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Abstract

Many situations arise in which an interested party wishes to
affect the decisions of an agent; e.g., a teacher that seeks to
promote particular study habits, a Web 2.0 site that seeks to
encourage users to contribute content, or an online retailer
that seeks to encourage consumers to write reviews. In the
problem of environment design, one assumes an interested
party who is able to alter limited aspects of the environment
for the purpose of promoting desirable behaviors. A critical
aspect of environment design is understanding preferences,
but by assumption direct queries are unavailable. We work in
the inverse reinforcement learning framework, adopting here
the idea of active indirect preference elicitation to learn the re-
ward function of the agent by observing behavior in response
to incentives. We show that the process is convergent and
obtain desirable bounds on the number of elicitation rounds.
We briefly discuss generalizations of the elicitation method to
other forms of environment design, e.g., modifying the state
space, transition model, and available actions.

Introduction
Many situations arise in which an interested party wishes
for an agent to behave in a certain way. A teacher wants
a student to form effective study habits. A Web 2.0 site
wants a user to contribute content. An online retailer wants
a customer to make purchases and write reviews on products
bought. But often, the agent’s actual behavior differs from
the behavior desired by the interested party. For one, the
agent may have different preferences; e.g., a student may
not value getting the right answer as much as the teacher
and a user may not derive much value from sharing con-
tent. Furthermore, the agent may be limited by personal and
environmental constraints; e.g., a student may not know the
techniques necessary for solving the problem effectively and
a consumer may have trouble finding the product he is look-
ing for. Another possibility is that the agent is being limited
by the actions she is allowed to take; e.g. a student may not
be given a chance to participate in class or a user is restricted
from sharing content by the ISP. The converse problem may
also exists, in which an agent may be taking actions that
should be restricted but aren’t.

Underlying these possible explanations is the view that
the environment in which the agent is in – by that we mean
that which includes states, rewards, available actions, and

transition functions – has a direct effect on the agent’s be-
havior. It seems plausible then that if the interested party is
able to alter aspects of this environment (by providing in-
centives, modifying the set of available actions, altering the
transition probabilities, and ‘landscaping’ the physical state
space, etc.) that the interested party can indirectly affect the
behavior of the agent. Of course, the aspects of the environ-
ment that the interested party can alter are limited and such
alterations are likely to be costly and may have unexpected
or undesirable consequences. Nevertheless, if the interested
party can obtain a fairly accurate model of the environment
and the agent’s preferences, the interested party may be able
to make effective changes.

We view this as a class of problems of environment de-
sign. Following the concept from Zhang and Parkes (2008),
we envision a setting where an agent performs a sequence
of observable actions in an environment, repeatedly and rel-
atively frequently. An interested party has measurements of
the agent’s behavior over time, and can modify limited as-
pects of the environment. The agent may choose to behave
differently in the modified environment, but the interested
party cannot directly impose actions on an agent. The goal
of the interested party is to induce a desired behavior quickly
and at a low cost.

A critical aspect of environment design is understanding
an agent’s preferences, which are often complex and un-
known to the interested party. In the preference elicitation
literature, this is typically done by asking the agent a se-
ries of direct queries (Boutilier et al. 2005; Boutilier, Sand-
holm, and Shields 2004; Chajewska, Koller, and Parr 2000;
Wang and Boutilier 2003), based on which the elicitor places
bounds on the agent’s utility function. While direct elicita-
tion methods have been successfully applied to settings such
as combinatorial auctions (Sandholm and Boutilier 2006)
and user interface optimization (Gajos and Weld 2005), we
believe this approach would be infeasible and undesirable
for environment design. A direct elicitation process is costly
here: with interdependent world states it is difficult for the
agent to accurately report rewards on individual states, and
reporting preferences for policies is difficult given the large
number of potential policies, few of which the agent may
have considered explicitly. Most importantly, direct elicita-
tion is intrusive and outside the “indirect” spirit of environ-
ment design.
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In this paper, we provide methods for environment design
through an active indirect elicitation approach. Working in
the Markov Decision Process framework, we illustrate our
methods through the problem of policy teaching (Zhang and
Parkes 2008), where an interested party is able to associate
limited rewards with world states and in the setting consid-
ered in this paper wishes to induce the agent to follow a par-
ticular policy. When agent rewards are known, we present
a simple linear program that uses techniques from inverse
reinforcement learning (IRL) (Ng and Russell 2000) to as-
sociate payments with states to induce a desired policy while
minimizing expected cost. When rewards are unknown, we
repeat a process of guessing the reward function, providing
incentives treating the guess as the actual reward, and ob-
serving the resulting policy.

We present an algorithm that iteratively learns the agent’s
reward function by narrowing down the space of possible
agent rewards until the provided incentive induces the de-
sired policy. Our elicitation method allows for many elic-
itation strategies (in terms of how incentives are provided
in seeking to narrow down the space of possible rewards).
We discuss possible strategies and provide desirable bounds
on the number of elicitation rounds for specific strategies.
Furthermore, we consider a variant of the two-sided slack-
maximizing heuristic from Zhang and Parkes (2008) that is
easy to compute and can lead to very few elicitation rounds.

We close with a brief discussion of possible generaliza-
tions of this indirect, active elicitation approach to other
forms of environment design, considering settings in which
the interested party is able to perturb the available actions
and transitions in the environment, in addition to adjust an
agent’s rewards through incentive payments.

Related work
The idea of policy teaching is inspired by applications of
inverse reinforcement learning to apprenticeship learning.
Abbeel and Ng (2004) studied this problem by extracting a
reward function from a human expert, and used the acquired
reward function to govern the behavior of a machine agent.
In our work, we cannot redefine the agent’s reward function
at will; the interested party may only provide incentives to
induce the agent to behave according to both the provided in-
centives and the agent’s inherent preferences. Furthermore,
in providing incentives, the size of the incentives must be in
line with the size of the reward function of the agent. For
example, if the agent is buying a car, providing a five dol-
lar discount would be insufficient, but we may nevertheless
make this mistake if we do not learn both the shape and size
of the agent’s reward. In Abbeel and Ng’s work, any non-
degenerate reward function within the solution space is suf-
ficient, out of which they pick one that generalizes well.

Our active, indirect elicitation method alters the envi-
ronment (e.g. provides incentives), and actively generates
new evidence about the agent’s reward function based on
its behavior in the modified environment. To our knowl-
edge, this approach has not been previously studied in the
literature, and may be useful for learning preferences in a
wide range of settings. While indirect elicitation techniques
based on the principles of revealed preference are nothing

new (see Varian (2003) for a survey), such techniques are
typically passive (Chajewska, Koller, and Ormoneit 2001;
Ng and Russell 2000); they are applied to observed behav-
iors within a fixed environment and are unconcerned with
generating new evidence from which to make further infer-
ences about the agent’s preferences.

In previous work we studied the related problem of value-
based policy teaching, which differs from that considered
here in that the goal of the interested party is to induce the
agent to follow a policy that maximizes the total expected
value of the interested party (Zhang and Parkes 2008). The
problem there is NP-hard, whereas policy teaching to induce
a particular policy (as in this paper) can be formulated with a
linear program. One advantage of this work is that we have a
polynomial time algorithm that can simultaneously compute
desired incentive provisions while ensuring elicitation con-
vergence in number of rounds logarithmic in the size of the
search space with arbitrarily high probability (neither guar-
antees were provided in the other work).

The Model
We model an agent performing a sequential decision task
with an infinite horizon Markov Decision Process (MDP)
M = {S,A,R, P, γ}, where S is the set of states, A is the
set of possible actions, R : S → R is the reward func-
tion, P : S × A × S → [0, 1] is the transition function,
and γ is the discount factor from (0, 1). Given an MDP,
an agent’s decision problem is to maximize the expected
sum of discounted rewards. We consider the agent’s deci-
sion as a stationary policy π, such that π(s) is the action
the agent executes in state s. Given a policy π, the value
function V π(s) = R(s) + γ

∑
s′∈S P (s, π(s), s′)V π(s′)

captures the expected sum of discounted rewards under π.
Similarly, the Q function captures the value of taking an ac-
tion a and following the policy π in future states, such that
Qπ(s, a) = R(s)+γ

∑
s′∈S P (s, a, s′)V π(s′). By Bellman

optimality (Puterman 1994), an optimal policy π∗ chooses
actions that maximize the Q function in every state, such
that π∗(s) ∈ argmaxa∈AQπ

∗
(s, a).

Having defined the MDP framework, we now consider
the policy teaching problem. Given an agent facing an MDP
M = {S,A,R, P, γ}, an interested party wishes to provide
an incentive function ∆ : S → R to induce a desired target
policy πT . To capture the limits on the incentives that an
interested party can provide, we require that ∆ satisfy the
following admissibility definition:
Definition 1. An incentive function ∆ is admissible with
respect to a policy πT if it satisfies the following linear con-
straints:

V πT

∆ (s) = ∆(s) + γPs,πT (s)V
πT

∆ ,∀s Incentive value.

V πT

∆ (start) ≤ Dmax Limited spending.
∆(s) ≥ 0,∀s No punishments.

This notion of admissibility limits the expected dis-
counted sum of provided incentives toDmax when the agent
performs πT from the start state.1 Here V πT

∆ is defined over

1Notice that the use of a single start state is without loss of gen-
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provided incentives and is analogous to the value function
V π defined on rewards. Alternative definitions of admis-
sibility are possible as well, but since our methods are not
specific to a particular definition, we will not pursue them
here.

We make the following assumptions:

Assumption 1. The state and action spaces are finite.

Assumption 2. The agent’s reward function is bounded in
absolute value by Rmax.

Assumption 3. The agent can compute π∗ (i.e., the agent is
a planner).

Assumption 4. The interested party observes the agent’s
policy π∗.

Assumption 5. The agent’s reward function is state-wise
quasilinear; given incentive ∆, the agent plans with respect
to R+ ∆.

Assumption 6. The agent’s reward function is persistent.

Assumption 7. The agent is myopically rational. Given ∆,
the agent plans with respect to R + ∆ and does not reason
about incentive provisions in future interactions with the in-
terested party.

The planning assumption is quite fundamental to our
work. Our tenet is that the agent will adjust, not neces-
sarily immediately, to following a behavior that maximizes
its reward (including the incentives that it receives for its
behavior) in a perturbed environment. Note that this does
not necessarily imply that the agent knows, or understands,
its underlying preferences. Rather, the agent behaves in the
long-run as an optimal “planner” with respect to the uncer-
tain environment in which it is situated.

Assumptions 3, 6 and 7 are difficult to satisfy, but do not
pose major issues if they are only mildly violated, e.g. the
agent can almost plan, acts with respect to an almost con-
stant reward, and reasons mostly with respect to the cur-
rent interaction.2 Violations of assumption 4 can be handled
when the interested party can obtain samples of the agent’s
action trajectories through the state space (which can then be
used to obtain a linear approximation of the agent’s reward
function, e.g. see Ng and Russell (2000)).

The case with known rewards
While we don’t expect to know the agent’s reward function,
it is nevertheless instructive to understand how to find the
minimal ∆ such that R + ∆ induces the desired policy πT
for any reward function R.

Definition 2. Policy teaching with known rewards. An
agent follows an optimal policy π with respect to an MDP

erality, since it can be a dummy state whose transitions represent a
distribution over possible start states.

2In fact, we can also show that while a forward-looking (i.e.
strategic) agent may choose to misrepresent its preferences, a sim-
ple teaching rule can nevertheless teach the desired policy when
the agent is sufficiently patient (and as long as the behavior is
“teachable”, meaning that it is attainable given the limited incen-
tives available to the interested party).

M = {S,A,R, P, γ}. An interested party observes π and
has knowledge of the agent’s MDP M . Find a minimal ad-
missible ∆ to induce the agent to perform some desired pol-
icy πT and strictly prefer this to any other policy (or show
that no such ∆ is available).

Solving this problem requires finding an admissible in-
centive mapping to some reward function for which πT is
the optimal policy. The space of rewards that correspond to
a particular optimal policy contains all reward functions for
which the actions of the optimal policy maximize the value
of the Q function. One can express this space through a set
of linear constraints, referred to as the IRL constraints:

Definition 3. Given a policy π and M−R = {S,A, P, γ},
let R ∈ IRLπ denote the space of all reward functions R for
which π is optimal for the MDP M = {S,A,R, P, γ}.
Theorem 1. (Ng and Russell 2000) Given a policy π and
M−R = {S,A, P, γ}, R ∈ IRLπ satisfies:

(Pπ −Pa)(I− γPπ)−1R � 0 ∀a ∈ A (1)

The result follows from writing the functions of the
MDP in vector form (justified by finite state and ac-
tions from Assumption 1) and applying the equality
Vπ = (I− γPπ)−1R. With bounded rewards (Assumption
2), these linear constraints define a |S|-dimensional convex
polytope (which we refer to as “the IRL space”) where the
reward function resides. To solve the policy teaching prob-
lem with known rewards, we can place IRL constraints on
the space of rewards that induce the target policy πT , and
aim to find the minimal admissible ∆ that maps to a reward
in this space.

Theorem 2. The following linear program solves the policy
teaching problem in Definition 2:

min
∆

V πT

∆ (start) (2)

subject to:

RT (s)−∆(s) = R(s) ∀s ∈ S (3)

(PπT
−Pa)(I− γPπT

)−1RT � ε ∀a ∈ A\a1 (4)
admissible(∆) (5)

where a1 ≡ πT (s) denotes the actions of the target policy.

The result follows directly from Definition 2 and Theo-
rem 1. The use of a small ε > 0 on the right hand side
of the IRL constraints imposes a strictness condition on the
mapping, such that under RT the agent strictly prefers the
desired policy πT over any other policy with slack at least
ε. This condition ensures that we map only to rewards for
which πT is the unique optimal policy, avoiding scenarios
with ties where the agent may choose an alternate policy.
When the linear program for ε > 0 is infeasible then there
are no admissible ∆ that can “ε-strictly” induce the desired
policy.3

3Note that there exist policies that can’t be strictly induced by
any reward function. As an example, consider a 2 state MDP
with actions stay and move. A policy which chooses stay in
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The case with unknown rewards
In most situations, the interested party will not know the re-
ward function of the agent. For simplicity we drop the re-
quirement for incentives to be minimal and just focus on
finding any admissible mapping to the desired policy from
the agent’s unknown reward:

Definition 4. Policy teaching with unknown rewards. An
agent follows an optimal policy π with respect to an MDP
M = {S,A,R, P, γ}. An interested party observes π and
has knowledge of M−R = {S,A, P, γ}, but does not know
the agent’s reward. Find an admissible ∆ to induce the agent
to perform some desired policy πT and strictly prefer this to
any other policy (or show that no such ∆ is available).

While IRL constraints provide bounds on the space of
rewards that induce the agent’s policy, they do not imme-
diately locate the agent’s actual reward within this space.
This presents a problem because the particular incentives re-
quired to induce the desired policy can depend on the spe-
cific reward profile. To overcome this problem, we describe
a scheme wherein we narrow the space of potential agent
rewards by eliciting additional IRL constraints based on an
agent’s response to provided incentives.

We begin with IRL constraints from the observed agent
policy. Furthermore, since we are only interested in re-
wards that have admissible mappings to the desired policy,
we need only consider rewards R′ with an associated ad-
missible ∆(R′) mapping to some reward RT that ε-strictly
induces πT (for parameter ε > 0). From this set of rewards,
we make a guess R̂ at the agent’s reward. If our guess is cor-
rect, we would expect that providing the agent with incentive
∆̂ will induce the agent to perform πT . If instead the agent
performs a policy π′ 6= πT , we know that R̂ must not be the
agent’s true reward R, and since R+∆̂ induces π′, we elicit
additional information which will eliminate other points in
the space of agent rewards.

Using the observation of the agent’s policy π′ in response
to the provided incentive, we can write down an IRL con-
straint on R+ ∆̂ such that (R+ ∆̂) ∈ IRLπ

′
:

(Pπ′ −Pa)(I− γPπ′)−1(R + ∆̂) � 0 ∀a ∈ A (6)

We can repeat the process of choosing a reward in the
agent’s refined IRL space, mapping it to a point in the IRL
space of a desired policy, observing the induced agent pol-
icy, and adding new constraints if the agent does not behave
as desired. With direct queries, responses typically imply
just one constraint on the space of possible valuations. In our
setting, each set of added IRL constraints describes a poly-
tope whose intersection with the polytope describing the ex-
isting IRL space defines the updated space of possible agent

both states implies a reward function with equal value for the two
states and thus the policy cannot be strictly preferred. When re-
ward functions are generalized to state-action pairs, every policy
can be strictly supported by some reward function, e.g. by assign-
ing equal positive rewards to state-action pairs matching the policy
and no rewards to all other pairs. This extension can be trivially
handled and all results will still apply.

Algorithm 1 Active indirect elicitation for policy teaching
Require: agent policy π, desired policy πT

1: Variables R, RT , ∆; constraint set K = ∅
2: Add R ∈ IRLπ , |R(s)| ≤ Rmax∀s ∈ S to K
3: Add RT ∈ IRLπT

strict(ε), ∆ = RT −R to K
4: Add admissible(∆) to K
5: loop
6: Find ∆̂, R̂, R̂T satisfying all constraints in K
7: if no such values exist then
8: return FAILURE {no possible mappings}
9: else

10: Provide agent with incentive ∆̂
11: Observe π′ with respect to R′ = Rtrue + ∆.
12: if π′ = πT then
13: return ∆̂
14: else
15: Add (R+ ∆̂) ∈ IRLπ

′
to K

rewards. Also, since we are only interested in the agent’s re-
ward for the purpose of solving the policy teaching problem,
we can stop the elicitation process as soon as an admissible
mapping to the desired policy is found, regardless of whether
R̂ is indeed the agent’s true reward.

We adopt the following notation for our algorithm. We
denote IRL constraints on reward profile R as R ∈ IRLπ ,
and strict IRL constraints (following Equation 4) over target
reward RT as RT ∈ IRLπT

strict(ε). All constraints are added
to a constraint set K, such that feasible solutions must sat-
isfy all constraints in K. An instantiation of a variable R is
denoted as R̂. Algorithm 1 gives our elicitation method.

Theorem 3. Algorithm 1 terminates in a finite number of
steps with an admissible mapping ∆ to the target policy πT ,
or returns FAILURE if no such mapping exists.

The proof is omitted in the interest of space. It adopts the
minimal slack ε from the strictness condition on mappings to
the target policy to bound the number of hypercubes that can
fit within the IRL space. The number of elicitation rounds
is bounded by the number of hypercubes of side length δ =
ε(1−γ)

2γ that cover the convex polytope of reward functions
implied by the initial IRL constraints on the agent’s policy
and the admissibility condition on ∆.

This result holds true regardless of how R̂ is picked in line
6 of Algorithm 1. As we will show, much tighter bounds can
be obtained for specific elicitation strategies.

Elicitation Objective Function
The elicitation method allows for any elicitation strategy to
be used for choosing R̂ and ∆̂ in each round. Good elic-
itation strategies are computationally tractable, lead to few
elicitation rounds, and provide robustness guarantees (e.g.,
provide useful bounds on the number of elicitation rounds or
minimize max regret). We present a centroid-based strategy
with nice properties, as well as a practical two-sided slack
maximization heuristic.
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Lemma 1. Let BtK denote the (convex) set of reward func-
tions R satisfying the constraints in K before the t-th itera-
tion of Algorithm 1. Let ct denote the centroid of BtK , and
consider an elicitation strategy that picks R̂ = ct and any
corresponding admissible ∆̂. Then ∆̂ will either induce πT
or the added IRL constraints will eliminate at least 1

e of the
volume of BtK (that is, vol(Bt+1

K ) ≤ (1− 1
e )vol(BtK)).

This lemma makes use of Grünbaum’s result that any half-
space containing the centroid of a convex set in Rn contains
1
e of its volume (1960). Since Bt+1

K is a closed convex set
that does not contain the eliminated centroid, an applica-
tion of the separating hyperplane theorem gives the desired
result. Since each iteration cuts off a constant fraction of
the volume of the reward space, the following bound on the
number of elicitation rounds applies:

Theorem 4. Consider any elicitation strategy that picks the
centroid of BtK for R̂ in Algorithm 1. The number of elic-
itation rounds is bounded above by |S| logb

Rmax

δ , where
b = 1

1− 1
e

and δ = ε(1−γ)
2γ .

Here (Rmax

δ )|S| is the number of hypercubes with side
length δ that can fit within the bounded space of rewards
considered. This can be viewed as the size of the problem,
and the bound given by Theorem 4 is logarithmic (versus
linear in the convergence bound from Theorem 3).

Computing the centroid exactly is #P-hard (Rademacher
2007), but polynomial time randomized algorithms can ap-
proximate it (Bertsimas and Vempala 2004). Furthermore,
Bertsimas and Vempala extend Grunbaüm’s result to the
case of the approximate centroid, such that with O(|S|) uni-
form samples, any halfspace through the average of the sam-
ples will cut off a constant fraction of the volume of a convex
set with arbitrarily high probability.

The following theorem offers an elicitation strategy that
allows R̂ to be computed in polynomial time while guaran-
teeing elicitation convergence in rounds logarithmic in the
problem size with high probability.

Theorem 5. Consider any elicitation strategy that picks the
average of O(|S|) points sampled uniformly from BtK for R̂
in Algorithm 1. With arbitrarily high probability, Algorithm
1 terminates before |S| logb

Rmax

δ rounds, where b = 1
1−k

for a constant fraction k < 1
e .

Since sampling O(|S|) points takes O(|S|4) steps of a
random walk that takes O(|S|2) operations per step, com-
puting R̂ this way isO(|S|6) (Bertsimas and Vempala 2004).
One still has to find some corresponding ∆̂, but this need
only require solving a simple linear program (e.g., the one
in Theorem 2). Nevertheless, it seems likely that an algo-
rithm based on this elicitation strategy may not scale well in
practice for large state spaces.

In thinking about more practical methods, we consider the
effect of the slack in the IRL constraints. This slack cor-
responds to the amount of perturbation allowed in the re-
ward function without changing the optimal policy. For any
R̂ ∈ Btk, there is an associated agent-side slack over the IRL

constraints defining the agent’s IRL space. For any ∆̂ map-
ping from R̂, there is an associated target-side slack over the
IRL constraints on the target policy. If we choose ∆̂ to in-
duce the target policy with high slack, then through a 1:1
mapping from R̂ to R̂T , failure to induce the target policy
results in a large volume of points around R̂ that can’t be the
agent’s reward. If R̂ is sufficiently far from the boundaries
of BtK (e.g., near the centroid), then this volume of points
will be within BtK . Since the convex polytope defined by
the added IRL constraints cannot contain any points within
this volume, choosing ∆̂ to maximize the target-side slack
provides a complementary method for making large cuts in
the IRL space.

As an alternative approach to approximating the centroid,
we can attempt to find R̂ such that a large volume of points
around R̂ are contained in BtK and thus can be eliminated
via the target mapping. This suggests a two-sided slack max-
imization heuristic which finds R̂ and ∆̂ to maximize the
minimal slack over all IRL constraints on the agent’s ini-
tial policy π, induced policies π′, and target policy based on
R̂+ ∆̂. By using a single slack for the agent’s reward space
and the target space, we simultaneously push R̂ towards the
center of the agent’s IRL space and bound a large volume
around it that will be eliminated if the mapping fails.

To formulate the heuristic as a linear program, we intro-
duce a single variable β ≥ 0 to capture this minimal slack,
and introduce α(s) variables that capture the absolute value
of R̂. Using α as a λ-weighted penalty (for some constant
λ > 0) on the size of rewards picked, we have the following
objective function and associated constraints:

max β − λ
∑
s

α(s) (7)

((Pπ −Pa)(I− γPπ)−1R)[s] ≥ β ∀a, s

((Pπ′ −Pa)(I− γPπ′)−1(R + ∆̂))[s] ≥ β ∀a, s, π′

((PπT
−Pa)(I− γPπT

)−1RT)[s] ≥ β ∀a, s
α(s) ≥ R(s) ∀s
α(s) ≥ −R(s) ∀s
β ≥ 0

We can use this max-slack heuristic to find R̂ and ∆̂
in Algorithm 1 by solving a linear program containing the
above equations and also the constraints from the constraint
set K. In round t of the elicitation process, the algorithm
will generate a linear program with approximately 2t|S||A|
constraints, which can then be solved efficiently using stan-
dard techniques. This method provides a tractable alterna-
tive to approximating the centroid and has been effective
when evaluated empirically.4

4In a simulated advertising network setting with an advertiser
trying to induce a publisher to design the hyperlinks of a website
in a desired way, our results show an average number of elicitation
rounds of around 10 for MDPs with up to 100 states. An experi-
mental results section is omitted here due to space considerations.
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Generalizing to environment design
Having provided methods for the problem of policy teach-
ing, we discuss generalizations of our approach to allow for
other kinds of modifications to an agent’s environment.

Definition 5. Environment Design with unknown re-
wards. An agent follows an optimal policy π with respect to
an MDPM = {S,A,R, P, γ}. An interested party observes
π and has knowledge of M−R = {S,A, P, γ}, but does not
know the agent’s reward. The interested party can alter the
environment via an admissible change Π, which via a per-
turbation function f induces the agent to act with respect
to M ′ = f(M,Π) = {S′, A′, R′, P ′, γ′} in the perturbed
environment. Find an admissible Π to induce the agent to
perform some desired policy πT and strictly prefer this to
any other policy (or show that no such Π is available).

Assuming that the perturbation function f is determinis-
tic, that is, the environment will change in the way it is in-
tended to change, our active indirect elicitation method can
be used with little modification. At every interaction, the in-
terested party can pick a R̂ with an admissible Π̂ that would
induce an agent with reward R̂ to follow the desired policy.
If the agent performs a policy π′ 6= πT in the perturbed en-
vironment M ′, we can add a set of IRL constraints based on
M ′ and π′, where R is still the only variable in these con-
straints. Assuming the state space does not change5, by an
identical argument to that used in Theorem 3, this process
is still convergent. Furthermore, assuming that the space
of possible agent rewards with admissible Π mappings to
the desired policy is convex, the logarithmic bounds on the
number of elicitation rounds via a centroid-based elicitation
strategy continue to hold.

An important question for future work is to explore the
powers and limitations of these alternate “levers” to induce
desirable behaviors. This will depend partly on the admissi-
bility conditions on alterations to the environment for partic-
ular domains. Furthermore, since perturbations to the envi-
ronment are likely to have stochastic effects, one may wish
to interleave learning the agent’s reward with learning the ef-
fects of changes on the resulting environment. On the com-
putational side, note that unlike linear transformations to the
reward function in policy teaching, figuring out the set of
environments that induce a particular policy may be quite
expensive; efficient algorithms will be important.

We also intend to consider multi-agent variants, both with
multiple agents acting in the environment and with multi-
ple interested parties, where each interested party is able
to modify a portion of the complete environment, and each
with individual objectives for influencing the agent’s deci-
sions in some subset of the state space. Other directions for
future work include a more careful analysis of incentives and
loosening the assumption of myopic-rationality on the agent
for general forms of environment design, as well as con-
siderations for uncertainty over other aspects of the agent’s
model and behavior beyond the reward function (e.g., a par-
tially observable state space).

5This is to ensure that πT and S′ are of equal dimensions, which
simplifies the discussion.

Conclusions
We study the interesting new paradigm of environment de-
sign. The problem requires indirect preference elicitation;
we provide a general active, indirect elicitation framework
that allows us to quickly learn an agent’s preferences and
converge to good environments.
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