gives even more
importance to higher ranks than rW is the Log Ranking Ac-
curacy (Soares 2004):

rlog(X, Y ) = 1− 2 ∗
6
∑n

i=1
log1+R(Xi)(1 + R(Xi)− R(Yi))

2)∑n

i=1
log1+i(1 + (i− (n− i + 1))2)

(5)

Ranking Trees
One of the advantages of tree-based models is how they can
clearly express information about the problem, because their
structure is relatively easy to interpret even for people with-
out a background on learning algorithms. It is also possible
to obtain information about the importance of the various
attributes for the prediction depending on how close to the
root they are used. The Top-Down Induction of Decision
Trees (TDIDT) algorithm is commonly used for induction
of decision trees (Mitchell 1997). It is a recursive partition-
ing algorithm that iteratively splits data into smaller subsets

Figure 1: TDIDT algorithm.

which are increasingly more homogeneous in terms of the
target variable (Figure 1).

It starts by determining the split that optimizes a given
splitting criterion. A split is a test on one of the attributes
that divides the dataset into two disjoint subsets. For in-
stance, given a numerical attribute A2, a split could be
A2 ≥ 5. One of the problems with the most simple ver-
sion of the TDIDT algorithm is that it only stops when the
nodes are pure, i.e., when the value of the target attribute is
the same for all examples in the node. This usually leads
the algorithm to overfit, i.e., to generate models that fit not
only to the patterns in the data but also to the noise. One
approach to address this problem is to introduce a stopping
criterion in the algorithm that tests whether the best split is
significantly improving the quality of the model. If not, the
algorithm stops and returns a leaf node. This node is repre-
sented by the prediction that will be made for new examples
that fall into that node. This prediction is generated by a
rule that solves potential conflicts in the set of training ex-
amples that are in the node. In classification, the prediction
rule is usually the most frequent class among the training
examples. If the stopping criterion is not verified, then the
algorithm is executed recursively for the subsets of the data
obtained based on the best split.

An adaptation of the TDIDT algorithm for the problem of
learning rankings has recently been proposed (Todorovski,
Blockeel, and Dzeroski 2002), called Ranking Trees. This
algorithm is based on the Clustering Trees algorithm (Bloc-
keel, Raedt, and Ramon 1998). Adaptation of this algorithm
for ranking involves a few issues, including the splitting cri-
terion, the stopping criterion and the prediction rule. Before
discussing these issues, we note that a training example in
the problem of learning rankings is described using a set
of m attributes (A1, A2, . . . , Am) and is associated with a
ranking (R1, R2, . . . , Rn) as defined earlier.

Splitting Criterion
The splitting criterion is a measure that quantifies the quality
of a given partition of the data. It is usually applied to all
the possible splits of the data that can be made based on
individual tests of the attributes.

In Ranking Trees the goal is to obtain leaf nodes that con-
tain examples with target rankings as similar between them-
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Attribute Condition Negated condition
values rank corr. values rank corr.

A1 a 0.3 b, c -0.2
b 0.2 a, c 0.1
c 0.5 a, b 0.2

A2 < 5 -0.1 ≥ 5 0.1

Table 2: Illustration of the splitting criterion

selves as possible. To assess the similarity between the rank-
ings of a set of training examples, we compute the mean cor-
relation between them, using Spearman’s correlation coeffi-
cient. The quality of the split is given by the weighted mean
correlation of the values obtained for the subsets, where the
weight is given by the number of examples in each subset.

The splitting criterion of ranking trees is illustrated both
for nominal and numerical attributes in Table 2. The nom-
inal attribute A1 has three values (a, b and c). Therefore,
three splits are possible. For the numerical attribute A2, a
split can be made in between every pair of consecutive val-
ues. In this case, the best split is A1 = c, with a mean
correlation of 0.5 for the training examples that verify the
test and a mean correlation of 0.2 for the remaining, i.e., the
training examples for which A1 = a or A1 = b.

Stopping Criterion
The stopping criterion is used to determine if it is worth-
while to make a split or if there is a danger of overfitting.
In the original implementation of Ranking Trees the crite-
rion is not described. Here we define that a split should only
be made if the similarity between examples in the subsets
should increase significantly. Let Sparent be the similarity
between the examples in the parent node, D, and Ssplit the
weighted mean similarity in the subsets obtained with the
best split. The stopping criterion is defined as follows:

(1 + Sparent) ≥ γ(1 + Ssplit) (6)

Note that the significance of the increase in similarity is con-
trolled by the parameter γ

Prediction Rule
The prediction rule is a method to generate a prediction from
the (possibly conflicting) target values of the training exam-
ples in a leaf node. In Ranking Trees, the method that is used
to aggregate the rankings that are in the leaves is based on
the mean ranks of the items in the training examples that fall
into the corresponding leaf. Table 3 illustrates the prediction
rule used in this work.

Experimental Results
We empirically tested the Ranking Trees algorithm on some
ranking problems obtained from metalearning applications.
The value of the γ parameter used was 0.995. This choice
was based on the number of nodes generated. Figure 2
shows that lower values will generally lead to trees with a
single node. On the other hand, for γ > 1 (i.e., when splits

Ranking R1 R2 R3 R4

e1 1 3 2 4
e2 2 1 4 3
Mean rank 1.5 2 3 3.5
Predicted 1 2 3 4

Table 3: Illustration of the prediction rule, where ei repre-
sents training example i

Figure 2: Variation of the number of leaves with the value
of γ.

generating nodes that are less homogeneous than the par-
ent may be accepted), the number of leaves is close to the
number of examples of the datasets, indicating that there is
overfitting. For comparison purposes, the k-Nearest Neigh-
bor (KNN) algorithm, which was previously applied on the
same problems was also implemented (Brazdil, Soares, and
Costa 2003). Based on the results reported in that work,
we used a single neighbor (k = 1). Additionally, we com-
pared the results with a simple baseline, the default rank-
ing, which is the mean ranking over all training examples
(Brazdil, Soares, and Costa 2003), which is essentially the
application of the decision rule on all the training rankings.
The code for all the examples in this paper has been written
in R (www.r-project.org).

The performance of the methods was estimated using
leave-one-out because of the small size of the datasets. Both
algorithms were evaluated using the three ranking accuracy
measures described earlier. However, given that the re-
sults obtained with Spearman’s correlation coefficient and
the Weighted Rank coefficient are similar, we only present
the former.

Datasets
We used the following meta-learning problems in our exper-
iments:

• Classification: these data represent the performance of ten
algorithms on a set of 57 classification tasks (datasets).
The metafeatures describing the datasets are based on
(Henery 1994) and (Kalousis 2002). The same authors
also provide descriptions of the meta-features in the other
two sets, referred to as Met- and Stat-set.
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• Regression: these data represent the performance of nine
algorithms on a set of 42 regression tasks (datasets). Also
in this case, two different sets of metafeatures were used.

• SVM: these data represent the performance of different
variants of the Support Vector Machines algorithm on the
same 42 regression datasets as in the previous set (Soares,
Brazdil, and Kuba 2004). Two sets of metafeatures were
also used in this metalearning problem.

Results and Discussion
Comparing ranking trees with the KNN algorithm in terms
of Spearman’s coefficient (CS), we observe that the latter
generally obtains better results (Figure 3). This may be ex-
plained with the smal size of the dataset (a few dozen ex-
amples), which makes the induction of a model with good
generalization abilities hard. This is also supported by pre-
vious results, in which the use of KNN on these problems
with larger values of k leads to worse results (Soares 2004).
On the other hand, these results are somewhat contradic-
tory with a previous comparison between ranking trees and
KNN, in which better accuracy is reported for the former
algorithm (Todorovski, Blockeel, and Dzeroski 2002). The
difference may be explained by the different experimental
setup that is used.

Additionally, the comparison with the default ranking in-
dicates that none of these methods (ranking trees and KNN)
are able to predict the ranking of algorithms on new datasets
very accurately.

Figure 3: Comparison of ranking accuracy measured with
the Spearman’s coefficient of Ranking Trees (black) with
the KNN algorithm (grey) and the default ranking baseline
(white).

A different perspective is given by the LRA measure. Ac-
cording to this measure, the rankings predicted with KNN
are clearly better than the ones generated by ranking trees as
well as by the default ranking. The fact that better results are
generally obtained in terms of the LRA measure than with
Spearman’s coefficient indicates that the method is better at
predicting the top rank than the lower ones. This is a good
result as top ranks are more important than lower ones. For
instance, in the metalearning problem it may be expected
that the user will most probably execute the algorithms that
are recommended at the top ranks than the others.

Figure 4: Comparison of ranking accuracy measured with
the Log Ranking Accuracy measure of Ranking Trees
(black) with the KNN algorithm (grey) and the default rank-
ing baseline (white).

Conclusions
In this paper, we empirically evaluate ranking trees on some
metalearning problems. The results indicate that the method
does not achieve better results than the KNN algorithm and
also a baseline method. However, these results may be ex-
plained by the small number of examples in the datasets. It
is, thus, necessary to test the methods on larger datasets.

Concerning the algorithm presented here, we plan to eval-
uate the effect of changing the parameter of the stopping cri-
terion. We also plan to evaluate alternative splitting criteria,
prediction rules and stopping criteria. In terms of the split-
ting criterion, we will test measures of similarity that give
more importance to the top ranks. Finally, we plan to test
the method on different ranking problems.
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