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Abstract

Kinship analysis using genetic data is important for many bio-
logical applications, including many in conservation biology.
A number of methods have been proposed for this problem.
However, in absence of a true answer, biologists today find it
challenging to consolidate different reconstructions into one
solution. Towards this end, consensus based methodology
has been proposed recently to combine different results. In
this paper we study the use of different consensus techniques,
including strict consensus, voting consensus, majority con-
sensus, to realize a single solution. We also discuss the rela-
tive merits of different consensus techniques and extend their
use to data sets with genotyping errors. We explain the impli-
cations of Mirkin’s impossibility results in the context of the
siblings reconstruction problem.

Introduction
Reconstructing sibling and other genealogical relationships
is an important component of many biological investiga-
tions, including many in conservation biology. In recent
years there has been a boost in the genotyping methods
and their cost has been reduced considerably. This opens
the possibilities of investigating many fundamental biolog-
ical phenomena, including behavior, mating systems, heri-
tabilities of adaptive traits, kin selection, and dispersal pat-
terns. Now mating patterns of species like lemon sharks
and falcons can be studied through reconstruction of sib-
ling relationships (sibships) and family groups. There
are a number of methods (Almudevar 2003; Wang 2004;
Beyer and May 2003; Smith, Herbinger, and Merry 2001;
C.Thomas and G.Hill 2002; Berger-Wolf et al. 2005;
2007) for sibship reconstruction. Each method makes a
different set of assumptions about the population and none
guarantees an absolutely correct reconstruction. Moreover,
in wild populations the true family groups are typically not
known. With the number of methods growing and in ab-
sence of a ground truth it is becoming harder for the bi-
ologists to come up with a unified view of the population.
There seem to be no existing methods (Blouin 2003) that
are able to combine different results into one representative
solution. We recently proposed a distance-based consensus
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method (Sheikh et al. 2008). In this paper we present dif-
ferent consensus approaches for reconstructing sibling rela-
tionships and discuss their effectiveness in combining differ-
ent solutions. We also discuss the implications of Mirkin’s
impossibility results (Mirkin 1975) in the context of the sib-
ship reconstruction problem. We conclude with how these
consensus methods can be used to reconstruct siblings rela-
tionships in presence of genotyping errors.

Consensus Methods
The idea behind consensus methods is to combine different
solutions to the same problem into one solution, i.e., group
decision making. Group decision making is as old and as
ubiquitous as human societies. The formal theory of voting
and social choice dates back to the eighteenth century mem-
bers of the French Academy of Sciences, Marquis de Con-
dorcet (de Caritat marquis de Condorcet 1785) and de Borda
(de Borda 1784). The modern developments in the field date
back to Kenneth J. Arrow’s seminal doctoral thesis (Arrow
1963) in 1951.

In the past fifteen years the mathematical and computa-
tional techniques developed in the context of group choice
and consensus decisions have started to be applied to biolog-
ical problems, mainly in systematics, taxonomy, and phylo-
genetics (Janowitz et al. 2001). Many computational ap-
proaches to biological problems result in multiple answers
either from the same or different methods. In absence of a
verifiable true answer, as is common in biological problems,
one may apply a consensus method to combine these solu-
tions into one representative answer.

Definitions
Siblings: a group of individuals that share at least one par-

ent. When they share both parents they are called full
siblings, and when they share exactly one of the parents
they are called half siblings. In this paper when we refer
to siblings we mean mean full siblings. ’sibling groups’
are referred to as sibgroups and ’sibling relationships’ are
referred to as sibships.

Gene: a unit of genetic information.

Locus: the location of a gene on a chromosome.

Allele: one of the different versions of the same gene found
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at the same locus but in different chromosomes or in dif-
ferent individuals.

Genetic marker: a set of genes used as experimental probes
to keep track of an individual.

Diploid individual is one having two alleles (not necessar-
ily different) for each locus.

Homozygous individual is one having two identical alleles
at a particular genetic locus.

Heterozygous individual is one having two different alleles
at a particular genetic locus.

Allele frequency: the fraction of all the alleles of a gene in
a population that are of one type.

Genotype: the actual alleles present in an individual; the ge-
netic makeup of an organism.

Problem Statement
We now restate the sibling reconstruction problem as defined
in (Berger-Wolf et al. 2007). Given a genetic (microsatel-
lite) sample from a population of n diploid individuals of the
same generation, U , the goal is to reconstruct the full sibling
groups (groups of individuals with the same parents). We as-
sume no knowledge of parental information.

Formally, we are given a set U = {X1, ...Xn} of n in-
dividual microsatellite samples from l genetic loci where
Xi = (< ai1, bi1 >, ..., < ail, bil >) and aij and bij are
the two alleles of the individual i at locus j.

The goal is to find a partition of individuals P1, ...Pm such
that two individuals are in the same partition if and only if
they have the same parents. This is biological objective. We
will discuss computational approaches to achieve a good es-
timate of the biological sibling relationship.

2-Allele and 4-Allele Properties
Inheritance in diploid organisms (mostly) follows very sim-
ple laws of Mendelian genetics: a child inherits one allele
from each of its parents for each gene. This introduces
two overlapping necessary (but not sufficient) constraints on
full siblings groups: 4-allele property and 2-allele property
(Berger-Wolf et al. 2005).

4-Allele Property: The total number of distinct alleles oc-
curring at any locus in a sibling group may not exceed 4.
Formally, a set S ⊆ U has the 4-allele property if

∀1 ≤ j ≤ l :

∣∣∣∣∣⋃
i∈S
{aij , bij}

∣∣∣∣∣ ≤ 4.

Note that a set consisting of any two individuals always sat-
isfies the 4-allele property. The set of individuals 1, 3 and
4 from Table 1 satisfies the 4-allele property. However, the
set of individuals 2, 3 and 5 fails to satisfy it as the alleles
occurring at the first locus are {12, 31, 56, 44, 51}.

2-Allele Property: In every sibling group there exists an
ordering of individual alleles within a locus such that the
number of distinct alleles on each side at this locus does not
exceed 2.

2-Allele property is clearly a restriction of the 4-allele
property. From Table 1, our previous 4-allele set of individ-
uals 1, 3 and 4 fails to satisfy the stricter 2-allele property
as the alleles appearing on the left side at locus 1 { 44, 31,
13 } are more than two. Moreover, there is no swapping of
alleles that will bring down the number of alleles on each
side to two: the 1st and 4th individuals with alleles 44/44
and 13/13 already fill the capacity.

Individual Alleles (a/b) at Locus 1 Locus 2
1 44/44 55/23
2 12/56 74/61
3 31/44 55/74
4 13/13 61/23
5 31/51 74/61

Table 1: An example of input data for the sibling reconstruction
problem. The five individuals have been sampled at two genetic
loci. Each allele is represented by a number. Same numbers repre-
sent the same alleles.

Consensus Methods for Siblings
Reconstruction

Recall that for a population of individuals U = {X1 . . . Xn}
the goal of a siblings reconstruction problem is to find
a partition of the population into sibling groups S =
{P1 . . . Pm}, where and all individuals are covered with no
overlap:

∪1≤j≤mPj = U and ∀j, k Pj ∩ Pk = ∅.

A partition defines an equivalence relationship. Two indi-
viduals are equivalent if they are in the same partition of the
solution S:

Xi ≡S Xj ⇐⇒ ∃Pk ∈ S s.t. Xi ∈ Pk ∧Xj ∈ Pk
We are now ready to give the definition of a consensus

method for sibship reconstruction:

Definition 1 A consensus method for sibling groups is
a computable function f that takes k solutions S =
{S1, ..., Sk} as input and computes one final solution.

f : S∗ → S

Strict Consensus
Definition 2 A strict consensus (McMorris, Meronik, and
Neumann 1983) C = {PC,1 . . . PC,m} is a partition into sib-
ling groups where two individuals are together only if they
are in the same partition for all input solutions:

Xj ≡C Xk ⇐⇒ ∀Si ∈ S Xj ≡Si
Xk

Note that the strict consensus defines a true equivalence
relation and, thus, is transitive:

Xi ≡C Xj and Xj ≡C Xk ⇒ Xi ≡C Xk

Any individual that is not consistently placed into a parti-
tion in all solutions will be added as a singleton. While such
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a consensus solution is reliable for those individuals that are
placed together in a sibgroup, it produces many singletons.

As we will see later, strict consensus is a good baseline as
it ensures Pareto optimality. However it results in too many
singletons and scattered sibgroups, therefore has limited ap-
plication on its own.

Majority Consensus
Definition 3 A majority consensus C is a partition into sib-
ling groups where two individuals are together only if they
are in the same partition for a majority of input solutions.

Majority consensus may lead to a violation of the tran-
sitive property of equivalence relationships. This violation
means that there is no partitioning of individuals and con-
sequently no sibship reconstruction. Therefore some refine-
ment of the basic definition is needed to produce a partition.

Voting Consensus
Definition 4 Voting consensus is the transitive closure of
the majority consensus.

Voting consensus is version of the majority consensus where
the solutions vote on all pairs of individuals. If a majority
of votes puts two individuals together, then the sibgroups
containing those individuals should be merged. While this
does produce a partition of individuals, it does not account
for the other individuals in the sibgroups being merged.

Distance-based consensus
For a distance based consensus, we start with a strict consen-
sus of the solutions and search for the nearest good solution.
In order to search for such a solution we need quantitative
measures to 1) assess quality of a solution, fq , and 2) cal-
culate the pairwise distance between solutions, fd. Assume
that we have the two functions fq and fd:

fq : S → R and fd : S × S → R

Since we start with a strict consensus C the partitions in
the solution cannot be refined any further. Therefore to im-
prove the solution, we use the operations of merging two
sets. The following monotonic property must be obeyed by
any improved solution C′:

∀Xi, Xj ∈ U Xi ≡C Xj =⇒ Xi ≡C′ Xj .

Thus, given a solution C, we look for an improved solu-
tion C′ that minimizes fd(C, C′) and maximizes fq(C′). To
combine the two objectives we can formulate the following
optimization problems:

1. Maximize fq with an upper bound on fd
2. Minimize fd with a lower bound on fq
3. Maximize/Minimize some (linear) combination of fd and
fq

We have shown all of these problems to be NP-Hard in
general for arbitrary fq and fd (Sheikh et al. 2008).

Theorem 1 Let C be a collection of sibling groups and k ∈
R. Let S be the set of all solutions that are an improvement
of C and are obtainable from C by merging sibling sets. The
problem of finding an improved solution C′ ∈ S such that

fq(C′) = max
S∈S

fd(C,S)≤k

fq(S)

is NP-hard.

Theorem 2 Let C be a collection of sibling groups and k ∈
R. Let S be the set of all solutions that are an improvement
of C and are obtainable from C by merging sibling sets. The
problem of finding an improved solution C′ ∈ S such that

fd(C, C′) = min
S∈S

fq(S)≥k

fd(C, S)

is NP-hard.

Lastly, if no exact combination of fq and fd is specified,
objective 3 is unattainable as well.

Theorem 3 Let C be a collection of sibling groups. Let S be
the set of all solutions that are an improvement of C and are
obtainable from C by merging sibling sets and let g(fq, fd)
be a (linear) combination of the functions fq and fd. The
problem of finding an improved solution C′ ∈ S such that

g(fd(C, C′), fq(C′)) = OPT
S∈S
{g(fd(C, S), fq(S))}

is NP-hard.

Distance based consensus seems to be an ideal ground en-
suring Pareto optimality, and parsimony can be enforced us-
ing the quality measures. However, the problem is computa-
tionally intractable, therefore we propose greedy heuristics.

Pairwise Greedy Consensus
PAIRWISE GREEDY CONSENSUS is a heuristic for distance-
based consensus. It iteratively merges the closest pair of
sibling groups. The distance is defined in terms of editing
operations on the genotype of one or more individuals. This
operations may be viewed as error corrections. Some editing
costs associated with different types of genotyping errors are
needed and we assume it is available to us in a table costs.
We define two functions to calculate the distance fd: one
calculates the alleles that need to be removed to add an indi-
vidual to a group; and the other calculates the shared alleles
and allele pairs if no changes are needed. The former is used
when an individual cannot be assigned without violating 2-
allele property. The latter uses the same costs for calculating
the “new” alleles/allele pairs brought by an individual in a
sibgroup, with a higher value meaning more restrictions are
introduced to the sibgroup. Also, we assume that we know
what is the maximum editing cost (maxedit) we can allow
for an individual to be assigned to a sibgroup. Closest sib-
groups are merged as far as allowed by this property.

After a merge, the distance fd is calculated for all pairs of
sibling groups. The pair that gives the smallest distance is
merged and then all the pairs are compared again. This con-
tinues until no group of individuals can be merged without
exceeding maximum editing cost per individual, maxedit,

99



for some individual. Both of these costs are input param-
eters. The quality function fq is based on the parsimony
assumption: reduce the number of sibgroups. The objective
is to maximize:

fq = |U | − |C|

This method can perform well depending upon the exact
distance function, but it fails to maintain a control on how
groups are evolving over time and may allow too much dis-
tance overall in both the solution and the groups.

Sibgroup Greedy Consensus
SIBGROUP GREEDY CONSENSUS is another a heuristic for
distance-based consensus, using the same type of a distance
function. Similar to the PAIRWISE GREEDY CONSENSUS,
it works by iteratively merging closest groups (see (Sheikh
et al. 2008) for details and performance analysis). Instead
of just making a purely local decision, a total merge cost
is maintained for every sibgroup, and is added to fd when
comparing with another sibgroup. The pair that gives the
least total merging cost is merged, and the total cost for the
merged group is updated. This continues until the minimum
distance is greater than either the maximum editing cost per
sibling group or the average per individual distance exceeds
maximum average editing cost per individual. Both of these
costs are input parameters.

Even though this method is greedy, it maintains a control
on both the inter-sibgroup and the intra-sibgroup distances.

Impossibility Results
We now discuss the known impossibility results for equiva-
lence relationships, as they automatically apply to sibship re-
construction. We first present the axioms for rules on equiv-
alence relations. All of these are defined on consensus rules
of the form C : Sk → S on the set of equivalence relations
S = {S1, . . . , Sk} over elements of U .

Definition 5 Independence: ∀X ⊆ U ∧ ∀P, P ′ ∈ Sk :
[P |X = P ′|X ] =⇒ [C(P )|X = C(P ′)|X ].

The independence property implies that for any subset X
of individuals and for any pair of input profiles P, P ′, if the
restricted input profiles are same when restricted to X , then
the restriction of the consensus must also produce the same
equivalence relations when restricted to X . This is a very
desirable property for sibship reconstruction as sibling rela-
tionships among a set of individuals should not change with
the context in which they are observed.

Definition 6 Pareto Optimality: ∀x, y ∈ U ∧ ∀P =
(S1, . . . Sk) ∈ Sk : [∀1 ≤ i ≤ k : xEiy] =⇒ xC(P )y.

In context of siblings reconstruction, Pareto optimality
means that if all solutions pair up two individuals together
then those individuals must be together. In other words, the
solution is obtained by merging groups from the strict con-
sensus.

Definition 7 Oligarchy: A set V ⊆ {1, ..., k} exists such
that ∀P = (S1 . . . Sk) ∈ Sk : C(P ) =

⋂
i∈V Si.

Oligarchy means that only a subset of solutions deter-
mines the partitioning, not all input solutions may be nec-
essary. In our formulation for genotyping errors, there typ-
ically cannot be an oligarchy as any two input solutions are
based on similar data.
Definition 8 Symmetry: ∀P ∈ Sk ∧ ∀ permutations σ
of {1, ..., k}: P = (S1, . . . , Sk)] =⇒ [C(P ) =
C(Sσ(1), . . . , Sσ(k))].

Symmetry implies that it does not matter how the solu-
tions are obtained, the output solution depends only on the
inputs and not their order or source.

The following impossibility theorem was presented by
Mirkin (Mirkin 1975).
Theorem 4 Consensus rule C : Sk → S is independent
and Pareto optimal if and only if it is oligarchic.
Which easily yields the following corollary:
Corollary 1 Consensus rule C : Sk → S is rule by una-
nimity if and only if it is independent, Pareto optimal and
symmetric.

Let us consider what this result means for reconstruction
of sibling relationships. If a consensus rule can guarantee in-
dependence regarding subsets of individuals and also guar-
antees that if all input solutions identify a set of individuals
as siblings, then there is an oligarchy of solutions determin-
ing the output. Both independence and Pareto optimality are
extremely important, but if they apply then there is a dicta-
torial subgroup of solutions which decide which individuals
can be siblings. The corollary shows that if we desire for all
the inputs to be treated equally, then they must always agree.

Consensus based approach for error-tolerant
siblings reconstruction

With the exception of COLONY (Wang 2004), none of the
existing kinship reconstruction methods is designed to tol-
erate genotyping errors or mutation. Yet, both errors and
mutation cannot be avoided in practice and identifying these
errors without any prior kinship information is a challenging
task. We now describe our approach (Sheikh et al. 2008) to
reconstructing sibling relationships in presence of genotyp-
ing errors using consensus. Consider an individualXi which
has some genotyping error(s). Any error that is affecting
siblings reconstruction must be preventing Xi’s sibling rela-
tionship with at least one other individual Xj , who in reality
is a sibling. It is possible that there is more than one error in
an individual’s genotype, yet it is unlikely that all errors will
bias the solution in the same direction.

Thus, we can discard one locus at a time, considering it
to be erroneous, and obtain a sibling reconstruction solution
based on the remaining loci. If all such solutions put the
individuals Xi and Xj in the same sibling group (i.e., there
is a consensus among those solutions), we consider them to
be siblings. The bulk of our error-tolerant approach design is
concerned with pairs of individuals that do not consistently
end up in the same sibling group during this process, that is,
there is no consensus about their sibling relationship.

We now discuss how the approaches defined above per-
form for this input.

100



Sibgroup Greedy Pairwise Greedy Voting
91.52 89.8 88.1

Table 2: Solution accuracy of consensus algorithms on Shrimp
data.

Majority and Voting Consensus
Such a consensus is highly prone to errors when used with
our input solutions which are based on dropping one locus
at a time. Errors will not be out-voted since each locus, in-
cluding the erroneous, is present in a majority of subsets.

Theorem 5 Majority consensus for sibship reconstruction
or any partitioning problem using “drop-one-locus/column”
approach will always bias toward the errors.

Proof. Consider the population of individuals as an n ×
k matrix A. When a locus is dropped, tth column vector
from this matrix is dropped and the remaining n × (k −
1) matrix At is used to compute a sibship reconstruction.
Consider an error at row i, column j. Decisions made on
A1, . . . Aj−1, Aj+1, . . . , Ak are based on data with the error.
Therefore, any majority rule will be in favor of the error with
overwhelming majority.

Albeit majority consensus is a useful approach in general,
it is not effective to handle errors in our framework.

Distance based consensus
Distance based consensus is well suited for the “drop-one-
locus” approach. An erroneous individual is classified dif-
ferently in at least one solution and therefore will be sep-
arated by the strict consensus. PAIR-WISE GREEDY CON-
SENSUS can allow too many genotyping errors in a sibgroup,
leading to large sibgroups of individuals that share some al-
leles but are otherwise unrelated. SIBGROUP GREEDY CON-
SENSUS maintains a control on errors at all levels and thus
only allows errors within the relative costs.

Results
We tested these approaches on several real datasets using
the “drop-one-locus” approach. PAIR-WISE GREEDY algo-
rithm performs better than both voting and strict consensus.
SIBGROUP GREEDY algorithm performs considerably better
than all the other approaches. In fact, it outperforms all the
known sibling reconstruction methods when the input has
few sampled loci and high allele frequencies (Sheikh et al.
2008). We show the performance of three main approaches
on a real dataset where the true sibling groups are known
in Table 2. The dataset of tiger shrimp Penaeus monodon
(Jerry et al. 2006) consists of 59 individuals from 13 fami-
lies with 7 sampled loci. There are 16 missing alleles. The
parentage is known and was used to identify errors. Full
evaluation protocol as well as results on more real and sim-
ulated datasets are presented in (Sheikh et al. 2008).

Conclusions
We have formulated a consensus-based approach for error-
tolerant reconstruction of sibling relationships from genetic

data. We have formulated and investigated various consen-
sus based approaches. Strict Consensus ensures Pareto op-
timality but produces too many singleton groups. Major-
ity Consensus may not produce a partition, and we have
shown that it will not work with our error-tolerant approach.
A distance-based consensus achieves the desired balance
between Pareto optimality and parsimony, however, it is
computationally intractable. Therefore, we propose greedy
heuristics to approximate it.

We have also shown that it is not possible to have a fair
consensus method that is both independent and Pareto opti-
mal. This result is not unusual in social choice theory and
we have shown that it holds in the domain of siblings recon-
struction.

In future we intend to design an approximation algo-
rithm with provable performance guarantees for distance
based consensus methods for siblings reconstruction. Cur-
rently there are no consensus methods for hierarchical kin-
ship analysis, we also intend to address this issue.
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