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Abstract

Logic-based preference representation languages are used to
represent utility functions in combinatorial auctions, and can
also be used for voting. A canonical problem in this con-
text is, given a set of propositional formulas with associated
weights, to find an assignment1 that maximizes the sum of
those weights which are associated to satisfied formulas. The
general case is intractable, and natural restrictions of the lan-
guages tend either to leave the complexity unchanged or to
reduce it to triviality. After proposing a revision of the deci-
sion problem considered in existing research, we use a new
approach to find languages with P-complete maximization
problem.

Introduction
The MAX-UTIL problem for preference representation lan-
guages based on weighted logic formulas consists in finding
an assignment which maximizes the sum of those weights
which are associated to satisfied formulas. The complexity
of a decision problem version of MAX-UTIL is considered
in (Chevaleyre, Endriss, & Lang 2006; Uckelman & Endriss
2007). The picture which emerges is bipolar: Every lan-
guage for which a positive result is presented has either a
trivial decision problem or an NP-complete one. This nat-
urally led us to wonder whether there are any preference
representation languages which occupy the (previously un-
explored) middle ground. Further consideration has led us
to formulate a modified version of the decision problem—
one which we feel better captures the interest of the prob-
lem. Here we present that modified decision problem and
apply a new approach to find two languages for which it is
P-complete.

Who (if anyone) needs to solve MAX-UTIL depends on
the context in which these preference representation lan-
guages are being applied. Take auctions, for example:
Whether MAX-UTIL needs to be solved by the center (e.g.,
the auctioneer) immediately in order to determine the win-
ner depends on his concrete algorithm; the center does solve
MAX-UTIL if the resources are shareable. Specifically,
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1Existing research uses the term model; we want to differentiate
from the slightly different notion of a model of a logic program.

MAX-UTIL is the Winner Determination Problem for com-
binatorial auctions where the auctioneer has free disposal,
the bidders do not have free disposal, and allocated goods
are shared among all bidders. This might at first sound like
a strange sort of auction, one where all bidders receive every
good won by any bidder—but this is precisely what an elec-
tion is. The candidates are the goods, and everyone shares
whatever good (or goods, in the case of a multi-winner elec-
tion) is allocated. Solving MAX-UTIL over the admissible
models, i.e., the ones which elect the correct number of can-
didates, tells you who has won the election. Many popular
voting methods have analogues in this framework.

Even in cases where it is not necessary to solve MAX-
UTIL in order to solve the Winner Determination Problem,
the complexity of MAX-UTIL provides a lower bound on
how complex the Winner Determination Problem is: Ob-
serve that in the (degenerate) single-bidder case, the two
problems coincide. If only one bidder shows up to the auc-
tion, then determining which items she wins is precisely the
same as finding her optimal state. Therefore, the Winner De-
termination Problem can never be easier than MAX-UTIL, as
it contains MAX-UTIL as a sub-problem.

Finally, for an agent herself it is useful to solve MAX-
UTIL if she builds her bids not directly from an explicitly
represented utility function, but instead from constraints or
through elicitation. In that case, the agent may only be able
to figure out her optimal state by solving MAX-UTIL. Here,
all value is measured along a single axis, utility. Were we
to consider an extension of weighted formulas to encompass
multiple, incommensurable measures, as in multi-criterion
decision making, it would be even less likely that an agent
would be aware of her optimal states, and hence solving
MAX-UTIL becomes even more important in that setting.

Preliminaries
The importance of finding appropriate bidding languages
for combinatorial auctions is well-known (Nisan 2006). We
take a logic-based approach:

Definition 1 (Atoms, Weighted Formulas, Goal Bases and
Utility Functions).
• By PS we denote the finite set of propositional symbols

(atoms), which in our context represent the goods on the
auction block.
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• For M ⊆ PS and a propositional formula ϕ of a lan-
guage LPS over PS (using ∧, ∨, and ¬ as connectives),
we write M |= ϕ to say that ϕ is satisfied by assigning
true to all atoms in M and false to all others.
• A weighted formula is a pair (ϕ, w) where ϕ ∈ LPS and

w ∈ R.
• A goal base is a set G = {(ϕi, wi)}i of weighted satisfi-

able formulas.
• The utility function uG generated by the goal base G is,

for M ⊆ PS,

uG(M) =
∑
{wi : (ϕi, wi) ∈ G and M |= ϕi} .

Note that the fact that goal bases contain only satisfiable
formulas is important. Without it, any computational task
involving goal bases which involves finding models would
immediately become NP-hard; with this constraint, we can
avoid solving SAT for the formulas in our goal bases. This
is a reasonable limitation, as it would be strange for users of
a bidding language to supply unsatisfiable formulas in their
bids.
Definition 2.
• The MAX-UTIL function problem for a class C of goal

bases is as follows: Given G ∈ C, find an assignment
M ⊆ PS such that uG(M) is maximized.
• The decision problem used in previous research is as fol-

lows: Given G ∈ C and a number K, is uG(M) ≥ K for
a maximizing assignment M?
In addition to these concepts from combinatorial auctions,

we need the following notions and results from propositional
logic programming (PLP), taken from (Dantsin et al. 2001).
Definition 3 (Horn Clauses, Least Models). A strict (resp.
general) Horn clause is a non-empty disjunction of exactly
(resp. at most) one atom and zero or more negated atoms.

For a set S of strict Horn clauses, a least model LM (S)
of S is a smallest set M ⊆ PS such that M |= S, that is,
M |= ϕ for all ϕ ∈ S.
Fact 4. Any set S of strict Horn clauses has a unique least
model.
Definition 5. The PLP decision problem is as follows:
Given a set S of strict Horn clauses and some p ∈ PS,
is p ∈ LM (S)?
Fact 6. The PLP decision problem is P-complete.

Finally, we will use the following decision problem along
with its complexity result, to be found, e.g., in (Greenlaw,
Hoover, & Ruzzo 1992).
Definition 7. The HORNSAT decision problem is as follows:
Given a set S of general Horn clauses, is S satisfiable?
Fact 8. The HORNSAT decision problem is P-complete.

Logically speaking, Horn clauses express facts and de-
pendencies in the following ways:
• Strict Horn clauses with no negated atoms, i.e., consisting

only of one atom, represent plain facts. In the context of
auctions, these are statements about single goods, in vot-
ing, single candidates: “I’ll pay $50 for the Elvis statue.”,
“I cast a vote for Obama.”

• Strict Horn clauses containing negated atoms correspond
to implications. In our context they can be viewed as
statements conditioned on several goods with one good
as consequence: “If you don’t eat your meat, you can’t
have any pudding.” Additionally, strict horn clauses with
negated atoms lend themselves to describing situations in
which both goods and bads must be divided: “For $1, ei-
ther I get the last piece of cake, or I don’t have to clean
the bathroom.”

• Non-strict Horn clauses, i.e., disjunctions containing only
negated atoms, correspond to negated conjunctions; we
can think of them as “negative synergies”, or exclusions
of certain combinations of goods: “A committee with both
Alice and Bob on it would be a disaster.”, “I would appre-
ciate not having both my defense and my job interview
today.”, “If I have to change planes in London, it’s worth
$50 to me to avoid doing it at Heathrow.”,
These ways of interpreting Horn clauses have proved their

usefulness in the area of logic programming. We believe
that they also make them a versatile and powerful base for
preference representation languages.

Revising the MAX-UTIL Decision Problem
In our view, the decision problem from Definition 2 does not
adequately capture the function problem defined there.

If a decision problem is used to simplify the formulation
of some function problem to a mere yes/no question, then the
complexity of finding a solution should be preserved, and
these problems should be related in the sense that solving
one enables one to solve the other one easily (Papadimitriou
1993).

Currently, the two formulations of MAX-UTIL are not re-
lated in this sense.

With the classes considered in previous research, the de-
cision problem did capture the complexity of the function
problem and could indeed be solved most expediently by
solving the function problem; however, consider the follow-
ing class C of goal bases:

C =
{
{(ϕi, wi)}i :

∧
ϕi is satisfiable and all wi ≥ 0

}
.

The decision problem here is trivial (sum the weights and
check whether the sum exceeds the given K) and gives no
guidance as to the solution of the function problem, nor does
it reflect its complexity.

We therefore propose the following decision problem:
Definition 9 (MAX-UTIL Decision Problem). Given a goal
base G and an atom p ∈ PS, is p true under the maximizing
assignment (fix an arbitrary one if not unique)?

To see why it is necessary to fix one maximizing as-
signment in case there are several, consider the goal base
{(p∧¬q, 1), (¬p∧q, 1)}) and note that both p and q are true
under some maximizing assignment, but both taken together
do not maximize the utility.
Note. It may seem ugly to fix an arbitrary assignment, and
indeed one could, for example, require the least assignment
with respect to some ordering; however by doing so the com-
plexity of the problem may actually increase. This becomes

124



evident with the PLP goal base class presented in the follow-
ing; see the discussion at the end of this paper.

By executing a solution procedure for this decision prob-
lem |PS| times, one can construct a solution to the original
function problem; vice versa, solving the function problem
obviously enables one to solve the decision problem. Hence,
the revised decision problem given in Definition 9 is related
to the function problem in the sense described above.

In terms of computational complexity, we can say that the
decision problem is, for the most general language in which
all formulas and all weights are allowed, NP-complete; and
that the corresponding function problem is in TFNP, which
is the class of function problems on polytime-decidable
predicates for which there is guaranteed to be a witness. (For
a discussion of complexity classes associated with function
problems, see (Megiddo & Papadimitriou 1991).)

Finding P-complete Goal Base Classes

The MAX-UTIL problem is NP-complete for the general
class of goal bases allowing arbitrary propositional formu-
las and weights. (This can be seen via a simple reduction
from MAXSAT to MAX-UTIL, in which every formula in
the input is given weight 1.) Attempts to find tractable sub-
classes in previous research consisted in putting natural re-
strictions on the formulas and weights, e.g., allowing only
conjunctions of (negated) atoms and positive weights. As
mentioned above, the resulting classes were either still in-
tractable or trivial. In order to make preference representa-
tion languages tractable while retaining an interesting mea-
sure of expressive power, it seems necessary to find classes
with some intermediate complexity.

We thus propose the following approach: Instead of
putting restrictions on the goal bases and then examining the
complexity, we take a problem which has a certain complex-
ity and find a class of goal bases whose MAX-UTIL problem
corresponds to it.

Intuitively, it is evident that Horn clauses are more ver-
satile and expressive than the above-mentioned natural re-
strictions. For example, (¬a ∨ b, 1) translates into positive
cubes (conjunctions) as {(>, 1), (a,−1), (a ∧ b, 1)}, while
(¬a∨¬b, 1) becomes {(>, 1), (a∧ b,−1)}. While these are
not cumbersome on their own, it can become so when sev-
eral Horn clauses are translated together, since in translation
the weight of each Horn clause is distributed over multiple
positive cubes. Translation into another simple language,
positive clauses with positive weights, will not typically be
possible, as general Horn clauses are not monotone formu-
las and so require a language which offers either negation as
a connective or permits negative weights.

Furthermore, there are various P-completeness results in-
volving Horn clauses, two of which we stated above.

For these reasons, in the following we will apply our ap-
proach to find two P-complete goal base classes related to
Horn clauses.

PLP Goal Bases
Definition 10. The class GPLP of PLP goal bases consists
of all goal bases

G = {(ϕi, wi)}i ∪
{(

p,− m
|PS|+1

)}
p∈PS ,

where

• the ϕi are strict Horn clauses,
• the wi are positive, and
• m equals mini{wi}.
LP(G) := {ϕi}i is the underlying logic program consisting
of all positively weighted formulas. The remaining terms are
penalty terms.

The penalty terms are needed for technical reasons, and
we will return to them in the discussion.

Fact 11. The weights of the penalty terms sum up to an ab-
solute value less than any of the wi. That is, for all i,

wi >
∑

p∈PS

m

|PS|+ 1
.

Corollary 12. The (unique) maximizing valuation of any
G ∈ GPLP is the least model of the underlying logic pro-
gram, i.e., LM (LP(G)).

Proof. LM (LP(G)) obviously satisfies all formulas of G
that have positive weights. Since it is a least model, due to
Fact 11, none of its subsets get a higher value; due to the
penalty terms, none of its supersets get a higher value; and
due to Fact 4, it is unique.

Lemma 13. The MAX-UTIL decision problem for PLP goal
bases is in P.

Proof. Given G ∈ GPLP and p ∈ PS , LP(G) can be com-
puted in linear time, and then p ∈ LM (LP(G)) is decidable
in polynomial time due to Fact 6. Due to Corollary 12, this
yields the answer to the MAX-UTIL decision problem.

Lemma 14. PLP can be reduced in logarithmic space to the
MAX-UTIL decision problem for PLP goal bases.

Proof. Given a logic program S = {ϕi}i and p ∈ PS, let

G :=
n⋃

i=1

{(ϕi, 1)} ∪
⋃

p∈PS

{(
p,− 1

|PS|+1

)}
.

Obviously, G ∈ GPLP, and due to Corollary 12, solving
the MAX-UTIL decision problem instance (G, p) yields the
answer to the PLP decision problem instance (S, p).

Corollary 15. The MAX-UTIL decision problem for PLP
goal bases is P-complete.

Proof. Follows immediately from Lemmas 13 and 14.
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HS Goal Bases
Definition 16. The class GHS of HORNSAT goal bases con-
sists of all sets G of weighted general Horn clauses with
positive weights, subject to the following condition:

Let wi denote the weights of the strict Horn clauses in G
and w′j denote the remaining weights. Then we require that∑

j

w′j < min
i
{wi} .

That is, the sum of weights of non-strict clauses (i.e., those
containing no positive atom) is less than the weight associ-
ated to any strict clause.

This condition does not appear to be very intuitive, and
we will return to it in the discussion. For the time being,
note that it is only needed to ensure that the complexity stays
within P (Lemma 17); it may be possible to find a more in-
tuitive condition to this effect.

Lemma 17. The MAX-UTIL decision problem for HS goal
bases is in P.

Proof. Given G ∈ GHS, use e.g., unit propagation to find a
satisfying assignment if one exists. If it does exist, this is
the maximizing assignment since all weights are positive. If
it does not exist, let G′ ⊂ G be the subset containing all
strict Horn clauses. Due to the condition in Definition 16,
LM (G′) is a maximizing assignment for G, since

• it satisfies all strict Horn clauses, and
• among all such assignments, it satisfies the most non-

strict Horn clauses.

The second item holds due to the fact that we have a least
model of G′, that is, one that satisfies the greatest set of
negated atoms, and non-strict Horn clauses are just disjunc-
tions of those.

Lemma 18. HORNSAT can be reduced in logarithmic space
to MAX-UTIL for HS goal bases.

Proof. Given a set S = {ϕ1, . . . , ϕn, ϕ′1, . . . , ϕ
′
m} of strict

(ϕi) and non-strict (ϕ′i) Horn clauses, build the HS goal base

G :=
n⋃

i=1

{(ϕi, 1)} ∪
m⋃

i=1

{(
ϕ′i,

1
m+1

)}
,

obtain the maximizing assignment by solving MAX-UTIL
for G and each p ∈ PS , and check whether it satisfies all
formulas in G. Since the assignment is maximizing and all
weights are positive, it will do so iff G is satisfiable.

Corollary 19. The MAX-UTIL decision problem for HS
goal bases is P-complete.

Proof. Follows from Lemmas 17 and 18.

Discussion
As mentioned earlier, we believe that Horn clauses form
a versatile and powerful base for preference representation
languages, since their form is restricted in a clear way, but
they retain the ability to express natural forms of depen-
dency. The existence of various P-completeness results in-
volving Horn clauses suggests that they lend themselves to
our approach. We therefore focused on these, without mean-
ing to suggest that other classes of formulas might not be
worth considering. There are certainly other P-complete
fragments of the full weighted formula language which are
induced by other P-complete problems and embody differ-
ent kinds of synergies than those examined here. We thus
hope that our approach can be fruitfully applied to obtain
further results.

While some of our examples focused on auctions, Horn
clauses also have useful interpretations in multi-winner vot-
ing. They can express dependencies among candidates, e.g.,
to say that Alice should be on a committee whenever Bob is,
or that Alice should not be on a committee if Bob is.

The goal base classes we presented may at first glance
seem artificial and unnatural, and they may then simply be
viewed as proof of concept for our approach, and proof
of existence for logic-based preference representation lan-
guages of intermediate complexity.

However, the penalty terms which occur in PLP do re-
flect an intuitively justifiable desideratum, since they make,
ceteris paribus, assigning fewer items favorable. If no-one
benefits from obtaining some additional item, why should
the auctioneer give that item away for nothing instead of
keeping it for some later auction? In that sense, it might
even be desirable to require a least maximizing assignment
in the definition of the MAX-UTIL problem itself. With such
an alternative definition, one could remove the penalty terms
from PLP goal bases and obtain a quite natural P-complete
goal base class. This also shows that, as noted under Def-
inition 9, requiring the least (instead of an arbitrary) maxi-
mizing assignment has an effect on the complexity of MAX-
UTIL: With such a requirement, it would be P-complete for
PLP goal bases without penalty terms, while as it stands, it
is trivially solved by making all atoms true.

As for HS goal bases, as mentioned above, the unintuitive
condition in Definition 16 is only used to prove Lemma 17,
and it may be possible to find a more intuitive condition to
that effect. However, this condition might even be accept-
able if bids or preferences can be described “lexicographi-
cally” on two levels: Strict Horn clauses (facts and implica-
tions) describe the primary bid in form of a logic program.
Then, non-strict Horn clauses (exclusions of certain combi-
nations) can be added for fine-tuning and favoring certain
models of the logic program over others. Note that this sec-
ondary bid matters, since HS goal bases, contrarily to PLP
goal bases, do not enforce least models.

In future research, we plan to look closer at issues such
as representational power, pursue our ideas for making our
goal base classes more intuitive, and use our approach in
order to find other preference representation languages with
intermediate complexity.
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