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Abstract

Sampling-based search has been shown effective in motion
planning, a hard continuous state-space problem. Motion
planning is especially challenging when the robotic system
obeys differential constraints, such as an acceleration con-
trolled car that cannot move sideways. Methods that ex-
pand trajectory trees in the state space produce feasible so-
lutions for such systems. These planners can be viewed as
continuous-space analogs of traditional uninformed search as
their goal is to explore the entire state space. In many cases,
the search can be focused on the part of the state-space neces-
sary to solve a problem by employing heuristics. This paper
proposes an informed framework for tree-based planning that
successfully balances greedy with methodical search. The
framework allows the use of a broad set of heuristics for goal-
directed problem solving, while avoiding scaling issues that
appear in continuous space heuristic search. It also employs
an appropriate discretization technique for continuous state-
space problems, based on an adaptive subdivision scheme.
Although greedy in nature, the method provides with prob-
abilistic completeness guarantees for a very general class of
planning problems. Experiments on dynamic systems sim-
ulated with a physics engine show that the technique outper-
forms uninformed planners and existing informed variants. In
many cases, it also produces better quality paths.

I. Introduction
Traditional motion planning computes collision-free, con-
tinuous paths for free-floating bodies (Latombe 1991;
Choset et al. 2005; LaValle 2006). Although a challenging
geometric problem, modern graph-based search algorithms
that employ sampling solve difficult and high-dimensional
instances (Kavraki et al. 1996; LaValle and Kuffner 2001a;
Hsu, Latombe, and Motwani 1999; Sanchez and Latombe
2003). The problem is more complex, however, for sys-
tems with differential constraints. Such constraints arise in
non-holonomic vehicles that are under-actuated or in general
when the control influence of a system is small compared to
momentum. The challenge is that not every collision-free
path is acceptable; it must also be feasible given the con-
straints. Additionally, the dynamic model may not be avail-
able, but simulated by a software package, like a physics
engine (Smith 2006).
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Search-based techniques for kinodynamic planning, in-
spired by a dynamic programming approach (Donald et al.
1993), explore the entire state space for trajectories that re-
spect the differential constraints. A major advantage is that
they are applicable to a variety of different systems. They
construct a “reachability tree” in the state space through
a sampling operation (LaValle and Kuffner 2001b; Hsu,
Latombe, and Motwani 1999; Ladd and Kavraki 2005a) that
we will describe in more detail later. Although effective in
eventually solving hard planning instances, they have high
computational requirements as search methods, especially in
kinodynamic problems that are typically higher-dimensional
compared to geometric ones.

This paper focuses on reducing the solution time of
search-based techniques for kinodynamic planning by incor-
porating heuristics based on workspace and query knowl-
edge. We detail a new method, the Informed Subdivision
Tree (IST), that balances greedy and methodical search
while providing guarantees that eventually every problem
can be solved. In simple parts of the state space the ex-
ploration is greedily guided by the heuristic. In constrained
parts, such as narrow passages, the heuristic may not be
beneficial and the algorithm automatically explores alterna-
tive routes for a solution. This methodical behavior is a re-
sult of an adaptive state-space subdivision scheme that es-
timates online the algorithm’s performance in exploring the
entire state space. Experimental comparisons on physically
simulated systems betweenIST and uninformed planners
(LaValle and Kuffner 2001b; Ladd and Kavraki 2005a) as
well as with informed versions (LaValle and Kuffner 2001b;
Urmson and Simmons 2003) show thatIST outperforms the
alternatives.IST also reports better quality paths in certain
complicated workspaces, as in maze-like environments.

A. Problem Definition
Consider a moving system, such as a robot, whose motion is
governed by differential equations of the form:

ẋ(t) = f(x(t), u), g(x(t), ẋ(t)) ≤ 0 (1)
wheref, g are smooth;x(t) is a state and fully describes
the system at timet. The set of all states is the state space
X . The set of states for which the moving object is not in
collision is the free state spaceXfree. The set of all controls
u define the control spaceU . For a givenx(t), u is valid if
it respects Eq. 1.
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Figure 1: The basic scheme for tree-based planning with sampling. Each iteration of the algorithm uses a selection/propagation
step, where a reachable state along the tree is selected first and then a valid control is applied to produce a feasible trajectory.

We are particularly interested in non-holonomic systems
with second-order constraints, such as a car controlled by
bounded acceleration and bounded steering velocity. The
following notation will be useful in our description:
• A plan p(dt) is a time sequence of controls:p(dt) =
{(u1, dt1), . . . , (un, dtn)}, wheredt =

∑
i dti.

• Whenp(dt) is executed atx(t), a vehicle follows the
trajectory: π(x(t), p(dt)).

• If a plan has a single controlu applied for durationdt,
thenπ(x(t), (u, dt)) is called aprimitive trajectory.

• A feasibletrajectory is collision-free and respects Eq. 1.
• A state along trajectoryπ(x(t), p(dt)) at timet′ ∈ [t :

t + dt] is denoted asxπ( t′ ).
• Forstablestates there exists a control, which retains the

system in the same state:
x(t) is stable iff ∃ u s.t.

∫
dt

f(x(t), u) dt = 0.
Given a statex0(t0) and a goal regionXG ⊂ X , compute

a planp(dt) so that the resulting trajectoryπ(x0(t0), p(dt))
is feasible and the end statexπ( t0 + dt ) ∈ XG is a stable
state within the goal region.

B. Search Methods for Planning with Dynamics

We first describe an abstract sampling-based planner for kin-
odynamic planning. The search operation is initiated at
x0(t0) and exploresXfree by propagating feasible primi-
tive trajectories. These trajectories are stored on a tree data
structureT as edges. An edge that corresponds to trajectory
π(x(t), p(dt)) is rooted at a node, which corresponds to the
statex(t). Fig. 1 and Algorithm 1 illustrate the operation of
an abstract sampling-based kinodynamic tree planner.

Algorithm 1 BASIC SAMPLING-BASED TREE PLANNER

Set the root ofT to the initial statex0(t0)
while ∄ x ∈ T s.t. (x ∈ XG andx stable) do

Select a reachable statexr ∈ T
Select a valid controluv for the statexr

Propagate the primitive trajectoryπ(xr , (uv, dt)) for
a durationdt and for as long as it is feasible

Add all the states alongπ(xr , (uv, dt)) in T
end while

Given the abstraction, we have the following three choices
to construct a concrete algorithm. How to select: (i) the state
xr, (ii) the controluv and (iii) the durationdt. Different al-
gorithms follow different mechanisms for these choices but
share the goal of covering the state space quickly and avoid-

ing regression (Kalisiak and Van de Panne 2006), which
means propagating paths in already explored space.
RRT (LaValle and Kuffner 2001b) samples a state inX

and then selects the statexr ∈ T closer to the sampled
state given a metric. In Euclidean spaces,RRT has higher
probability of extending a path inside the largest unexplored
Voronoi cell. In kinodynamic planning, however, a good
metric may not be available and the Voronoi-bias is not well
defined. Similarly, the Expansive Spaces technique (Hsu,
Latombe, and Motwani 1999) depends on an ideal sampler
to guarantee coverage.PDST (Ladd and Kavraki 2005a;
2005b) avoids the use of a metric by using an adaptive subdi-
vision scheme and provides probabilistic completeness for a
general class of problems: if a path exists it will be even-
tually found (Kavraki, Kolountzakis, and Latombe 1996;
Ladd and Kavraki 2004).PDST biases the exploration to-
wards larger cells of the subdivision, which correspond to
relatively unexplored parts of the space. Less attention has
been given in the literature to the choices regarding the con-
trol to be applied and the duration of propagation for kino-
dynamic problems.

The above planners can be viewed as continuous-space
analogs of traditional uninformed search. Some informed
variations in the literature exhibit a switching behavior be-
tween coverage planning and best-first search. TheRRT-
“goal bias” variant selects with certain probability to ex-
pand from the state which minimizes a distance metric to
the goal and the rest of the time uses theRRT Voronoi bias
for coverage (LaValle and Kuffner 2001b). An older algo-
rithm, the Randomized Potential Field (RPP) (Barraquand
and Latombe 1991), also has multiple modes. It constructs a
potential function to execute gradient-descent and then em-
ploys random walks and backtracking to exit local minima.

More recent informed variants introduce ideas from tra-
ditional AI search and study the effects of heuristics. The
RRT∗ (Urmson and Simmons 2003) mergesRRTwith the A∗

algorithm, by using a heuristic in the state selection step. An
issue, however, when using heuristics in continuous prob-
lems is the scale of the heuristic versus the true path cost.
The randomized A∗ approach (Diankov and Kuffner 2007)
uses learning in order to solve this scaling problem. The
Anytime RRT algorithm (Ferguson and Stentz 2006) suc-
cessively constructsRRTs that result in higher quality paths
by employing heuristic search. The Exploring/Exploiting
Tree (EET) (Rickert, Brock, and Knoll 2007) emphasizes the
need to balance the greedy and methodical aspects of search.
EET uses potential functions to bias tree-based planners.
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C. Contribution
This paper focuses efficient informed search in continuous
state spaces and emphasizes the benefits of bringing to-
gether ideas from robotics and artificial intelligence. We de-
scribe the Informed Subdivision Tree (IST) algorithm that
achieves informed but probabilistically complete sampling-
based kinodynamic planning. The algorithm does not have
multiple modes such asRRT-“goal bias” orRPP, instead it
utilizes heuristic information on every iteration and for every
algorithmic choice (state, control and duration selection).

Although a wide set of heuristics can be used inIST,
we describe here a methodology for constructing heuristics
based on configuration space (C-space) information. The
approach first computes a roadmap for a kinematic version
of the moving system using an approach that is able to cap-
ture the connectivity of the C-space, such asPRM (Kavraki
et al. 1996).IST uses the kinematic information from the
roadmap to bias the tree expansion towards the goal in the
state spaceX .

The use of the C-space bias, however, can easily result in
a technique that is greedy and gets stuck in local minima due
to state space constraints.IST employs the adaptive subdi-
vision scheme fromPDST and an edge penalization scheme.
Through these tools it is able to provide with probabilistic
completeness, while it lends itself to an efficient implemen-
tation.

Furthermore, the integration of the heuristic information
with the subdivision allows to separate the heuristic estimate
of the cost-to-go from the cost-from-start value. In this way,
IST avoids the scaling problems that appear in other contin-
uous space heuristic search algorithms.

II. Informed Subdivision Tree
We will first outline the operation of the various tools em-
ployed byIST and then describe how they are combined in
the overall algorithm.

A. Adaptive Subdivision for State Space Coverage
IST maintains a subdivision data structureS, that corre-
sponds to a set of cells:S = {c1, . . . , cK}. Eachci ⊂ X
corresponds to a subset of the state space. Initially this set
contains one cell that encompasses the entireX . The subdi-
vision is refined in each iteration of the algorithm as shown
in Fig. 2.

Whenever a reachable statexr is selected, the cellc′ ∈ S
is found so thatxr ∈ c′. The algorithm guarantees that only
one cell contains each state. Thenc′ is removed fromS and
two new cells,c′left andc′right, are introduced so that:

c′left ∪ c′right = c′ and c′left ∩ c′right = 0 (2)

Given that the initial cell is the entireX , Eq. 2 implies that:

∪Sci = X and ∀ci, cj ∈ S : ci ∩ cj = 0 (3)

An implementation of the cell partition can be obtained with
a Binary Space Partition Tree. Although not necessary, cell
c′ is typically split into two equal size cells along a dimen-
sion that maintains the subdivision balanced.

Figure 2: The interaction between state selection and the
subdivision data structure.

The purpose ofS is to provide an online estimate of the
coverage performance of the state space exploration. Large
cells in S represent parts of the space that have not been
explored as much as smaller cells, in the sense that the al-
gorithm has not expanded often new trajectories from states
within them. Consequently, the subdivision level of a cell
c ∈ S (the number of subdivisions that occurred to create
c) is used as an estimatorµ(c) of the exploration value of
the cellc. Cells that do not contain any reachable states in
T have by definition infinite estimator value:µ(c) = ∞ if
∀x ∈ T : ∄ x ∈ c. IST promotes the expansion of new tra-
jectories from states that belong to cells with small estimator
valueµ(c) (large explored cells). This behavior promotes
the exploration of unexplored parts of the space.

Although we have defined the subdivision to operate in
the entire state space, this is not necessary for probabilis-
tic completeness. It is sufficient to define a projection of
the state space into a lower dimensional space and attempt
to cover the projected space. Defining this projection de-
pends on the application, allowing us to define the important
projection of the state space that the algorithm must cover.
For example, in the case of a second-order control car that
has a five dimensional space:Xcar = (x, y, θ, V, s), ((x, y):
the planar coordinates,θ: orientation,V : velocity ands:
steering direction) we typically subdivide only along the first
three parameters of the state space.

B. C-space Heuristic
A heuristic functionh(q) maps any state to a value that ex-
presses how good is this state in promoting the solution of
the planning problem:h : X → R. IST is able to incorpo-
rate any heuristic information. The only requirement is that
the heuristic is upper and lower bounded by finite positive
values. For computational efficiency, it is also desirable that
the computation of the heuristic to be fast.

During a preprocessing step, we construct a C-space
roadmap by following the Probabilistic Roadmap Method
(PRM) (Kavraki et al. 1996), so as to gather the necessary
information for the online computation of the heuristic. The
roadmap contains nodes that correspond to configurations
and edges that correspond to kinematic paths. We follow an
incremental approach for the construction of the roadmap.
Initially there are two nodes, the start configurationq0 and
a configurationqG in the goal regionXG. At each iteration
we sample a new collision-free configurationqnew . qnew is
considered for addition in the roadmap depending on the dis-
tance to the closest existing node. The smaller the distance,
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Figure 3: An illustration of an abstract potential function
computed for a given goal.

the smaller the probability of inserting the node. Then we
try to connect the nodeqnew through local paths to itsK
closest neighborsqcl in the roadmap according to a C-space
metricd(qnew , qcl). The connection will be attempted if the
neighborqcl satisfies any of the following two criteria:
1. qcl is on a different connected component thanqnew.

2. Or the current roadmap distancepath(qnew, qcl) is con-
siderably longer thand(qnew , qcl).

This PRM version has low collision-checking overhead be-
cause it does not consider redundant edges for collision due
to the connected components heuristic (criterion 1). If only
criterion 1 was used, however, the resulting roadmap would
have no loops. The second criterion allows edges that create
loops in the graph only when they appear beneficial in terms
of C-space connectivity.

During the online computation of the heuristic for a state
x ∈ T , we get the projectionq(x) in the C-space of the state
x and compute the closest node on the roadmapqcl. Then
the heuristic is computed as follows:

h(x) = d(q(x), qcl) + path(qcl, qgoal) +
1.0

obs(q(x))
(4)

whereobs(q(x)) corresponds to the distance between the
moving body and the closest obstacle. Various collision
checking packages provide such information. If it is not
available, this factor can be dropped. For the nearest
neighbor queries we use an efficient technique for approx-
imate nearest neighbor search (Yershova and LaValle 2007;
Plaku and Kavraki 2006).

The important advantage of this heuristic over simpler
distance metrics is that it considers C-space obstacles. Nev-
ertheless, it is more expensive to compute. In our experi-
ments we have seen improvements even if we use very sim-
ple heuristics that consider workspace obstacles (i.e. a wave-
front function on a grid for point approximations of the true
system). The advantage of thePRM-based approach is that
it computes paths that are truly collision-free in the C-space.
Moreover, on all of our experiments, the computation of the
roadmap, which occurs before the construction ofT , is or-
ders of magnitude faster than the computation ofT itself,
since the kinematic reduction of a kinodynamic problem is
considerably less constrained.

C. Edge Penalization Scheme for Completeness
We have been very relaxed on the requirements that the sub-
division and the potential function have to satisfy and argued
that the algorithm guarantees the solution of any planning
problem because it is probabilistically complete.

To achieve this property we penalize edges ofT when
a state along the edge is selected asxr. IST maintains a
penalty factorp(e) along each edgee ∈ T . The first edge
in the tree starts with a penalty of 1. Fig. 4 shows how the
penalty factors are updated by the algorithm. When a state
along e is selected then the penalty of the edge increases
exponentially:p(e) = 2 ·p(e). The penalty for the new edge
being created will be:p(e′) = p(e) + 1. IST promotes the
selection of edges that have low penalty value. The objective
of the penalization is to avoid selecting the same edges for
expansion, which would result in regression.

Given the subdivision, the heuristic and the penalty
scheme we can describeIST’s state selection step. Figure 5
illustrates two applications of the state selection step.

1. Select the cellcmin ∈ S that minimizes a score function:

score(c) = µ(c) · h(c), (5)

where µ(c) is the cell’s subdivision level and the cell
heuristic is: h(c) = min ∀x∈T s.t. x∈c h(x).

2. Select an edgeemin ∈ cmin that minimizes:

score(e) = p(e) · cost(e), (6)

wherep(e) is the edge penalty andcost(e) is the duration
of the trajectory fromx0 until the last state one.

3. Along the edgeemin select a random statexr ∈ emin.

4. Execute bookkeeping operations:

(a) Splitcmin according to the subdivision rules.
(b) Split all the edges that belonged tocmin so that the in-

variant that every edge belongs to only one cell holds.

The important characteristic of the state selection is that it
separates the heuristich(c) from the true path costcost(e).
The heuristic is used to select a cell in the subdivision in a
depth-first manner. The true path cost is used to select the
edge within a cell in a breadth-first manner. In this way, we
do not need to scaleh(c) vs. cost(e). At the same time, the
approach promotes the exploration of alternative parts of the
state space by promoting the selection of large unexplored
cells. The penalization scheme allows the eventual selection
of every edge on the tree. Moreover, this algorithm still al-
lows for an efficient implementation. The cell selection can
be achieved with a binary heap and most of the information
necessary to make decisions can be updated in constant time
at each iteration of the algorithm.

Figure 4: The edge penalization scheme.
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Figure 5: Four consecutive steps from the operation of the proposed state selection technique. The highlighted cell corresponds
to the selected cellcmin at each iteration. The numbers corresponds to the edge penalty valuesp(e).

D. Propagation Scheme
Given a selectedxr, the control selection step’s objective is
to estimate the best possible control to apply fromxr while
allowing eventually the selection of any possible controls.
IST employs an offline procedure to create a database of

trajectories for various dynamic parameters of the system’s
state. The offline procedure samples a discrete set of states
X̂ for the system. All these states are set to zero Cartesian
coordinates and zero orientation. For each statex̂ ∈ X̂ we
sample various controlsux̂ and propagate a trajectory in an
obstacle-free environment. We then store a discretized ver-
sion of the resulting primitive trajectoryπ(x̂, (ux̂, dtmax)))
for a maximum durationdtmax.

During the online operation, if an edge is selected for the
first time asemin we make use of the database of trajecto-
ries with the objective of selecting a control that will bring
the system to a state with a smaller heuristic cost. We find
the prestored statêx that is closer to the statexr in terms of
the dynamics parameters. Then for each controlux̂ we trans-
form the stored trajectoryπ(x̂, (ux̂, dtmax)) so that the ini-
tial state isxr without doing any collision checking. Out of
all trajectories we find the one with the best heuristic value
h(x) and choose the corresponding controlux̂ as theuv con-
trol selection for this iteration.

Every other time that an edgee is selected for expansion,
we attempt to increase the variety of controls that have been
expanded frome. IST stores on each edge the controls that
have been expanded in the past from states along this edge
and builds a discretized probability distribution. The proba-
bility distribution is used so as to bias towards the selection
of controls that have not been selected in the past. It retains
a non-zero probability, however, for every possible control.

The last point related to the propagation scheme is the du-
rationdt of the resulting trajectoryπ(xr , (uv, dt)). By de-
fault, the duration of the trajectory has to be such so that the
trajectory remains feasible throughout its execution. Nev-
ertheless,IST imposes an additional constraint that aims
towards improving the quality of the resulting paths. If the
propagated trajectoryπ(xr , (uv, dt)) enters a new cell of the
subdivision, other than the cell thatxr belongs to, where
there is already another path with a better cost, then the prop-
agation ofπ(xr , (uv, dt)) is stopped. The idea is that there
is already a better path that reaches this part of the space,
so this new trajectory might be unnecessary. Nevertheless,
for probabilistic completeness purposes we do propagate a
single state from the trajectory into this cell so that it can
be potentially revisited by the algorithm in subsequent iter-
ations.

E. Algorithm
Algorithm 2 summarizes the overall operation ofIST as de-
scribed in the previous sections. The algorithm assumes that
the database of trajectories is available.

Algorithm 2 INFORMED SUBDIVISION TREE

(Initialization)
Set the root ofT to the initial statex0(t0)
Create a cellc0 that corresponds to the entire state spaceX
Initiate the set of subdivision cellsS = {c0}
Execute aPRM for a kinematic version of the system

while ∄ x ∈ T so thatx ∈ XG (goal region)do
(State Selection)
Select the cellcmin = argmin ∀c∈S {score(c)}
Select the edgeemin = argmin ∀e∈cmin

{score(e)}
Update the penalty value:p(emin) = 2 · p(emin)
Select a random statexr ∈ emin

Split the cellcmin according to the subdivision rules
Split the edges incmin to the corresponding cells

(Control Selection)
if first time thatemin is selectedthen

Finduv that brings to a state with good heuristic value
h(·) based on the trajectory database (no collision-
checking)

else
Compute the valid controluv based on the probability
distribution ofemin

end if
Givenuv, update probability distribution ofemin

(Duration Selection)
while The resulting trajectory is feasible and
there is no better path fromx0 to the current celldo

Propagating for timedt
end while

Add the primitive trajectoryenew = π(xr , (uv, dt)) in T
Set the penalty parameter ofp(enew) = p(emin) + 1

end while

III. Probabilistic Completeness
Due to space limitations we will provide only an outline
of the arguments for the algorithm’s probabilistic complete-
ness. In order to prove that a sampling-based planner is
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probabilistic complete it is sufficient to show that it can
eventually produce any random walk inXfree (Ladd and
Kavraki 2004). This criterion can be achieved if we can
show that all the states along the tree data structureT are
selected infinitely often and that all possible controls can be
eventually propagated from each state.

It is easy to show that the propagation step allows for
probabilistic completeness. Although the control selection
process is biased we retain a non-zero probability for every
control. Another issue is related to the duration of the prop-
agation. Although we stop the propagation early if it enters
a new cell with a better trajectory, we still propagate at least
one state within this cell. As we argued, this allows the edge
to be propagated again later and does not effect the proof.

The argument that the state selection step allows every
state to be selected infinitely often follows the structure of
the algorithm. We must first show that every cell will be
selected and then that this also holds true for every edge:

(i) Every cell will be selected in finite time:The heuristic
value must be upper and lower bounded by finite positive
valueshmax > hmin andhmin > 0. Assume a cellc ∈
SM , whereSM is the state of the subdivision at iteration
M . Its scorescore(c) depends on its heuristic valueh(c)
and its subdivision levelµ(c). As long as it is not selected,
µ(c) does not change, whileh(c) can only improve by newly
propagated edges insidec.

Lets assume the worst case, wherescore(c) does not im-
prove on consecutive iterations and every other cellc′ ∈ SM

has the best possible heuristic:

h(c′) = hmin, ∀c′ ∈ SM andc′ 6= c.

Even in this case, however, there is a finite iterationN > M
where the score of every other cell will be worse than the
score of cellc: score(c′) > score(c), ∀c′ ∈ SN . At some
point all the children of a cellc′ ∈ SM will have scores
worse thanscore(c) because their subdivision level will be
increasing and their heuristic is lower bounded by a positive
value. Furthermore, the number of children cells of allc′

with better score thanc will be finite. Consequently, the cell
c at some finite iterationN > M will be selected.

(ii) Every edge in a cell will be eventually selected:Sim-
ilar is the argument for an edgee, only this time the proof
is based on the edge penaltiesp(e). Since edges that are
selected get penalized and newly propagated edges get in-
creasing penalties, at some point the penalties of all other
edges will be so high that edgee will be selected even if the
path cost ofe is very high. The number of newly propagated
edges in the cell with better score is finite.

The combination of all the above arguments results in a
proof that the algorithm is probabilistic complete as it has
been described. We did not have to resort to simplistic fixes
such as for a certain percentage of iterations to select a ran-
dom state. Other greedy algorithms typically refer to this ap-
proach as a way to provide with probabilistic completeness.
Our state selection process tries to make informed choices
given the heuristic at every iteration of the algorithm.

Figure 7: We use a car-like system as our testbed in this
work. The car is modeled as five rigid bodies, the chassis and
the four wheels, connected through four joints. The front
joints allow the wheels to be steerable, while the back joints
allow the car to accelerate. In order to have a car that does
not flip over often in the physics-based simulation we have
to: (a) apply controls to the wheels that follow the Ackerman
steering model and (b) to simulate the effect of anti-roll bars
that real cars have.

IV. Experiments
In order to evaluate the efficiency of the proposed approach
we have executed experiments using a physically simulated
car in a variety of scenes. The simulation environment is
based on the Open Dynamics Engine (ODE) (Smith 2006).
Fig. 7 provides details about the simulation. The high-level
controls for the car are acceleration and steering velocity,
which are appropriately translated into control parameters
to the joints that connect the wheels with the chassis.

The workspaces for which we provide comparisons in this
paper are displayed in Fig. 8. The first is an approximation
of a known benchmark for motion planning, the bug-trap
problem. The second problem, referred to as the iso-test
problem. It requires the car to swerve between obstacles in
a road-like environment, and it has been reported in the liter-
ature as a challenging case for sampling-based kinodynamic
planners (Boyer and Lamiraux 2006). The last problem is
the most challenging in terms of the workspace constraints
since it is a maze-like environment.

The algorithms that we compare against include the
three uninformed sampling-based kinodynamic planners
described in the introduction section,RRT (LaValle and
Kuffner 2001b), Expansive Spaces (Hsu, Latombe, and Mot-
wani 1999) andPDST (Ladd and Kavraki 2005a). We have
also experimented with the informed variant ofRRT, called
RRT-“goal bias”, which 5% of iterations selects for expan-
sion the state along the tree closer to the goal. The last alter-
native we tested is theRRT∗ (Urmson and Simmons 2003)
that integrates an A∗ like heuristic in theRRT algorithm.

The results of our experiments in terms of computation
time are shown in Fig. 6. The cost for the computation
of the probabilistic roadmap is included in the computation
time of theIST. The proposed algorithm is able to out-
perform all the alternative techniques in all workspaces. In
some cases, the speedup is close to one order of magnitude.
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Figure 6: Comparison of computation time on the bug trap, iso-test and maze workspaces. Averages of 50 experiments.

Figure 8: The bug trap, iso-test and maze workspaces.

IST not only outperforms the uninformed planners but is
also able to perform better thanRRT-“goal bias” andRRT∗.
The best results are achieved for the maze-like environment.
In this workspace a heuristic that uses workspace or C-space
knowledge is considerably advantageous.

Fig. 9 shows a different statistic. It provides the average
duration of a path computed by the algorithms on the maze.
It is noteworthy, that althoughIST computes the solution
faster, it is also able to compute a better path by taking ad-
vantage of the heuristic. The maze is large enough to allow
us to see this difference. For the other two scenes, almost all
of the algorithms computed trajectories of similar duration.

Figure 9: Comparison of path duration on the maze scene.
Averages over 50 experiments.

It must be noted that further improvement in path qual-
ity is to be expected by implementing an anytime approach
as the AnytimeRRT algorithm (Ferguson and Stentz 2006).
Anytime planners continue searching after a solution has
been already found with the objective of improving path
quality. The time to compute the first solution path with
Anytime RRT is the same as withRRT, since the first al-
gorithm uses the second as an initialization procedure. The
hope is that sinceIST appears to perform better thanRRT in
problems with physically-simulated dynamics, an anytime
version ofIST will have similar advantages. We are plan-
ning to investigate the properties of an anytime version of
IST in future work.

V. Discussion
Sampling-based kinodynamic planners are able to solve
some hard kinodynamic problems but they often face the
problem of regression as they propagate trajectories in al-
ready explored space. Heuristic search can be very bene-
ficial in guiding the operation of sampling-based planners
in such challenging problems so as to avoid regression and
focus the search in the part of the state space that is bene-
ficial to the solution of a problem. Nevertheless, heuristic
search in continuous spaces is not as straightforward as in
traditional discrete AI problems. For example, it is not obvi-
ous how to scale the heuristic parameter against the true path
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cost. Furthermore, it is still very important that eventually
the entire state space will be covered in order to be able to
provide with the guarantee of probabilistic completeness.

This work emphasizes the importance of heuristic search
in sampling-based kinodynamic planning and describes
an algorithm, the Informed Subdivision Tree (IST), that
achieves informed search, while still providing probabilis-
tic completeness guarantees. The algorithm integrates the
heuristic information in an adaptive subdivision scheme.
The subdivision is used to appropriately discretize the state
space and estimate in an online fashion the algorithm’s per-
formance in state space exploration. The heuristic informa-
tion is used for the selection of the next cell in the subdi-
vision from where the tree data structure of the sampling-
based planner will be expanded from. At the cell level the al-
gorithm operates in a depth-first manner. Then the algorithm
moves on to select an edge within the cell given the best path
cost from the starting state and a penalty factor. This means
that at the level of selecting an edge within a cell the algo-
rithm operates in a breadth-first manner. In this way, there is
no need to scale the heuristic with the true path cost, while
we still achieve an A∗ like behavior overall. Heuristic infor-
mation is also employed in the propagation step of the algo-
rithm. Experiments on various workspaces for a physically
simulated system show thatIST outperforms uninformed
sampling-based kinodynamic planners as well as some ex-
isting informed variants.
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