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Abstract 

A semantic cognitive map of natural language is constructed 
using dictionaries of synonyms and antonyms with a simple 
algorithm described by the authors previously that differs 
from prior work on embedding of words in metric spaces: 
Isomap, latent semantic analysis, multidimensional scaling. 
Previous and new results exhibit semantic invariance across 
languages and extend to psychometric data. Semantics of 
the two most significant dimensions can be approximately 
characterized as “good vs. bad” and “calming vs. exciting”. 
Applications of this technique in the present work include 
(i) quantitative definitions of universal semantic dimensions 
and their experimental validation, and (ii) computation of 
semantic biases and preferences expressed in an arbitrary 
given text segment: “mood sensing from text”. The latter, 
practically important capability can be used in search 
engines, in human interfaces of intelligent agents, etc. and is 
illustrated here using a diverse variety of text samples. 

Introduction   

The two key questions underlying a computational 
approach to preference making in real life are:  

(a) What metric system or model should be used to 
represent semantics of preferences (values)?  

(b) How to compute semantics of specific concepts, 
phrases, etc. within the selected framework?  

Both questions are very difficult (e.g., the entire field of 
economics provides only a partial solution to the problem). 
Many concepts and their relations are ambiguous and 
context-dependent; sometimes opposite semantics are 
intimately connected and switch roles in their evolution. 
For example, the term “Baroque” was initially used with a 
derogatory meaning (the word “baroque” in French means 
"odd"), but later became associated with the respectable 
cultural epoch. While modern science offers a precise 
system of measures for physical quantities (SI, the 
International System of Units), a metric system for human 
semantic values is missing. Moreover, there is no general 
consensus on whether it is possible to define a rigorous 
quantitative model describing the system of human values, 
and if yes, then what the structure of this model should be. 

                                                 

 
 

Among the most parsimonious possible answers to this 
question is the notion of a semantic cognitive map (SCM: 
Figure 1) understood as an abstract vector space with 
symbolic representations allocated as vectors in it, such 
that synonyms correspond to vectors that are nearly 
parallel to each other, while antonyms should be nearly 
anti-parallel (Samsonovich and Ascoli 2007). In this model 
there are no definite map coordinates a priori assigned to 
concepts (all coordinates are found by multidimensional 
optimization of the global energy function: see below). 
There is no constraint on relative positioning of unrelated 
concepts. There is no minimal distance among synonyms. 
All these details clearly distinguish the method of SCM 
from well-known methods and techniques, including 
Isomap, multidimensional scaling and latent semantic 
analysis (see Discussion). Applied to this concept of SCM, 
the above two questions can be reformulated as follows:  

(a) What are the semantics of the principal 
dimensions of SCM?  

(b) How to allocate representations of concepts in 
SCM?  

Given answers to these questions, one can think further:  
(c) How to use SCM practically?  

These are the questions addressed in the present work.  

Figure 1. The general concept of a semantic cognitive map. Symbolic 
representations of concepts (A, B, C) are allocated in an abstract vector 

space that captures their semantics. A and B are synonyms; A and C are 

antonyms. 

 As a specific test material, we take the Microsoft Office 
2003-2007 US English dictionary of synonyms and 
antonyms that includes words and short phrases. At first, 
the idea seems puzzling: how would one measure the 
meaning of words without any context? The very idea that 
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commonsense semantics of words in natural language can 
be expressed in precise numbers sounds problematic, 
because of the subjective nature of the attribution of 
meaning to words. The task of numerical characterization 
of word meaning has no well-acceptable solution in the 
literature. E.g., the state of the art in experimental 
psychology did not change over decades and is based on 
introspective word ranking by human subjects, e.g., on a 
scale from 1 to 10 along several fixed semantic dimensions 
(Osgood et al. 1957, Rubin 1980). Each of these 
dimensions is selected arbitrarily by the experimenter and 
is typically given to subjects by a single word 
characterizing it. Other methodologies involve 
psychophysical measurements taken during perception of 
words by human subjects. While results of these 
experimental studies can be considered as phenomenology, 
the challenge is to create a theoretical framework that 
would allow us in principle to express word meaning in 
numbers precisely. The approach presented here addresses 
this goal. It should be mentioned that the idea of a possible 
solution was previously rejected (Tversky and Gati 1982) 
and then re-vitalized (e.g., Gärdenfors 2004). Results 
presented here also suggest that a solution is possible. 

Semantic Cognitive Map of English 

Methods 

The term “cognitive map” had been used in cognitive 
sciences for several decades with various meanings 
associated with it (Tolman 1948, Downs and  Stea 1973, 
O’Keefe and Nadel 1978). The modern notion introduced 
by O’Keefe and Nadel (1978) was initially limited to 
spatial mapping and was subsequently extended to include 
non-spatial features of contexts. In the present work, a 
semantic cognitive map is understood as a mapping from a 
set of cognitive representations (e.g. words) to an abstract 
continuous metric space, such that semantic relations 
among representations are reflected in geometric relations. 
Specifically, if words are represented by D-dimensional 
vectors, then it is expected that vectors of two synonyms 
will have a positive dot product, while vectors of two 
antonyms will have a negative dot product. Based on this 
idea, the energy function H (*) of the system of vectors can 
be defined as follows (Samsonovich and Ascoli 2007). 
Given a dictionary of words and phrases and an incidence 
matrix of their synonym-antonym relations, for each pair 
of antonyms, the dot product of the corresponding vectors 
is added to H, and for each pair of synonyms, the dot 
product of the corresponding vectors is subtracted from H. 
The last term in H is the sum of fourth powers of all vector 
length: 

(*) 
 
Here x and y are D-vectors representing words, A is the set 
of antonym pairs, and S is the set of synonym pairs. The 
last term reflects the idea that the map should be compact.  

 Given this definition, a cognitive map is constructed by 
numerical minimization of H with respect to all vector 
coordinates, starting from some random set of coordinates. 
When the minimization is completed, the choice of map 
coordinates is done based on the principal components 
(PCs) of the final distribution. This method was used in the 
previous work (Samsonovich and Ascoli 2007) and in the 
present work, with D = 26. 

Materials 

The material used here is the English Dictionary of 
synonyms and antonyms available as a part of the 
thesaurus in Microsoft Word 2003 and 2007 (further 
referred to as MS Word). The maximal connected 
component was selected from the graph of synonyms and 
antonyms restricted to words that have at least two 
connections, at least one of which is an antonym link. This 
selection resulted in a set of approximately N = 16,000 
English words and phrases. 

Optimization Results: New vs. Previous Findings 

Characteristics of the optimized distribution of words 
obtained in this study (Figures 2, 3) are consistent with 
those reported previously (Samsonovich and Ascoli 2007). 
In particular, the distribution is low-dimensional: only the 
first four principal components have significant variances. 

Figure 2. Principal components of the optimized distribution of words. 

Only the first four principal components out of 26 (only 10 shown) have 

significant variances. They approximately correspond to the notions of 
goodness, arousal, freedom and richness. 

 The main previous finding (Samsonovich and Ascoli 
2007) is that map coordinates have definite semantics. E.g., 
the first principal component corresponds to the notions of 
“good” and “bad”, and the second principal component 
corresponds to the notion of “calming” vs. “exciting”. This 
property was previously validated (Figure 4) by 
quantitative comparison with the database of Affective 
Norms for English Words (ANEW) developed by the 
Center for the Study of Emotion and Attention (CSEA) at 
the University of Florida. This database contains 1,034 
affective English words and was created using the Self-
Assessment Manikin to acquire ratings of pleasure, 
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arousal, and dominance (Bradley and Lang 1999). In 
particular, it was found that the first ANEW coordinate, 
pleasure, is the strongest correlate of the first principal 
component, and the second ANEW coordinate, arousal, is 
the strongest correlate of the second principal component.  
 

 

Figure 3. The optimized distribution of 16,000 words in its maximum-

spread projection. The shape is determined by the energy function H (*). 

 

Table 1 (reproduced from Samsonovich and Ascoli 2007). Top 

portions of sorted lists for each PC for two languages. Words that are 
common across cells within each row are typed in boldface. 

 

PC 

# 

 MS Word English MS Word French: 

translated automatically 

1 increase, well, rise, 

support, accept, clear, 

improve, right, 

continue, direct, good, 

make, respect, honor, 

happy, secure, order, 

understanding, fix, 

power, bright, present, 

definite… 

happy, agreement, stable, 

joined together, delighted, 

approve, net, some, honest, 

rich, added, increased, 

pleasant, sincere, union, 

frank, fix, favor, praise, 

optimist, accept, 

abundance, help… 

2 calm, easy, soft, 

gentle, relaxed, light, 

ease, simple, quiet, 

soothe, smooth, empty, 

mild, weak, gently, 

peaceful, compliant, 

lenient, pale… 

calm, modest, discrete, 

simple, subjected, thin, 

alleviated, softened, 

flexible, sober, moderate, 

soft, immobility, measured, 

silence, humble, reserved, 

simplicity, obeying 

3 start, open, fresh, 

begin, release, original, 

new, reveal, speed up, 

free… 

release, deliver, freedom, 

yield, open, leave, free, 

disencumbered, discovered, 

dispersion, broad… 

 Other previous findings include consistency of results 
across different languages, as was previously illustrated 
(Samsonovich and Ascoli 2007) by lists of words sorted 
along the principal components (Table 1). Moreover, 
similar semantics (as those observed in the PC#1-PC#2 
plane: Figure 3, Table 1) had been used for decades in 
empirically grounded models of emotions (the circumplex 
model: Russel 1980, Horowitz 2004, Posner et al. 2005). 
Experimentally identified semantic dimensions of these 
circumplex models are similar to PC#1 and PC#2 and also 
exhibit cross-cultural invariance.  

The Map Semantics 

Given the consistency of findings, the question is: How to 
identify the observed semantics? The answer is given by 
coordinates of all words on the map, and there are several 
possibilities to express it concisely in terms of familiar 
notions. One is to look at the top or the bottom portions of 
sorted lists of words (Table 1). Another possibility is to 
design and then validate a logical expression that captures 
semantics of principal components, treating words as 
predicates. For example, the following is a candidate: 

 PC#1 = success | positive | clear | makes-good-sense 

 PC#2 = exciting | sophisticated | does-not-go-easy 
 
 An alternative approach is to treat the constructed map 
and its principal components as definitions of new 
semantic concepts, called “First Subjective Dimension”, 
“Second Subjective Dimension”, etc., without attempting 
to reduce these concepts to a few familiar words or concise 
definitions based on words. The idea is that these concepts 
may not be exactly reducible and therefore should not be 
reduced and replaced with something familiar. These new 
semantic concepts can be learned by exploration of the 
map on a case-by-case basis, in analogy with learning 
natural language. Similarly, the abstract linear unit of the 
map can be called linear semantic unit (LSU: Figure 5).  
 In order to validate this approach, the following method 
was used in a pilot study. Random 200 dictionary words 
were presented to a human participant (one of the authors), 
and, based on the previous experience obtained during 
exploration of the map, the participant made a forced 
decision (without looking at the actual word coordinates) 
what should be the coordinates of presented words along 
the First Semantic Dimension. The computed correlation of 
the subjectively decided coordinate with the actual map 
coordinate is significantly high (Pearson’s correlation 
coefficient r = 0.7), indicating that the notion of the First 
Semantic Dimension is unambiguous, can be learned and 
subsequently used in analysis and processing of linguistic 
data. Confirmation of these preliminary results with 
multiple participants would indicate that this notion of First 
Semantic Dimension can be reliably used in computational 
measurement of semantics, for communications, etc. 
Another validation of SCM constructed from the MS Word 
English dictionary was done previously using the ANEW 
database (Figure 4: see Samsonovich and Ascoli 2007). 
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Figure 4 (reproduced from Samsonovich and Ascoli 2007). Scatter plot 

demonstrating strong correlation of PC #1 with the first dimension of 

ANEW: pleasure. Each cross represents a word. The dashed line is a 

linear fit. The two clusters formed by “positive” and “negative” words are 

clearly separated in each map (along each plot dimension). 

Application of SCM: Mood Sensing from Text 

The semantic cognitive map constructed from MS Word 
English dictionary can be used to compute semantic 
preferences expressed in a given text, or to make decision 
about the mood of a given document. In order to illustrate 
this possibility, here SCM was used to classify a set of 
abstracts retrieved from Medline by a search for “neur*” 
(the search result was truncated at 500). Words from each 
abstract were located on SCM, and the average vector (the 
“center of mass”) of all indexed words was computed for 
each abstract. This is how each abstract was assigned map 
coordinates. Finally, the set of abstracts was sorted along 
the first two principal components. Table 2 gives the first 
two sentences of each of the four “extreme” abstracts. 

 Figure 5. Cognitive map of English with seven utterances automatically 

allocated on it. The center of each oval is the location of the utterance 
with the corresponding number, dimensions of the ovals represent 

standard error, gray dots represent words. LSU: linear semantic unit. 

Table 2. The four “extreme abstracts” selected by cognitive mapping out 

of 500 abstracts retrieved from Medline by a truncated search for “neur*” 
(only the first two sentences are given for each abstract).  

 

+PC#1: 
“the most 
positive” 

“The development of noninvasive methods 
capable of affording ever higher resolution 
images is an ongoing major objective of 
scientific investigation for the benefit of both 
clinical medicine and neuroscience. Since its 
development in the early 1970s, magnetic 
resonance imaging (MRI) has remained a 
technology of choice for medical imaging 
development because of the wide range of 
potential clinical applications.” 

-PC#1: 
“the most 
negative” 

“7-Nor-20-oxopregn-5-en-3 beta-yl acetate 
was converted into (20R)-5 beta,6 beta-epoxy-
7-nor-5 beta-pregnane-3 beta,20-diyl diacetate 
in three steps. Stereospecific migration of the 
6 alpha-hydride ion led to a 6-oxo derivative 
with a 5 alpha-configuration.” 

+PC#2: 
“the most 
exciting” 

“Drosophila courtship is a complex behavior. 
A new study shows that glia modulate 
neurotransmission to influence male 
preference, but the authors should have 
resisted the temptation to describe their results 
in tabloid language.” 

-PC#2: 
“the most 
calming” 

“Tacrolimus is used widely for immuno-
suppression following transplantation. It has 
rarely been linked to the development of 
peripheral neuropathy.” 

 
In order to further validate this method, a set of arbitrarily 
generated utterances was used. The utterances were 
intentionally generated with the purpose to cover the entire 
spectrum of feelings represented by the first two map 
coordinates, based on a prior experience with exploration 
of the map and intuitive expectations of the results. These 
utterances are: 
 

1. Please, chill out and be quiet. I am bored and 
want you to relax. Sit back and listen to me. 

2. Excuse me, sorry, but I cannot follow you and 
am falling asleep. Can we pause? I've got tired 
and need a break. 

3. I hate you, stupid idiot! You irritate me! Get 
disappeared, or I will hit you! 

4. What you are telling me is terrible. I am very 
upset and curious: what's next? 

5. Wow, this is really exciting! You are very 
smart and brilliant, aren't you? 

6. I like very much every word that you say. 
Please, please, continue. I feel like I am falling 
in love with you. 

7. We have finally found the solution. It looks 
easy after we found it. I feel completely 
satisfied and free to go home. 
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 The results of automated allocation of these utterances 
on SCM are represented in Figure 5. The plane of the 
figure corresponds to the first two semantic coordinates, 
labeled here “First Subjective Dimension” and “Second 
Subjective Dimension”, respectively. The fuzzy annulus of 
grey dots in the background are the dictionary words 
allocated on the map (same as in Figure 3). The center of 
the cross in the middle, shifted to the right, represents the 
average of all word vectors weighted by the general 
frequency of usage of words. The shaded ovals represent 
estimates of feelings associated with the given sample: the 
center of an oval is the estimate, and the dimensions of 
each oval represent the standard error. Ovals are numbered 
according to the numbers of utterances in the list above. 
The significant dimensionality of the sample is equal 2 
(calculated by MANOVA, P < 0.003). 
 A similar mapping study was performed with other 
samples of text: (i) a set of 500 Medline abstracts, as 
described above (Table 2), (ii) the set of 152 Shakespeare 
sonnets, (iii) a set of 10 abstracts of accepted grants, (iv) a 
set of 45 anecdotes about famous personalities. All results 
show qualitative consistency with each other. 

 

The method of semantic cognitive mapping described here 
and in our previous work (Samsonovich and Ascoli 2007) 
does not stand aside from the mainstream research, and 
needs to be placed in the relevant context. As mentioned 
above, methods of geometry and topology are popular in 
data analysis concerned with semantic dissimilarity. Here 
the two main building blocks are (a) geometric 
representation of semantics of individual data items 
themselves and (b) geometric representation of semantic 
relations. Accordingly, the two general problems are (1) 
getting from (a) to (b) and (2) getting from (b) to (a). 
Popular approaches to (1) include latent semantic analysis 
and cluster analysis. As to the second problem, one, a 
rather nonstandard, approach to it is based on SCM 
(Samsonovich and Ascoli 2007). 
 The general problem (2) can be stated as follows: given 
a matrix W of mutual distances or dissimilarities of n data 
items, compute their best embedding as points in an 
abstract space, given by the coordinates of points Y, that 
minimizes a certain criterion H(Y, W): the energy/cost 
function, which in the literature is also called the loss 
function. Two best-known techniques used in connection 
with (2) are multidimensional scaling (MDS: Seber 1984, 
Borg and Groenen 2005) and Isomap, that relies on MDS 
(Tenenbaum 2000). In order to explain how these methods 
differ from our approach and why they should produce 
different results from ours, we need to briefly outline them. 
 Classical metric multidimensional scaling procedure 
takes a full matrix W of distances among n points and 
computes an n-by-n matrix Y of n points embedded in an n-
dimensional Euclidean space R

n
.  Simultaneously, the 

eigenvalues e of Y*Y' are computed. If the distances W are 
Euclidean, and, e.g., the first D elements of e are much 

larger than the rest n-D elements, then the result Y is 
truncated to the first D columns (dimension reduction). In 
other words, n points are embedded in a smallest space R

D
, 

such that their mutual distances W are (approximately) 
preserved. When W is a more general dissimilarity matrix 
that does not satisfy the metrics axioms (Tversky and Gati 
1982), then some elements of e may be negative, and then 
D is determined as the number of positive eigenvalues, 
providing an embedding that gives a reasonable 
approximation to W, if the negative elements of e are small 
in magnitude (Seber 1984). 
 While classical multidimensional scaling requires 
specification of distances (or dissimilarities) for each pair 
of points, non-classical metric multidimensional scaling 
procedure allows for missing distance data, and offers to 
limit the embedding space dimension by an ad hoc number 
that is lower than D (in this case, an additional criterion for 
selecting the best embedding needs to be specified). 
 Nonmetric multidimensional scaling procedure creates a 
configuration of points whose mutual distances 
approximate the given dissimilarities W; however, instead 
of trying to interpret given dissimilarities themselves as 
distances among points, non-metric multidimensional 
scaling finds a configuration in which distances among 
points are equal to some nonlinear monotonic function of 
W. The unspecified nonlinearity of this function implies 
that this procedure only attempts to preserve the ordering 
of dissimilarities, essentially ignoring their values. 
 Isomap (Tenenbaum 2000) is similar to nonclassical 
multidimensional scaling in that it allows for missing, in 
fact, very sparse dissimilarity data. The idea of handling 
the problem (2) that underlies Isomap is to compute each 
missing matrix element as the length of the shortest path in 
the graph representing dissimilarities, in which lengths of 
links are proportional to the matrix elements of W. Finally, 
a classical multidimensional scaling procedure is applied. 
 The outlined above and similar techniques are suitable 
for handling one semantic relation that can be reduced to a 
semantic distance. In contrast, the approach presented in 
this work requires two relations: synonymy and antonymy 
that are not reducible to each other (antonyms on average 
are more closely related to each other than unrelated 
words). This detail is significant: if one of the two relations 
is disregarded, then SCM produces dramatically different 
results (Samsonovich and Sherrill 2007). Plus, the idea of 
SCM is to optimize the sum of dot products (*) rather than 
to match given distances. The criterion (*) does not 
penalize unrelated concepts for being close to each other.  
 All these details differentiate our SCM from the well-
known methods outlined above. Therefore, the results of 
optimization are different in both cases: e.g., the dimension 
of the resultant embedding should be lower in SCM than it 
can be expected when Isomap or classical MDS is used. 
 The presented approach is also very different from 
modern trends in NLP research aimed at automated mood 
classification using a combination of syntactic and 
semantic parsing (e.g., Jung et al. 2006, Wiebe et al. 2005). 
Generally, the problem is considered extremely difficult by 
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expert computational linguists (Dennis Perzsanowski, 
personal communication). The strength of the SCM-based 
approach is in the availability of quantitative semantic 
information virtually for all dictionary words rather than 
for a small subset of words (e.g., as in the study of Jung et 
al. 2006 that used ANEW). The weakness of the method 
presented here is that all words are treated equally 
regardless of available syntactic information. Therefore, 
combining the parsing approaches with SCM can be 
advantageous to both and may enable new capabilities. 

Concluding Remarks 

The main conclusion for this study is that the cognitive 
mapping method presented here introduces new, universal 
computational semantic measures that apply to natural 
language. These measures in principle can be validated and 
used for many purposes, e.g., for automated detection of 
mood and semantic preferences expressed in an arbitrary 
coherent text segment, thus opening new perspectives for 
NLP related to human-computer interface and data mining.  
 In a broader artificial intelligence context, SCM similar 
to the one constructed here can be used to give human-like 
“feelings” and “affects” to artifacts. For example, suppose 
that a dynamical working memory state of an agent is 
characterized by a set of active symbolic representations, 
each of which is associated with a word or a phrase from 
natural language. Then, the method described here can be 
used to compute the current mood of the agent based on 
the set of words associated with its current state.  
 In general, in order to achieve a human level of 
emotional intelligence in an artifact, it will be probably 
necessary to use an SCM derived from the entire human 
culture. Constructing this SCM is a big and significant 
challenge, comparable to the human genome challenge. 
The presented study does not solve the problem, but it 
indicates that the problem is solvable. Specifically, we 
demonstrated a possibility to define universal, computable 
semantic characteristics that can provide a basis for the 
autonomous development of a system of values in the 
future artificial cognitive systems. 

Acknowledgments 

The authors are grateful to Dr. Kenneth A. De Jong for 
fruitful discussions of preliminary results. 

References 

Borg, I. and Groenen, P., 2005. Modern Multidimensional 
Scaling: Theory and Applications, Second Edition. New 
York: Springer-Verlag. 

Bradley, M. M., and Lang, P. J. 1999. Affective norms for 
English words (ANEW):  Stimuli, instruction manual and 
affective ratings. Technical report C-1. Gainesville, FL: 
University of Florida. 

Downs, R. M., and  Stea, D. 1973. Cognitive maps and 
spatial behavior: Process and products. In Downs, R. M., 
and Stea, D. (Eds.). Image and Environments, pp. 8-26. 
Chicago: Aldine. 

Gärdenfors, P. 2004. Conceptual Spaces: The Geometry of 
Thought. Cambridge, MA: MIT Press. 

Horowitz, L. M. 2004. Interpersonal foundations of 
psychopathology. Washington, DC: American 
Psychological Association. 

Jung,Y., Park, H., and Myaeng, S. H. 2006. A hybrid mood 
classification approach for blog text. Lecture Notes in 
Computer Science 4099: 1099-1103. 

O’Keefe, J., and Nadel, L. 1978. The Hippocampus as a 
Cognitive Map. New York, NY: Clarendon. 

Osgood, C.E., Suci, G., and Tannenbaum, P. 1957. The 
measurement of meaning. Urbana, IL: University of 
Illinois Press. 

Posner, J., Russell, J. A., and Peterson, B. S. 2005. The 
circumplex model of affect: An integrative approach to 
affective neuroscience, cognitive development, and 
psychopatology. Development and Psychopatology 17: 
715-734. 

Rubin, D. C. 1980. 51 properties of 125 words: a unit 
analysis of verbal behavior. Journal of Verbal Learning 
and Verbal Behavior 19: 736-755.  

Russell, J. A. 1980. A circimplex model of affect. Journal 
of Prsonality and Scial Pychology 39 (6): 1161-1178. 

Samsonovich, A. V. and Ascoli, G. A. 2007. Cognitive 
map dimensions of the human value system extracted from 
natural language. In Goertzel, B. and Wang, P. (Eds.). 
Advances in Artificial General Intelligence: Concepts, 
Architectures and Algorithms. Proceedings of the AGI 
Workshop 2006. Frontiers in Artificial Intelligence and 
Applications, pp. 111-124. IOS Press: Amsterdam, The 
Netherlands. 

Samsonovich, A. V. and Sherrill, C. P. 2007. Comparative 
study of selforganizing semantic cognitive maps derived 
from natural language. In D. S. McNamara & J. G. Trafton 
(Eds.), Proceedings of the 29th Annual Cognitive Science 
Society, p. 1848. Austin, TX: Cognitive Science Society. 

Seber, G. A. F., 1984. Multivariate Observations. Wiley. 

Tenenbaum, J. B. 2000. A global geometric framework for 
nonlinear dimensionality reduction. Science 290: 2319. 

Tolman, E. C. 1948. Cognitive maps in rats and man. 
Psychological Review 55 (4): 189-208. 

Tversky, A. and I. Gati 1982. Similarity, separability, and 
the triangle inequality. Psychological Review 89(2): 123-
154. 

Wiebe, J., Wilson, T., and Cardie, C. 2005. Annotating 
expressions of opinions and emotions in language. 
Language Resources and Evaluation, 39 (2-3): 165-210. 

96




