Search Techniques for Fourier-Based Learning

Adam Drake and Dan Ventura
Computer Science Department
Brigham Young University
\{acd2,ventura\}@cs.byu.edu

Abstract

Fourier-based learning algorithms rely on being able to efficiently find the large coefficients of a function's spectral representation. In this paper, we introduce and analyze techniques for finding large coefficients. We show how a previously introduced search technique can be generalized from the Boolean case to the real-valued case, and we apply it in branch-and-bound and beam search algorithms that have significant advantages over the best-first algorithm in which the technique was originally introduced.

Introduction

Fouier-based learning algorithms attempt to learn a function by approximating its Fourier representation. They have been used extensively in learning theory, where properties of the Fourier transform have made it possible to prove many learnability results (Jackson 1997; Kushilevitz and Mansour 1993; Linial, Mansour, and Nisan 1993). Fourier-based algorithms have also been effectively applied in real-world settings (Drake and Ventura 2005; Kargupta et al. 1999; Mansour and Sahar 2000).

In order to approximate a function's Fourier representation, a learning algorithm must be able to efficiently identify the large ceofficients of the spectrum. Thus, Fourier-based learning is essentially a search problem, as the effectiveness of this learning approach is tied to the search for large coefficients.

In this paper, we consider the problem of finding large spectral coefficients in real-world settings. Specifically, we consider the scenario in which a learner is asked to learn an unknown function from a set of labeled examples. In the following sections, we briefly discuss the hardness of the search problem, and describe a coefficient search technique that can be incorporated into a variety of search algorithms. We show that a complete branch-and-bound algorithm is as fast and more memory efficient than a previously introduced algorithm. We also introduce an incomplete beam search algorithm that is always fast and usually able to find solutions that are as good as those found by the complete algorithms.

[^0]
Fourier-Based Learning

The spectral learning algorithms we consider in this paper are based on the Fourier transform of Boolean-input functions. It is also known as a Walsh transform.

The Fourier Transform

Suppose f is a real-valued function of n Boolean inputs (i.e., $\left.f:\{0,1\}^{n} \longrightarrow \mathbb{R}\right)$. Then the Fourier spectrum of f, denoted \hat{f}, is given by

$$
\begin{equation*}
\hat{f}(\alpha)=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{\alpha}(x) \tag{1}
\end{equation*}
$$

where $\alpha \in\{0,1\}^{n}$ and $\hat{f}(\alpha)$ is the spectral coefficient of basis function χ_{α}. Each $\chi_{\alpha}:\{0,1\}^{n} \longrightarrow\{1,-1\}$ is defined by the following:

$$
\chi_{\alpha}(x)=\left\{\begin{align*}
1 & : \text { if } \sum_{i} \alpha_{i} x_{i} \text { is even } \tag{2}\\
-1: & \text { if } \sum_{i} \alpha_{i} x_{i} \text { is odd }
\end{align*}\right.
$$

where α_{i} and x_{i} denote the $i^{\text {th }}$ binary digits of α and x, respectively.

The 2^{n} basis functions of the Fourier transform are XOR functions, each computing the XOR of a different subset of inputs. The subset is determined by α, as only inputs for which $\alpha_{i}=1$ contribute to the output of χ_{α}. The order of a basis function is the number of inputs for which $\alpha_{i}=1$.

The Fourier coefficients provide global information about f. For example, each $\hat{f}(\alpha)$ provides a measure of the correlation between f and χ_{α}. A large positive or negative value indicates a strong positive and negative correlation, while a small value indicates little or no correlation.
Every f can be expressed as a linear combination of the basis functions, and the Fourier coefficients provide the correct linear combination:

$$
\begin{equation*}
f(x)=\sum_{\alpha \in\{0,1\}^{n}} \hat{f}(\alpha) \chi_{\alpha}(x) \tag{3}
\end{equation*}
$$

Equation 3 is the inverse transform, and it shows how any f can be recovered from its Fourier representation.

Learning Fourier Representations

In typical learning scenarios, f, the target function, is unknown and must be learned from a set X of $\langle x, f(x)\rangle$ examples of the function. A Fourier-based learning algorithm
attempts to learn a linear combination of a subset B of the basis functions that is a good approximation of f :

$$
\begin{equation*}
\tilde{f}(x) \approx \sum_{\alpha \in B} \hat{f}_{X}(\alpha) \chi_{\alpha}(x) \tag{4}
\end{equation*}
$$

Here, $\hat{f}_{X}(\alpha)$ denotes a coefficient approximated from X. Since f is only partially known, the true values of the coefficients cannot be known with certainty. However, they can be approximated from the set of examples:

$$
\begin{equation*}
\hat{f}_{X}(\alpha)=\frac{1}{|X|} \sum_{\langle x, f(x)\rangle \in X} f(x) \chi_{\alpha}(x) \tag{5}
\end{equation*}
$$

This approximation of the Fourier coefficients differs from Equation 1 only in that the sum is now over the set of examples only (rather than over all possible inputs) and the normalization is in terms of the number of examples (rather than the number of possible inputs). It can be shown that under certain conditions coefficients approximated in this way will not differ much from the true coefficients (Linial, Mansour, and Nisan 1993).

Since there are an exponential number of basis functions (2^{n} basis functions for an n-input function), it is not practical to use all basis functions unless n is fairly small. Consequently, a key difference between Fourier-based algorithms is in the choice of which basis functions will be used. (The other basis functions are implicitly assumed to have coefficients of 0 .)

One approach is to use all basis functions whose order is less than or equal to some value k (Linial, Mansour, and Nisan 1993). This approach has the advantage that no search for basis functions is necessary. However, it has the disadvantage that the class of functions that can be learned is limited to those that can be expressed with only low-order basis functions.

Another approach is to search for and use any basis functions whose coefficients are "large" (e.g., larger than some threshold θ) (Kushilevitz and Mansour 1993; Mansour and Sahar 2000). Basis functions with large coefficients carry most of the information about a function, and many functions can be approximated well by only the large coefficients of their spectral representations.

A third approach uses boosting (Jackson 1997). In this approach, basis functions are added iteratively. Each iteration, a basis function is selected that is highly correlated with a weighted version of the data. Initially, all examples have equal weight, so the first basis function added is one that is highly correlated with the original data. Thereafter, examples that are classified incorrectly by the previously added basis functions receive more weight, so that basis functions added in subsequent iterations are more correlated with misclassified examples.

In this paper, a gradient boosting approach to spectral learning is used to select basis functions. It is illustrated in Figure 1, in which B is the set of basis function labels being constructed, m is the desired number of basis functions, X is the original set of examples, and Y is a temporary set of examples that associates new target outputs with each input. Each iteration, every example's output is set to the difference

```
\(B \leftarrow \emptyset\)
while \(|B|<m\)
        \(Y \leftarrow \emptyset\)
    for each \(\langle x, f(x)\rangle \in X\)
        \(Y \leftarrow Y \cup\left\langle x, f(x)-\sum_{\alpha \in B} \hat{f}_{X}(\alpha) \chi_{\alpha}(x)\right\rangle\)
    \(B \leftarrow B \cup\) FindLargeCoef \((Y)\)
```

Figure 1: Gradient boosting algorithm used to guide selection of basis functions. Each iteration, target outputs are set to the difference between $f(x)$ and the current output of the model for input x.
between its true output and the output of the current model. Then, a basis function with a large coefficient with respect to these target values is added. With these target values, a larger coefficient implies a greater reduction in squared error of the model when the basis function is added.

Generalized Fourier-based Learning

A Fourier-based learning algorithm will likely be most effective when f has, or can be approximated well by, a sparse Fourier representation. Of course, not all functions can be approximated efficiently by a sparse Fourier representation. However, the Fourier learning approach can be generalized to allow other spectral representations (Drake and Ventura 2005).

For example, the Fourier basis, which is a basis of XOR functions, can be replaced by a basis of AND (ξ) or OR (ζ) functions, which compute the logical AND or OR of subsets of input features:

$$
\begin{gathered}
\xi_{\alpha}(x)=\left\{\begin{array}{r}
1: \text { if } \sum_{i} \alpha_{i} x_{i}<\sum_{i} \alpha_{i} \\
-1: \text { if } \sum_{i} \alpha_{i} x_{i}=\sum_{i} \alpha_{i}
\end{array}\right. \\
\zeta_{\alpha}(x)=\left\{\begin{array}{r}
1: \text { if } \sum_{i} \alpha_{i} x_{i}=0 \\
-1:
\end{array} \text { if } \sum_{i} \alpha_{i} x_{i}>0\right.
\end{gathered} ~ . ~ ? ~
$$

These basis functions can be used in place of the Fourier basis functions in Equation 1 to obtain AND and OR spectra and in Equation 4 to represent f. Note, however, that these spectra do not give the linear combination of AND or OR functions that represents f. Nevertheless, these bases provide useful features, and linear combinations of these basis functions can effectively represent functions. These coefficiens do share the property of Fourier coefficients that the magnitude and sign of each coefficient reveals the correlation between f and a particular basis function. (There are other bases whose spectra do give the linear combinations of AND or OR functions but do not give the correlation.)

Finding Spectral Coefficients

For a spectral learning algorithm that selects basis functions with large coefficients, the heart of the learning algorithm is the search algorithm used to find large coefficients. For the boosting approaches, the key to success is being able to find one large coefficient (per iteration).

Finding Spectral Coefficients is Hard

Unfortunately, as mentioned previously, the number of basis functions is exponential in the number of inputs to the target function. Furthermore, it can be shown that the problem of finding the largest coefficient in a spectral representation is as hard as solving the MAX-2-SAT problem, and is therefore an NP-complete problem. The following theorem expresses this idea for the Fourier spectrum.
Theorem 1. Let X be a set of $\langle x, f(x)\rangle$ pairs, where $x \in$ $\{0,1\}^{n}$ and $f(x) \in \mathbb{R}$. The problem of determining which $\alpha \in\{0,1\}^{n}$ maximizes $\left|\hat{f}_{X}(\alpha)\right|$ is $N P$-complete.

Proof Sketch. The proof is by reduction from MAX-2-SAT. The key observation in the proof is that every CNF expression can be converted in polynomial time to a set X of $\langle x, f(x)\rangle$ pairs such that each coefficient of \hat{f}_{X} gives the number of clauses that will be satisfied by one of the possible truth assignments. Thus, the largest Fourier coefficient of X will be the MAX-2-SAT solution for the CNF expression.

Not only is finding the largest coefficient an NP-complete problem, but determining whether there are any coefficients larger than a certain size is also NP-complete. Similar results can be proven for the AND and OR spectra as well.

A simple brute force calculation of spectral coefficients to find the largest would require $O\left(|X| \cdot 2^{n}\right)$ time. $(O(|X|)$ time is required to compute a single coefficient, and there are 2^{n} coefficients to consider.) Meanwhile, the Fast Walsh Transform algorithm (a Boolean-input analogue to the Fast Fourier Transform) requires $O\left(n \cdot 2^{n}\right)$ time. Both of these approaches are practical only for small learning problems.

Searching by Bounding Coefficient Size

Fortunately, although the NP-completeness result suggests that an efficient algorithm for finding large coefficients in arbitrary spectra does not exist, a technique for bounding coefficient size in any given region of the spectrum makes it possible to find large coefficients much more efficiently than with the previously mentioned approaches. A Boolean function version of this technique was used in the context of a best-first search algorithm (Drake and Ventura 2005). Here we generalize the technique to handle real-valued functions and show that it can be incorporated into search algorithms that are capable of handling larger problems. In this section we will consider only the case of searching the Fourier (XOR) spectrum. With some modification this technique can be used to find coefficients in the AND and OR spectra defined earlier.

To explain the technique we will introduce some additional notation. Let $\beta \in\{0,1, *\}^{n}$, where $*$ is a wildcard value, be a partially or fully defined basis function label that represents a region of the Fourier spectrum. Specifically, β represents the region of the spectrum consisting of all α such that $\forall i\left(\beta_{i}=* \vee \alpha_{i}=\beta_{i}\right)$. We will use the notation $\alpha \in \beta$ to denote an α in region β.

Suppose that the coefficient search space is a tree of nodes with one node for each possible β. The search begins at

```
CreateChild(parentNode, i, value)
    child. \(\beta \leftarrow\) parentNode. \(\beta\)
    child. \(\beta_{i} \leftarrow\) value
    child. \(X_{\beta} \leftarrow \emptyset\)
    for each \(\langle x, f(x)\rangle \in\) parent Node. \(X_{\beta}\)
        \(v \leftarrow x\)
        \(f(v) \leftarrow f(x)\)
        if \(v_{i}=1\)
            \(v_{i} \leftarrow 0\)
            if value \(=1\)
                \(f(v) \leftarrow-f(v)\)
        if \(\exists\langle z, f(z)\rangle \in\) child. \(X_{\beta}\) such that \(v=z\)
            \(\langle z, f(z)\rangle \leftarrow\langle z, f(z)+f(v)\rangle\)
        else
            child. \(X_{\beta} \leftarrow\) child. \(X_{\beta} \cup\langle v, f(v)\rangle\)
    return child
```

Figure 2: Procedure for obtaining children of a Fourier coefficient search node. Parameter i is the digit of the parent node's label that is to be set, and value is the value it is to be set to.
the root node, which has label $\beta=*^{n}$. As the search proceeds, nodes are expanded by replacing them with child nodes whose labels have one of the wildcards set to either 0 or 1 . Both children set the same wildcard, with one child taking the value 0 and the other taking the value 1 . A leaf node, which will have no wildcards in its label, is a solution, and its label corresponds to the label of a specific basis function.

In addition to the label β, there is a set of examples, X_{β}, associated with each node that facilitates the computation of coefficient bounds by implicitly storing in child nodes information obtained while computing bounds for parent nodes. For the root node, $X_{\beta}=X$. For any other node, X_{β} is derived from its parent by the procedure shown in Figure 2. Using this procedure, the size of the largest possible Fourier coefficient in region β can be bounded as follows:

$$
\begin{equation*}
\max _{\alpha \in \beta}\left|\hat{f}_{X}(\alpha)\right| \leq \frac{\sum_{\langle x, f(x)\rangle \in X_{\beta}}|f(x)|}{|X|} \tag{6}
\end{equation*}
$$

To give some intuition behind this technique, note that the largest possible Fourier coefficient for a given X is given by

$$
\max _{\alpha \in *}\left|\hat{f}_{X}(\alpha)\right| \leq \frac{\sum_{\langle x, f(x)\rangle \in X}|f(x)|}{|X|}
$$

which is the coefficient bound of the root node. This maximum correlation exists only if there is an α such that either $\operatorname{sign}(f(x))=\operatorname{sign}\left(\chi_{\alpha}(x)\right)$ or $\operatorname{sign}(f(x)) \neq \operatorname{sign}\left(\chi_{\alpha}(x)\right)$ for all $\langle x, f(x)\rangle \in X$. To the extent that a basis function, or set of basis functions, does not exhibit either of these correlations, coefficient size drops.

The procedure described in Figure 2 captures this idea at line 12 , where examples are merged. Examples are merged here only if they are identical on inputs for which β_{i} has not yet been set. This can be done because the effect of inputs for which β_{i} has been set has already been taken into account (by inverting outputs, at line 10 , whenever $\beta_{i}=$ $v_{i}=1$). When examples are merged, the coefficient bound

```
FindLargeCoef-BestFirst( }X\mathrm{ )
    initialNode. }\beta\leftarrow\mp@subsup{*}{}{n
    initialNode. }\mp@subsup{X}{\beta}{}\leftarrow
    priorityQueue.insert(initialNode)
    while priorityQueue.front() is not a solution
        node \leftarrow priorityQueue.removeFront()
        i\leftarrowGetInputToSetNext(node)
        priorityQueue.insert(CreateChild(node, i,0))
        priorityQueue.insert(CreateChild(node, i, 1))
    return priorityQueue.front(). }
```

Figure 3: The best-first search algorithm. Nodes are stored in a priority queue that always places the node with the largest coefficient bound at the front.
may decrease since $|f(x)+f(v)|<|f(x)|+|f(v)|$ when $\operatorname{sign}(f(x)) \neq \operatorname{sign}(f(v))$.

Note that for a solution node, where $\beta \in\{0,1\}^{n}$, all examples will have merged into one, and the coefficient of χ_{β} is given by

$$
\hat{f}_{X}(\beta)=\frac{\sum_{\langle x, f(x)\rangle \in X_{\beta}} f(x)}{|X|}
$$

while the magnitude of the coefficient is given by the absolute value of that quantity.

The following sections describe search algorithms that incorporate this coefficient bounding technique, but explore the search space in a different ways. Two of the methods are complete, while the other is an incomplete search technique.

Complete Search Techniques

The complete search algorithms presented here always find the largest coefficient, but may require exponential time and/or memory to do so. The first is a previously introduced best-first search algorithm (Drake and Ventura 2005), and the second is a branch-and-bound search algorithm. Empirical results show that the branch-and-bound algorithm can find the largest coefficient in about the same amount of time as the best-first algorithm, while requiring far less memory.

Best-First Search

The best-first search algorithm is outlined in Figure 3. Like the other search algorithms, the best-first algorithm begins at the root node. After expanding the first node, however, it explores the space in order of $\max _{\alpha \in \beta}\left|\hat{f}_{X}(\alpha)\right|$, where β is the node's label. Nodes are stored in a priority queue in which the highest priority element is the node with the largest coefficient bound.

Since nodes are visited in best-first order, relatively few nodes are visited unnecessarily. However, the entire frontier of the search must be stored in memory, which can exhaust resources fairly quickly if the search becomes large.

Branch-and-Bound Search

The branch-and-bound search algorithm is outlined in Figure 4. It is a depth-first search in which search paths are pruned whenever a node's coefficient bound

```
FindLargeCoef-BranchAndBound \((X)\)
    initialNode. \(\beta \leftarrow *^{n}\)
    initialNode. \(X_{\beta} \leftarrow X\)
    stack.push(initialNode)
    while stack is not empty
        node \(\leftarrow\) stack.pop()
        if \(\max _{\alpha \in \text { node. } \beta}\left|\hat{f}_{X}(\alpha)\right|>\left|\hat{f}_{X}\left(\alpha_{\text {best }}\right)\right|\)
            if node is a solution
            \(\alpha_{\text {best }} \leftarrow\) node. \(\beta\)
            else
                \(i \leftarrow\) GetInputToSetNext(node)
                    stack.push(CreateChild(node, \(i, 1\) ))
            stack.push(CreateChild(node, \(i, 0)\) )
    return \(\alpha_{\text {best }}\)
```

Figure 4: The branch-and-bound search algorithm. Nodes are visited depth-first, and nodes whose coefficient bound is below the largest coefficient found so far $\left(\left|\hat{f}_{X}\left(\alpha_{\text {best }}\right)\right|\right)$ are pruned from the search.
$\left(\max _{\alpha \in \beta}\left|\hat{f}_{X}(\alpha)\right|\right)$ is below the best solution found so far $\left(\left|\hat{f}_{X}\left(\alpha_{\text {best }}\right)\right|\right)$. Figure 4 illustrates the use of a stack to perform this search, although it can be implemented using recursion as well.

The branch-and-bound algorithm will tend to visit more nodes than the best-first algorithm, but it has less overhead, so it can visit more nodes per second. In addition, its memory usage is linear in n, the number of inputs. If examples at each node are stored in a hash table of size h, then the algorithm's space complexity is $O(n(|X|+h))$. By comparison, the space complexity of the best-first algorithm is $O(m(|X|+h))$, where $m, n \leq m \leq 2^{n}$, is the number of nodes expanded during search. (For every node expanded and removed from the queue, two are added, so the queue size increases by one each time a node is expanded.)

Variable Ordering

In both algorithms, when a node is expanded, an input i for which $\beta_{i}=*$ is selected to be set to 0 and 1 in the child nodes (as indicated by the GetInputToSetNext function in Figures 3 and 4). The choice of i does not affect the completeness of either algorithm, so inputs could be processed in an arbitrary order. However, both algorithms benefit greatly from a dynamic variable ordering scheme.

The variable ordering heuristic used in the experiments that follow selects an input according to the following:

$$
\begin{equation*}
\underset{i}{\operatorname{argmin}}\left(\max _{\alpha \in \beta_{i \leftarrow 0}}\left|\hat{f}_{X}(\alpha)\right|+\max _{\alpha \in \beta_{i \leftarrow 1}}\left|\hat{f}_{X}(\alpha)\right|\right) \tag{7}
\end{equation*}
$$

in which $\beta_{i \leftarrow 0}$ and $\beta_{i \leftarrow 1}$ denote the labels of the child nodes that result from setting β_{i} to 0 and 1 , respectively. This heuristic chooses the input that results in the tightest (i.e., smallest) combined coefficient bounds in the children. By obtaining tighter bounds more quickly, it is possible to more quickly determine which portions of the space can be ignored.

Table 1: Data set summary.

Data Set	Inputs	Examples
Chess	38	3,196
German	24	1,000
Heart	20	270
Pima	8	768
SPECT	22	267
Voting	16	435
WBC1	9	699
WBC2	32	198
WBC3	30	569

Table 2: Average number of nodes visited while searching for the largest Fourier coefficient. The variable ordering heuristic (H) reduces the number of nodes visited by both algorithms, while the best-first (BFS) algorithm usually visits fewer nodes than the branch-and-bound $(\mathrm{B} \& \mathrm{~B})$ algorithm.

Data Set	B\&B	BFS	B\&B+H	BFS+H
Chess	$432,986.1$	-	$2,012.5$	296.0
German	$4,097.8$	$3,912.2$	155.0	135.5
Heart	$4,072.8$	$3,935.4$	196.4	184.4
Pima	33.4	20.0	33.8	13.3
SPECT	$8,007.9$	$8,040.8$	$1,170.2$	$1,170.7$
Voting	52.2	28.3	26.0	26.0
WBC1	24.8	21.6	17.0	17.0
WBC2	$252,833.5$	-	479.3	339.3
WBC3	$6,936.2$	$6,500.7$	106.1	101.8

Complete Search Results

This section compares the performance of the algorithms on several data sets (Newman et al. 1998), which are summarized in Table 1. Each data set represents a Boolean classification problem. In each data set, non-Boolean input features were converted into Boolean features. Each numeric input feature was converted into a single Boolean feature that indicated whether the value was above or below a threshold. Each nominal input feature was converted into a group of m Boolean features (one for each possible value of the feature), where only the Boolean feature corresponding to the correct nominal value would be true in an example. The number of inputs listed in Table 1 is the number of inputs after converting non-Boolean inputs to Boolean.

Tables 2-4 compare the performance of the best-first and branch-and-bound algorithms, both with and without the variable ordering heuristic, when used to find the largest coefficient for each of the data sets. Tables 2, 3, and 4 show the average number of nodes expanded, the average amount of time required, and the average memory usage, respectively. (Note that for two of the data sets the best-first algorithm without the variable ordering heuristic ran out of memory, so results are not displayed in those two cases.)

As the node counts in Table 2 show, the variable ordering heuristic drastically reduces the number of nodes visited by both algorithms on the larger search problems. Table 3 shows that this improvement in the number of visited nodes leads to smaller run times as well, in spite of the added com-

Table 3: Average time (in seconds) to find the largest Fourier coefficient. Although the best-first algorithm (BFS) usually visits fewer nodes, its run time is roughly equivalent to that of the branch-and-bound ($B \& B$) algorithm.

Data Set	B\&B	BFS	B\&B+H	BFS +H
Chess	242.16	-	1.39	0.91
German	1.11	1.94	0.11	0.12
Heart	0.40	0.58	0.04	0.05
Pima	0.00	0.00	0.00	0.00
SPECT	1.11	2.08	0.42	0.46
Voting	0.00	0.00	0.00	0.00
WBC1	0.00	0.00	0.00	0.00
WBC2	23.36	-	0.11	0.12
WBC3	1.48	2.55	0.05	0.05

Table 4: Average memory usage (in terms of the number of nodes) during a search for the largest Fourier coefficient. The branch-and-bound ($\mathrm{B} \& \mathrm{~B}$) algorithm's memory usage is proportional to the number of inputs, and tends to be much less than that of the best-first algorithm (BFS), whose memory usage is proportional to the number of visited nodes.

Data Set	B\&B/B\&B+H	BFS	BFS+H
Chess	39	-	297.0
German	25	$3,913.2$	136.5
Heart	21	$3,936.4$	185.4
Pima	9	21.0	14.3
SPECT	23	$8,041.8$	$1,170.7$
Voting	17	29.3	27.0
WBC1	10	22.6	18.0
WBC2	33	-	340.3
WBC3	31	$6,501.7$	102.8

putation required to compute the heuristic.
Comparing the best-first and branch-and-bound algorithms, Table 2 shows that the best-first algorithm typically visits fewer nodes. However, Table 3 shows that the two algorithms require about the same amount of time to find a solution, so the additional overhead associated with the best-first algorithm appears to offset the potential gain of visiting fewer nodes. Table 4 demonstrates the branch-andbound algorithm's memory advantage. Perhaps more important than the differences observed here, however, is the fact that the branch-and-bound algorithm's worst-case memory complexity is linear in n, while the best-first search algorithm's is exponential.

Incomplete Search Techniques

An alternative to the previously introduced complete search algorithms is an incomplete algorithm that may not always find the largest coefficient but is guaranteed to finish its search quickly and usually finds good solutions.

Beam Search

The beamed breadth-first search described in Figure 5 explores the search space in a breadth-first manner, but at each

```
FindLargeCoef-BeamSearch(X,k)
    initialNode. }\beta\leftarrow\mp@subsup{*}{}{n
    initialNode. }\mp@subsup{X}{\beta}{}\leftarrow
    bestNodes }\leftarrow\emptyset\cupinitialNod
    for }j\leftarrow1\mathrm{ to }
        priorityQueue}\leftarrow
        for each node }\in\mathrm{ bestNodes
            i\leftarrowGetInputToSetNext(node)
            priorityQueue.insert(CreateChild(node, i,0))
            priorityQueue.insert(CreateChild(node, i, 1))
        bestNodes }\leftarrow
        while bestNodes.size()}\leq
            node \leftarrow priorityQueue.removeFront()
            bestNodes }\leftarrow\mathrm{ bestNodes U node
    return bestNodes.best(). }
```

Figure 5: The beam search algorithm. The search space is explored breadth-first, with all but the k most promising nodes at each level being pruned.
level of the tree it prunes all but the best k nodes, ensuring that the number of nodes under consideration stays tractable.

The number of nodes that will be considered by the beam search algorithm is $O(n k)$, where k is the width of the beam. Thus, unlike the complete algorithms, its worst-case time complexity is not exponential in n. Its space complexity is $O(k(|X|+h))$, where, as before, h is the size of the hash table containing the examples in a node.

Like the best-first and branch-and-bound algorithms, the beam search algorithm can use an arbitrary variable ordering, but it can benefit from a good heuristic. Here, the motivation for the heuristic is different. In the case of the compete algorithms, the heuristic is used to reduce the number of nodes in the search space that need to be visisted and has no effect on the solution. For the beam search, however, the number of nodes that will be considered is fixed, and the heuristic is used to improve the solution.

Without a heuristic, it is possible for early decisions to be made on inputs for which there is little information, meaning that partially-defined labels that lead to good solutions might get pruned before the inputs that would reveal their usefulness were considered. The variable selection heuristic defined previously (Equation 7) favors inputs that tighten the coefficient bounds in the child nodes, making it less likely for good nodes to be pruned.

Incomplete Search Results

Table 5 shows the result of attempting to learn functions with a single basis function that is found by a beam search. The accuracies shown are the average test accuracies (over 100 trials) when training and testing on random $90 \% / 10 \%$ training/test splits of the data. A bold highlight indicates a result that is not significantly worse than the result obtained with a complete search, as measured by a paired random permutation test $(p=0.05)$. As the table shows, the beam does not usually need to be very wide before the beam search does about as well as a complete search.

In fact, sometimes the beam search performs better. Although we expect that basis functions with larger coeffi-

Table 5: Learning accuracy when using a single basis function obtained by a beam search of the given width. A bold highlight indicates a result that is not significantly worse (statistically) than the infinite-beam result. In most cases, a relatively small beam is sufficient to match the accuracy obtained with an infinitely large beam.

	Beam Width				
Data Set	1	2	4	8	∞
Chess	62.8%	73.7%	74.7%	$\mathbf{7 5 . 0 \%}$	$\mathbf{7 5 . 1 \%}$
German	58.5%	68.8%	71.1%	71.9%	$\mathbf{7 2 . 7 \%}$
Heart	53.3%	59.8%	$\mathbf{7 3 . 7 \%}$	$\mathbf{7 4 . 7 \%}$	$\mathbf{7 2 . 9 \%}$
Pima	67.2%	73.1%	$\mathbf{7 3 . 6 \%}$	$\mathbf{7 3 . 8 \%}$	$\mathbf{7 3 . 7 \%}$
SPECT	59.5%	61.8%	75.0%	$\mathbf{7 7 . 6 \%}$	$\mathbf{7 7 . 6 \%}$
Voting	82.8%	$\mathbf{9 6 . 0 \%}$			
WBC1	83.7%	89.7%	$\mathbf{9 1 . 7 \%}$	$\mathbf{9 1 . 2 \%}$	$\mathbf{9 1 . 3 \%}$
WBC2	55.4%	54.4%	60.2%	61.0%	$\mathbf{7 2 . 2 \%}$
WBC3	80.8%	$\mathbf{8 8 . 9 \%}$	$\mathbf{8 8 . 9 \%}$	$\mathbf{8 9 . 0 \%}$	$\mathbf{8 7 . 6 \%}$

Table 6: Average training time (in seconds) of the spectral learning algorithm when using the branch-and-bound and beam search algorithms to find coefficients. On the larger problems (shown here), the beam search is much faster, and its solutions (see Table 5) are usually equally good. (On the smaller problems the difference in time is negligible.)

Data Set	B\&B+H	Beam (width = 8)
Chess	1.49	0.23
German	0.12	0.04
Heart	0.04	0.01
SPECT	0.48	0.02
WBC2	0.13	0.02

cients will usually be better models of the unknown function f, a larger coefficient only implies greater correlation with X, and not necessarily with f. This uncertainty is advantageous to the beam search, as its solutions, which may be sub-optimal with respect to X, may often be as good for the learning task as the solutions returned by a complete search.

Table 6 shows that the beam search can find its solutions in less time than the branch-and-bound algorithm. The computational advantage of the beam search will be more important when spectral techniques are applied to higher dimensional problems involving hundreds or thousands of input features. Preliminary experiments with natural language processing tasks involving thousands of input features suggest that the beam search approach can still be used to find good solutions long after it has become infeasible to compute exact solutions.

Conclusion

In this paper we have considered the problem of finding the largest coefficient in the Fourier spectrum, which is a central task in Fourier-based learning. We have described a technique for efficiently bounding Fourier spectra that can be incorporated into different types of search algorithms.

Empirical results show that a complete branch-and-bound
algorithm based on the technique outperforms a previously introduced best-first algorithm by finding solutions in the same amount of time while using less memory. Meanwhile, experiments with an incomplete beam search algorithm demonstrate that even using a small beam width it is possible to find solutions that result in learning accuracy comparable to that obtained by a complete algorithm.

References

Drake, A., and Ventura, D. 2005. A practical generalization of Fourier-based learning. In Proceedings of the 22nd International Conference on Machine Learning, 185-192.
Jackson, J. 1997. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. Journal of Computer and System Sciences 55:414440.

Kargupta, H.; Park, B.; Hershbereger, D.; and Johnson, E. 1999. Collective data mining: A new perspective toward distributed data mining. In Advances in Distributed Data Mining. AAAI/MIT Press.
Kushilevitz, E., and Mansour, Y. 1993. Learning decision trees using the Fourier spectrum. SIAM Journal on Computing 22(6):1331-1348.
Linial, N.; Mansour, Y.; and Nisan, N. 1993. Constant depth circuits, Fourier transform, and learnability. Journal of the ACM 40(3):607-620.
Mansour, Y., and Sahar, S. 2000. Implementation issues in the Fourier transform algorithm. Machine Learning 14:533.

Newman, D.; Hettich, S.; Blake, C.; and Merz, C. 1998. UCI repository of machine learning databases.

[^0]: Copyright © 2008, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

