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Abstract

Comparisons of similarity or dissimilarity between systems
of preferences over multiple attributes play important roles
in interest matching, social networking, collaborative filter-
ing, and personalization. We develop metrics over prefer-
ences represented compactly by conditional preference net-
works (CP-networks) and their variants. Our metrics exhibit
intuitive properties and support efficient (polynomial-time)
algorithms for computing similarities.

Introduction

Decisions to interact with or accept recommendations from
others in social networking environments rely in part on as-
sessments of the degree to which one’s interests and tastes
are shared with or are different from those of others. We
focus on comparing decision-theoretic preferences of agents
on the assumption that such preferences can serve as a rea-
sonable proxy for or representation of many pertinent as-
pects of interests and tastes. This assumption seems rea-
sonable in that the notion of preference formalized in eco-
nomic decision theory provides quite a bit of expressive
power, both in traditional multiattribute utility function ap-
proaches and in theories of preferenceceteris paribusat
the focus of much recent research (Wellman & Doyle 1991;
Doyle, Shoham, & Wellman 1991).

In previous work (Wicker 2006; Wicker & Doyle 2007), we
studied the use of preference-similarity measures developed
by Kemeny and Snell 1962 and Bogart 1973 in comparing
the interests of agents. That work used these existing met-
rics to compare preference orders expressed by conditional
preference networks, or CP-networks (Boutilier, et al 1999;
2004), which provide a simple graphical representation for
one common form of preference expression (as depicted in
Figure 2). These metrics, however, have bad computational
properties.

In this paper, we extend the results of (Wicker 2006) by
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constructing metrics on CP-networks that can be computed
efficiently and that reflect comparative judgments related
to those of the Kemeny, Snell, and Bogart metrics. We
continue a focus on CP-networks rather than more gen-
eral logical languages for specifying preferences, for ex-
ample (Doyle, Shoham, & Wellman 1991; Kiessling 2004;
Chomicki 2003). We reformulate the usual development of
CP-networks in functional terms so as to better facilitate the
statement and analysis of our metrics and other functions
of preference orders. For lack of space here we state our
theorems without proofs, which can be found in (Wicker &
Doyle 2008).

Preferences

Attributes

We consider preference representations that employ a finite
setA of one or moreattributesof possibly different types.
In all the following, we presume an enumeration of the at-
tributes as〈A〉 = 〈a0, a1, . . . , an〉. We write individual at-
tributes asa or ai, with subscripts on attributes normally
referring to the enumeration ordering. Each attributea has
a set or domain of attributevaluesVa that it can take, which
we here assume is finite. We often writeVi as shorthand for
Vai

, and sometimes writea as shorthand forVa. Distinct
attributesa 6= a′ can have the same set of values, that is,
Va = Va′ .

Outcomes

An outcomeis a partial functionω : A →
⋃

a∈A Va such
thatω(a) ∈ Va for each attributea for whichω(a) is defined.
If ω is defined exactly for the attributes in a setA, we say that
A is thedomain (of definition)of ω and writedom(ω) = A.
We writeΩ to denote the set of all outcomes, and writeΩA

to denote the set of outcomes with domain of definitionA.

Each outcomeω ∈ ΩA thus corresponds to a total func-
tion from A to

⋃

a∈A Va. The setΩA is thus isomorphic
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to
∏

a∈A Va, with the factors of the product ordered by as-
cending attribute enumeration order, and with each outcome
corresponding to a tuple of attribute values for attributes in
the domain of definition. We sometimes writeωi to refer to
the valueω(ai) of ai in ω. We writeΩa to abbreviateΩ{a},
which is isomorphic to the set of valuesVa of a. With these
definitions, we haveΩ∅ = { () } being the set consisting
of the unique 0-tuple,ΩA being the set of total outcomes
defined on all attributes, andΩ =

⋃

A⊆A ΩA.

We write ρA(ω) or ρ(ω, A) to denote theretraction of an
outcomeω to an outcome over a set of attributes contained
in A, with ρA(ω) obtained by discarding the values inω
corresponding to attributes not inA. Formally, we define
ρA(ω) to be the outcome such thatρA(ω)(a) is ω(a) if a ∈
A ∩ dom(ω), and is undefined for all other attributes. If the
domain of definition ofω is A′ andA ⊆ A′, then the domain
of definition ofρA(ω) will also beA. If A 6⊆ A′, then the
domain of definition ofρA(ω) will be a proper subset ofA.
In particular, ifA andA′ are disjoint, we defineρA(ω) = ().

We write ηA(ω) or η(ω, A) to denote theexpansionof an
outcomeω to outcomes over a set of attributes containing
A. Where the value ofρA(ω) is a single outcome, the value
of ηA(ω) is a set of outcomes, namely, all those outcomes
with domains of definition includingA that would return to
ω under retraction. Formally, we define

ηA(ω)
def
= {ω′ ∈ ΩA∪dom(ω) | ρdom(ω)(ω

′) = ω}.

If every outcome in a setS of outcomes has the same do-
main of definition, we say thatS is homogeneousand extend
the notion of expansion toS in the natural way by defining
ηA(S) =

⋃

ω∈S ηA(ω).

To simplify some definitions and computations, we assume
that the values of each attributea are totally ordered by a
reference order<a. We combine the enumeration order of
attributes with the reference orders of attribute values to ob-
tain a reference order on outcomes. Specifically, we define
the reference order on each setΩA to be that obtained as
the lexicographic ordering with respect to the attribute enu-
meration and reference order of the attribute values. A fi-
nite set of outcomes consists of a finite number of attributes,
each of which has finitely many values. In this case, a ref-
erence ordering provides areference enumerationof out-
comes. Moreover, for finite sets of binary attributes, we
can obtain a simple enumeration of outcomes by interpret-
ing each outcome as the binary representation of an integer,
and using the natural ordering of the resulting integers.

Preference orders

Economics formalizes preferences in terms of notions of
weak preference, strict preference, and indifference.Weak
preferencerefers to a partial preordering of a set of alter-
natives, that is, a reflexive and transitive binary relation%.
Strict preferenceconsists of the strict partial order obtained

as the strict part of a weak preference ordering, that is, an
irreflexive, antisymmetric, and transitive binary relation≻
defined so thatx ≻ y iff x % y andy 6% x. Indifference
consists of the equivalence relation formed by the symmet-
ric portion of a weak preference ordering, defined so that
x ∼ y iff x % y andy % x. Our focus in this paper is on
strict preference, so when we speak of orders, we normally
will mean strict partial orders.

We writeO to denote the set of all preference orders over
homogeneous outcomes, defined as follows. Specifically,
we writeOA to mean the set of all strict partial orders over
ΩA, write Oa to mean the set of orderings over the setΩ{a}

of values of attributea, and writedom(o) to denote the com-
mon domain of definitiondom(ω) of outcomes ordered by
o. We then obtain the full set of ordersO =

⋃

A⊆A OA

by combining all the limited sets of orders. We write⊥A

to mean theempty orderover ΩA in which no outcome is
strictly preferred to any other.

Preference ceteris paribus

In the present treatment, we interpret preferences over the
values of one attribute as preferencesceteris paribus, that
is, as expressions of preference for one value over another
other things being equal. Formally, we interpret a preference
v ≻ v′ for one valuev ∈ Va over some other valuev′ ∈ Va

as expressing a preference orderJv ≻ v′K over full outcomes
in ΩA so thatω ≻ ω′ in Jv ≻ v′K wheneverωi = v, ω′

i = v′,
andωj = ω′

j for eachj 6= i.

More generally, for any set of attributesA ⊆ A, we define
the ceteris paribusexpansionηA(v ≻ v′) of the comparison
v ≻ v′ from the domainVa to domainΩA by

ηA(v ≻ v′)
def
= {(ω, ω′) ∈ ΩA × ΩA |

ρ{a}(ω) = v ∧

ρ{a}(ω
′) = v′ ∧

ρA\{a}(ω) = ρA\{a}(ω
′)}.

We clearly haveJv ≻ v′K = ηA(v ≻ v′). We extend the
order-interpretation notation to writeJv ≻ v′KA to denote
the expansionηA(v ≻ v′), that is, the preference order over
ΩA entailed by the conditionv ≻ v′.

Note that ifa /∈ A, then the expansionηA(v ≻ v′) = Jv ≻
v′KA consists of the empty order overΩA that leaves all out-
comes incomparable.

If ω ∈ Ω andv andv′ denote values ofa, we define the
restricted preference conditionJω ⇒ v ≻ v′KA to mean the
restriction of the orderJv ≻ v′KA to outcomes subsumingω,
that is,

Jω ⇒ v ≻ v′KA
def
= J{(ω′, ω′′) ∈ Jv ≻ v′KA |

ρdom(ω)(ω
′) = ω ∧

ρdom(ω)(ω
′′) = ω}KA.
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We haveJω ⇒ v ≻ v′KA = ∅ if a ∈ dom(ω), for then
the only possible restricted comparisons are ones that have
the same value fora, which cannot be preferred to itself. We
also haveJω ⇒ v ≻ v′KA = ∅ if A anddom(ω) are disjoint.

If S is a set of restricted or unrestricted conditions on prefer-
ences, we writeJSKA to denote the preference order entailed
by the transitive union of the conditions inS, that is,

JSKA =

[

⋃

s∈S

JsKA

]∗

,

where the notationR∗ means the transitive closure of the
binary relationR. In particular, ifo ∈ Oa anda ∈ A, we
write JoKA to denote the expansion of the order overΩa to
an order overΩA formed as the transitive union

JoKA =

[

⋃

(v,v′)∈o

Jv ≻ v′KA

]∗

of the set of expansions of all comparisonsv ≻o v′.

Reusing the same notation, we generalize the notion ofce-
teris paribusexpansion to change of basis of an order to an
order over any other set of outcomes. We define the expan-
sion or change ofω ≻ ω′, whereω, ω′ ∈ ΩA′ , to a compar-
ison between outcomes over a domainA by

ηA(ω ≻ ω′)
def
= {(ω′′, ω′′′) ∈ ΩA × ΩA |

ρA′(ω′′) = ρA∩A′(ω) ∧

ρA′(ω′′′) = ρA∩A′(ω′) ∧

ρA\A′(ω′′) = ρA\A′(ω′′′)}.

Clearly, if A′ ⊆ A, this expands the original comparison to
ones over the larger domain of attributes in a way consistent
with the preceding definition ofceteris paribusexpansion.

If A ⊆ A′, a change of basis fromA′ to A has the effect of
reducing the comparison inΩA′ × ΩA′ to a comparison in
ΩA×ΩA. We say thato ∈ OA is thecompactionor minimal-
basis representationof o′ ∈ OB just in caseo′ = ηB(o)
andA ⊂ A′ whenevero′′ ∈ OA′ ando′ = ηA′(o′′). If
o is the compaction ofo′, then we writeo = κ(o′). We
observe that no order can be reduced to a smaller basis than
that of its compaction in a consistent way, soJoKA = ∅ if
A ⊂ dom(κ(o)).

We define general order expansions of an ordero ∈ OA′ to
a set of attributesA in terms of the transitive union of their
individual comparison expansions by

JoKA =

[

⋃

(ω,ω′)∈o

Jω ≻ ω′KA

]∗

.

KSB metric extension

Kemeny and Snell 1962 developed a metricdA : OA ×
OA → R on finite orders (see (Wicker 2006)) by advancing

axioms such metrics must satisfy beyond the ordinary ax-
ioms for metrics, and Bogart 1973 provided an enlarged set
of axioms extending this metric to strict preference orders.
Although defined in terms of a natural matrix representation
of orders, their metric has a simpler restatement in terms of
the set-theoretic representation of the preference orders. If
one regards strict orderso ando′ as sets of ordered pairs and
writes the symmetric difference of these sets aso △ o′, then
we also have

dA(o, o′) = |o △ o′|. (1)

We now extend the KSB metricdA on the several order sets
OA to a single metricd : O × O → R over the full set of
ordersO. We do this by recasting both orders as orders over
their minimal common domain and taking the KSB distance
of those minimal representations.

If κ(o) ∈ OA andκ(o′) ∈ OA′ , then we say thatJκ(o)KA∪A′

andJκ(o′)KA∪A′ are theminimal common expansionsof the
the orderso and o′, respectively. That is, we expand the
compaction of each order to the minimal attribute set such
that the orders are each over the same outcomes. We say that
A ∪ A′ is theirminimal common domainand denote this by
µ(o, o′).

Theorem 1. For eacho ∈ O andA ⊆ A, we haveJoKA =
Jκ(o)KA

We define an extended KSB metricd : O × O → R over
the full set of ordersO by finding the KSB distance of or-
ders when translated to their minimal common domain. For-
mally, if o, o′ ∈ O, then we define the distanced(o, o′) by

d(o, o′)
def
= dµ(o,o′)(JoKµ(o,o′), Jo′Kµ(o,o′)). (2)

Clearly, if two orders are both over their minimal common
domain, thend agrees with the KSB distance.

Another way to obtain this distance measure is to expand
each of the orders under comparison to the full set of at-
tributes, find the KSB distance of the expanded orders, and
normalize by the number of complete outcomes over the at-
tribute set by which their minimal common domain has been
expanded. That is, (2) is equivalent to

d(o, o′) =
dA(JoKA, Jo′KA)

|ΩA\µ(o,o′)|
. (3)

Conditional preference (CP) networks

Conditional preference networks (CP-networks) were devel-
oped to provide a natural and compact representation of
simple ceteris paribuspreferences (Boutilier, et al 1999;
2004), namely preferences over the possible values of indi-
vidual attributes when these preferences depend on the val-
ues taken by other attributes.
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Network structure

An attribute graphover a set of attributesA is a pair(A, E)
such thatE ⊆ A × A represents a set of directed edges
from parent to child attribute nodes. It is common to restrict
attention to acyclic graphs, but we do not assume that here.
We writeGA to denote the set of all attribute graphs overA,

andG
def
=

⋃

A⊆A GA to mean the set of all attribute graphs.
We represent an individual graphg ∈ G as(A(g), E(g)) or
just (A, E).

The key aspects of attribute graphs in analyzing CP-
networks are the setPar(a, g) = {a′ ∈ A(g) | (a′, a) ∈
E(g)} of parentsand the setChd(a, g) = {a′ ∈ A(g) |
(a, a′) ∈ E(g)} of childrenof a nodea in the attribute graph
g. When the graph in question is clear from the context, we
sometimes writePar(a) instead ofPar(a, g). Naturally,
if A does not appear in a graphg, we havePar(a, g) =
Chd(a, g) = ∅.

CP-networks represent preferences by means ofCP-tables
associated with each attribute node. In each row of each
such table, the last column states an order over the values
of the attribute node, and the other columns, if any, state an
assignment of values to the parent attributes. Each CP-table
has one row for every combination of values for the parent
attributes, making the size of the table exponential in the
number of parents.

We represent CP-tables as functions from outcomes to or-
ders. Formally, for eachA ⊆ A, the set of CP-tables for

(parents)A and (child)a is the set of functionsT (A, a)
def
=

(ΩA → Oa). We obtain the set of CP-tables for attribute
a by combining these functions over different possible sets

of parents into the set of functionsT (a)
def
=

⋃

A⊆A T (A, a).

We define the set of all CP-tables byT
def
=

⋃

a∈A T (a).

We thus representCP-networksby combining attribute
graphs with appropriate CP-tables. Formally, a CP-network
N = (g, t) or N = (A, E, t) consists of an attribute graph
g = (A, E) together with a functiont : A → T such that
t(a) ∈ T (Par(a), a). We writeNA to denote the set of all
networks overGA, andN to denote the set of all networks
overG.

Network semantics

If N = (A, E, t) is a CP-network,JNKA denotes the overt
meaning of the network as the induced order overΩA.
Specifically, ifa ∈ A, ω ∈ ΩPar(a,N), ando = t(a, ω), we
interpret theω row of the CP-table fora in N as making the
restricted preference statementω ⇒ o. We then obtain the
induced orderJNKA by transitive closure of the conjunction

x : y ≻ ȳ

x̄ : ȳ ≻ y
expansion
−−−−−−−→

xz : y ≻ ȳ

xz̄ : y ≻ ȳ

x̄z : ȳ ≻ y

x̄z̄ : ȳ ≻ y

t ∈ T ({X}, Y ) η(t, {X, Z})

Figure 1: CP-table expansion. The table on the left involves
only one parent, attributeX . On addition of a parent at-
tributeZ, each row in the original table splits into rows for
each value of the new attribute, with each of the split rows
indicating the same value ordering as in the unsplit row of
the original table.

of these statements, that is,

JNKA =
q
{ ω ⇒ t(a, ω) | a ∈ A, ω ∈ ΩPar(a,N)}

y
A
.
(4)

Some presentations of CP-networks express this same in-
duced order in algorithmic terms, saying thatω ≻ ω′ just in
case there exists a “value-worsening” sequence of outcomes
ω = ω1, . . . , ωk = ω′ such that each pair of successive out-
comesωj andωj+1 differ in exactly one attribute, for which
the value inωj+1 is less preferred than the value inωj ac-
cording to the CP-network preference tables.

The preference statements contributing to CP-table mean-
ings in (4) can vary in size, depending on the graph struc-
ture of the network. In fact, we can express the network
semantics as a set of statements of uniform size and struc-
ture simply by considering meanings in terms of the full set
of attributesA. That is, we consider the meaning to be the
ceteris paribusexpansion of the overt meanings to the full
set of attributes, given by

Jω ⇒ t(a, ω)K =
q
{ ω′ ⇒ t(a, ω) |

ω′ ∈ Ω ∧

ω = ρPar(a,N)(ω
′)}

y
.

In this view, each table overPar(a, N) expands into a ta-
ble overA in which each row overΩPar(a,N) subdivides
into rows overΩA that agree on the attributes inPar(a, N).
The order specified in each of the subdivision rows is the
same as theceteris paribusorder specified in the subdivided
row when expanded fromΩPar(a,N) to ΩA. More precisely,
each of the|ΩPar(a,N)| rows in the table for attributea ex-
pands into

|ΩA\Par(a,N)| =
|ΩA|

|ΩPar(a,N)|

rows in the table over all attributes inA.

To facilitate the discussion, we define theexpansionη(t, A′)
of a CP-tablet ∈ T (A, a) to a tablet′ ∈ T (A′, a) over an
extended set of attributesA′ ⊇ A by the requirement that
t′(ω) = t(ρA(ω)) for eachω ∈ ΩA′ . Figure 1 depicts a sim-
ple example of a CP-table expansion fromΩ{X} to Ω{X,Z}.
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Observe that orders stated in the expanded CP-table do not
depend on the values of the expansion attribute, and are iden-
tical with the values assigned for the original attributes in the
original table.

Metrics on CP-networks

Referential distance

To obtain a distance metric on CP-networks, we only need to
apply the distance metric on orders to the orders denoted by
the CP-networks. Formally, we define thereferentialmetric
dr : N ×N → R by

dr(N, N ′)
def
= d(JNK, JN ′K). (5)

Although the referential metric provides a reasonable and
precise comparison between CP-networks, it has terrible
computational properties. First of all, computing the dis-
tance between two networks over the samen values requires
examination of on the order of(2n)2 comparisons between
outcomes for binary attributes, and examination of even
more for attributes with more than two values. Such compu-
tations are infeasible except for the smallest networks. Sec-
ond, the indirect connection of network distance with net-
work structure makes it difficult to predict the magnitude of
distances between networks from network differences them-
selves. Put together, these problems impel one to seek met-
rics on networks defined in terms of the structural properties
alone, without the referential detour through the orders over
outcomes indicated by the network semantics.

For the purpose of measuring similarity between preference
orders, we need not demand perfect agreement betweendr

and some new distance measured′, only strategic equiva-
lence in the sense that the two measures agree on relative
distance comparisons. Formally, we seek an efficiently-
computabled′ such that for everyN, N ′, N ′′ ∈ N , we have

dr(N, N ′) < dr(N, N ′′) iff d′(N, N ′) < d′(N, N ′′). (6)

Simple structural distance

To avoid the high cost of computing the referential distance
measure, we look to identify distance measures defined di-
rectly over the CP-network representation rather than indi-
rectly through the meanings of these networks. The simplest
candidate along these lines is an edit distance measure tak-
ing into account both graph and order elements.

In (Wicker & Doyle 2008), we analyze five types of CP-
network edit operations: addition of a new attribute, removal
of an attribute, addition of an edge, removal of an edge, and
change of preference order.

We clearly can transform any network into the empty net-
work by successively changing all CP-table entries to the
empty order, then removing all edges, and finally remov-
ing all nodes. We can thus transform any network into any
other by transforming the first to the empty network and then
inverting the sequence of operations needed to reduce the
other network to the empty network. Indeed, this sort of
transformation through “zero” forms the basis for the KSB
axioms on order distances.

The main drawback of this simple structural metric is that it
yields distances and relative comparisons at odds with those
obtained using the referential semantics.

Table expansion metric

To find a metric on networks that has the low-cost com-
putability of the simple edit distance but exhibits order-
compatibility with the underlying reference metric, we in-
troduce thetable-expansion metricde : N × N → R, de-
fined for networksN = (A, E, t) andN ′ = (A′, E′, t′) by

de(N, N ′)
def
=

∑

a∈A

∑

ω∈ΩA\{a}

d(η(t(a),A\{a})(ω), η(t′(a),A\{a})(ω))

(7)

This measure compares orders specified by tables under all
conditions. To do this, it interprets each row of each table
as specifying one or more entries in the full condition table,
and adds up the KSB distances between the orders indicated
by each of these maximally-specific rows.

The table expansion metric works no matter what size the
original networks are, and works even if the orders specified
in table entries are not total orderings of the attribute values.
The table expansion metric also works with tables that lack
some rows, if one regards the missing rows as having empty
orders.

Computing the table expansion metric directly is not feasi-
ble because there are exponentially many rows in the full
condition table. However, one can compute the metric in
time proportional to the size of the table by simply finding
the least common refinements of comparable nodes in the
networks under comparison, and then weighting each table
entry of the nodes under comparison by the number of con-
ditions in the full expansion.

Theorem 2. If N = (A, E, t), N ′ = (A′, E′, t′),
A+ = A ∪ A′, andPar+(a) = Par(a) ∪ Par′(a), then

de(N, N ′) = (|ΩA+ |)−1 ·
∑

a∈A+

|Ω(A+\Par+(a))|·

∑

ω∈Ω
P ar+(a)

d(η(t(a), Par+(a))(ω), η(t′(a), Par+(a))(ω))

Consider the CP-networksN1 and N2 depicted in Figure
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(N1)

X

Y

x ≻ x̄

x : y ≻ ȳ

x̄ : ȳ ≻ y

y : x ≻ x̄

ȳ : x ≻ x̄

xy ≻ x̄y

xȳ ≻ x̄ȳ

x : y ≻ ȳ

x̄ : ȳ ≻ y

xy ≻ xȳ

x̄ȳ ≻ x̄y

(N2)

X

Y

x̄ ≻ x

x : ȳ ≻ y

x̄ : ȳ ≻ y

y : x̄ ≻ x

ȳ : x̄ ≻ x

x̄y ≻ xy

x̄ȳ ≻ xȳ

x : ȳ ≻ y

x̄ : ȳ ≻ y

xȳ ≻ xy

x̄ȳ ≻ x̄y

Figure 2: Two CP-network expansions of tables. Each CP-
network (left column) is shown with the expanded CP-tables
(middle column) and the the orders specified by each row
(right column).

2. We can see the expansion of each of the CP-table rows
into the maximally specific CP-table. We count the KSB
distances between each of the corresponding rows in these
maximally specific tables and getde(N1, N2) = 3. For com-
parison, we also getdr(N1, N2) = 9.

Although a CP-network might have nodes that are children
of all the nodes, in practical applications one expects to see
bounded branching in the networks. In this case, distances
can be computed efficiently.

Theorem 3. For each integerk, the expansion distance be-
tween two networks in which the number of parents of nodes
is bounded byk can be computed in time polynomial in the
sizes of the two networks.

It is not hard to show that expansion distancede provides a
lower bound on referential distancedr.

Theorem 4. de(N, N ′) ≤ dr(N, N ′) for eachN, N ′ ∈ N .

It is also not hard to show half of the desired strategic equiv-
alence (6).

Theorem 5. If dr(N, N ′) ≤ dr(N, N ′′), thende(N, N ′) ≤
de(N, N ′′).

We currently lack proof or disproof of the other half of the
desired equivalence.

Conclusions and future work

We have described a table expansion metric on CP-networks
that uses expansions of CP-tables to determine similarity.

This approach builds upon a previous approach, which uti-
lized the KSB distance metric to determine similarity be-
tween preference orderings represented by CP-networks.
The table expansion metric, however, provides a much more
efficient computation than the KSB distance on the induced
orderings.
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