
Online Search Cost Estimation for SAT Solvers
Shai Haim and Toby Walsh

{shai.haim,toby.walsh}@nicta.com.au
School of Computer Science and Engineering,

The University of New South Wales
Sydney, Australia

and
NICTA

Sydney, Australia

Abstract

We present two different methods for estimating the cost of
solving SAT problems. The methods focus on the online be-
haviour of the backtracking solver, as well as the structure
of the problem. Modern SAT solvers present several chal-
lenges to estimate search cost including coping with non-
chronological backtracking, learning and restarts. Our first
method adapt an existing algorithm for estimating the size
of a search tree to deal with these challenges. We then sug-
gest a second method that uses a linear model trained on data
gathered online at the start of search. We compare the effec-
tiveness of these two methods using random and structured
problems. We also demonstrate that predictions made in early
restarts can be used to improve later predictions. We conclude
by showing that the cost of solving a set of problems can be
reduced by selecting a solver from a portfolio based on such
cost estimations.

Introduction
Estimating the cost of solving aNP -hard problem like
propositional satisfiability (SAT) is a difficult task. Simple
backtracking SAT solvers like DPLL unfold a proper-binary
decision tree. The Weighted Backtrack Estimate (WBE)
(Kilby et al. 2006), which is an adaptation of Knuth’s offline
sampling method (Knuth 1975) can generate good estimates
of search cost for such solvers. However, more modern SAT
solvers present several challenges for estimating their run-
time. For instance, clause learning repeatedly changes the
problem the solver faces. Estimation of the size of the search
tree at any point should take into consideration the expected
changes that future learning clauses will cause. As a second
example, restarting generates a new search tree which again
needs to be taken into account by any prediction method.

Our approach to these problems is to use an on-line
method to estimate the cost of the search by observing the
solver’sbehaviourin a small part of search. Our first method
is an extension of an existing method. It adapts the Weighted
Backtrack Estimator (Kilby et al. 2006) to support non-
chronological backtracking. Our second method uses ma-
chine learning. We show that using machine learning, it is
possible to achieve good estimates at a very early stage of
the search, by exploiting data gathered from other instances

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from the same ensemble. These two methods are tied to-
gether, since the tree size estimated by the WBE method is
a useful feature for the machine learning method.

Background
Knuth used probing sample to estimate the size of a back-
track search tree (Knuth 1975). Ifbi is the branching rate
observed at depthi of the probe, then1 + b1 + b1 · b2 + . . .
is an unbiased estimation for the size of the tree. Despite
its simplicity, this method is strikingly effective. Unfortu-
nately, random probing cannot be directly used during back-
track search. Inspired by Knuth’s method, Kilby et. al. pro-
posed two online methods to estimate the size of a search
tree during backtracking search (Kilby et al. 2006): The
Weighted Backtrack Estimator, which is discussed in depth
in the next section, and the Recursive Estimator. The Re-
cursive Estimator simply assumes that any unexplored right
subtree is identical in size to the left subtree. Both meth-
ods are unbiased and independent of the problem or solver,
but since they are both estimating the size of a complete bi-
nary search tree, they do not work directly in modern solvers
and perform poorly for most satisfiable instances. Kokotov
and Shlyakhter suggested some similar techniques to the RE.
The Progress Bar for SAT Solvers (Kokotov and Shlyakhter
2000) estimates the remaining time to solving a SAT in-
stance by observing previously visited nodes. The estimate
is calculated using eitherhistorical or predictiveheuristics.
Historical estimators use the average observed for previous
nodes at the same depth. Thesimple averageestimator just
uses a straight forward average, whilst theweighted aver-
agefavours more recent subtrees. Predictive estimators, on
the other hand, are based on the size of the subproblem (e.g.
number and size of the clauses)

Machine learning has also been used to estimate search
cost. By observing the solver as it solves the problem,
we might be able to estimate how long it will take for the
solver to solve it. Horovitz et al used a Bayesian approach
to classify CSP and SAT problems according to their run-
time (Horvitz et al. 2001). Whilst this work is close to that
presented here, there are some significant differences. For
example, they used SATz-Rand, which does not have some
of the complex features tackled here such as clause learning.
Xu et. al (Xu, Hoos, and Leyton-Brown 2007) used machine
learning to tune empirical hardness models (Leyton-Brown,

53

Nudelman, and Shoham 2002). Learning mostly used static
features of the problem instance. The only exception was a
group of features generated by probing the search space us-
ing DPLL and stochastic search. Their method gives a prob-
abilistic estimate of runtime and not, as here, an estimate for
a specific run. Their search cost estimates were used within
a portfolio based SAT solverSATzilla(Xu et al. 2007).

Finally, an online machine learning method has been de-
veloped to speed up a QBF solver (Samulowitz and Memi-
sevic 2007). Having solved different datasets of problems,
a multinomial logistic regression model was built to classify
each instance to its best heuristic. This model was used to
suggest the best heuristic for new problem instances. Such
a technique could also be used dynamically to change the
heuristic used by a solver.

Weighted Backtrack Estimator
We begin by describing how the existing WBE algorithm
(Kilby et al. 2006) can be adapted to cope with modern
SAT solvers. At every point in search, the WBE algorithm
estimates the search tree size as:

∑

d∈D prob(d)(2d+1 − 1)
∑

d∈D prob(d)
(1)

Whereprob(d) = 2−d is related to the probability that we
visit such a depth using random probing, and D is the mul-
tiset of branches lengths visited. By storing the numerator
and denominator, this estimate can be calculated in constant
time and space at every backtrack. The resulting estimate is
unbiased assuming we have a proper binary search tree.

Since WBE generate a tree size estimation it is signifi-
cantly more effective for unsatisfiable instances. Moreover,
WBE is not directly applicable to modern SAT solvers as
they perform (conflict driven) backjumping. By backjump-
ing over nodes, we no longer have a proper binary tree. A
second problem is that on backtracking to a decision level,
modern SAT solvers are not forced to branch on the negated
decision. We can instead branch on a new variable. Another
challenge for WBE is restarts. At every restart point, a new
tree is generated. Any method to estimate search cost must
take these factors into account.

In order to construct a proper binary search tree represent-
ing the branching decisions of a SAT solver, and to compen-
sate for backjumping, we observe the two atomic operations
performed during search.

• assign(v,b):whenv is a variable andb is a Boolean value.
This action assigns the variablev the valueb. This as-
signment will be kept in the next level of the search stack.
After every assignment a unit propagation process takes
place. The values that are assigned in this process are
also considered to be assigned in this decision level.

• backtrack(d):backtrack back to decision leveld. Unas-
sign all variables assigned in any decision level equal to
or greater thand. Any backtrack is also followed by unit
propagation.

A binary tree can be generated as follows: we branch
left from a node for everyassign operation, and we branch

〈stack, action, conflict〉

〈φ, assign(v1, true), no〉
〈{v1}, assign(v2, true), yes〉
〈{v1, v2}, backtrack(1), no〉
〈φ, assign(v3, true), no〉
〈{v3}, assign(v4, true), no〉
〈{v3, v4}, assign(v5, true), yes〉
〈{v3, v4, v5}, backtrack(2), yes〉
〈{v3}, backtrack(1), yes〉

(a) Sequence of actions

1

υ1

υ3

4

2

υ4

3

(b) Resulting binary
search tree

Figure 1: Conversion of a DPLL trace into a binary tree. In
1(a),stack is the assignment stack before the action,action
is the action taken, andconflict denotes if this generates a
conflict. In 1(b), conflicts are numbered, and edges labelled
with assignments. Since decisionsv2 andv5 are backjumped
over, they do not appear as labels.

right when webacktrack back to the node, even if the next
assignment is at the same decision level. If we backjump
over noden, this node is removed. Note that node depths
in the binary tree no longer correspond with decision lev-
els, Figure1 shows an example of this technique. In Figure
1(a), we see a list of〈stack, action, conflict〉 tuples, rep-
resenting a sequence of actions and the resulted assignment
stack. The tree in Figure 1(b) is the explicit proper binary
tree corresponding to the same sequence of steps. Note that
in both cases there are 4 conflicts, but note that the node
depths change.

WBE for Conflict Driven search

Every time a backjump occurs, WBE needs to update the
depths of leaves beneath this backjump. This is not possible
if we just store an accumulated sum for the denominator and
numerator in the WBE estimation. Fortunately, the WBE es-
timation can be computed by observing two different param-
eters which are easy to adjust after backjumping. The first,
C, is a simple counter of the nodes encountered so far in an
in-order tree search (counting a node only after backtracking
from its left subtree). The second,P , is the partial size of
the tree explored assuming it is a complete binary tree. At
any point in search, the WBE estimate can be generated by

54

calculating:
C

P
− 1 (2)

WhereC is the number of nodes encountered so far and:

P =
1

∑

n∈closed(2
d(n)+1)

(3)

Whered(n) is the depth of noden andclosed is the subset of
nodes in the current branch whose left child has been closed.
We can show this as follows:

∑

d∈D prob(d)(2d+1 − 1)
∑

d∈D prob(d)

=

∑

d∈D prob(d)2d+1 − ∑

d∈D prob(d)
∑

d∈D prob(d)

=

∑

d∈D prob(d)2d+1

∑

d∈D prob(d)
− 1 =

2 |D|
∑

d∈D prob(d)
− 1

=
C

∑

d∈D prob(d)
− 1

Note thatC = 2 |D| asC is increased by 2 for every con-
flict (once for the leaf and again for the node we backtrack
to). Finally, we can show by induction on the depth of the
tree that:

∑

d∈D

prob(d) =
1

∑

n∈closed(2
d(n)+1)

= P (4)

whered(n) is the depth of noden andclosed is the subset
of the nodes in the current branch whose left child has been
closed.

Both C and P can be computed incrementally as we
branch and backjump. Since the search tree is not kept ex-
plicitly in memory, closed is computed using a bit array.
This increases the space and time complexity of calculating
WBE byO(d) whered is the maximum depth. We can avoid
increasing the amortized complexity if we estimate search
cost at only everyO(d) nodes.

Restarts create an extra challenge for WBE. Upon restart-
ing, a new tree is generated. The search cost estimation
therefore needs to change. Since WBE generate atree size
estimate, we can generate a cost estimation by adding the
tree size estimated by WBE to the number of nodes explored
until we reach a restart big enough to explore such a tree.

Linear model prediction (LMP)
To learn from more than just the size of previously ex-
plored search trees, we developed an online machine learn-
ing method. We estimate the runtime on a problemP∈ E,
whenE is an ensemble of problems after training a linear
model using a subset of problemsT ⊂ E. For every training
examplet ∈ T a feature vectorxt = {xt,1, xt,2, . . . , xt,k} is
created from on observation window of the search tree. We

Feature init
Observation Window

min max avg SD last
var

√
cls

√
cls/var

√ √ √ √ √ √
var/cls

√ √ √ √ √ √
FBC

√ √ √ √
FTC

√ √ √ √
ACS

√ √ √ √
SD

√ √ √
BSD

√ √ √
BS

√ √ √
LCS

√ √ √ √
CCS

√ √ √ √
ABB

√ √ √ √
AAB

√ √ √ √
AAB/ABB

√ √ √ √
ABB/AAB

√ √ √ √
LWBE

√ √ √ √ √

Table 1: The feature vector used by linear regression to con-
struct prediction models

selected features by removing the feature with the smallest
standardised coefficient until no improvement is observed
based on the standard AIC (Akaike Information Criterion).
We then search for and eliminate co-linear features in the
set.

Using ridge linear regression, we fit our coefficient vector
w to create a linear predictorfw (xi) = wT xi. We chose
ridge regression, since it is a quick and simple technique for
numerical prediction, and it generally yields good results.
We predict the log of the number of conflicts. Since the fea-
ture vector is computed online, it is important that it does
not add significant cost to search. The feature vector there-
fore only contains features that can be calculated in constant
time. We define theobservation windowto be that part of
the search where data is collected. At the end of the obser-
vation window, the feature vector is computed and the model
queried for an estimation.

The feature vector measures both problem structure and
search behaviour. Since data gathered at the start of a restart
tends to be noisy and less useful, we do not open the ob-
servation window immediately. To keep the feature vector
a reasonable size, we use statistical measures of various pa-
rameters (that is, the minimum over the observation window,
the maximum, the mean, the standard deviation and the last
value recorded). The parameters collected are the number of
variables (var), the number of clauses (cls), both the vari-
able to clause ratio and its inverse, the fraction of binary and
ternary clauses in the clause database (FBCandFTC re-
spectively), the average clause size (ACS), the search depth
as it appears in the assignment stack (SD) and as it appears
in the binary tree generated for the WBE calculation(BSD),
the learnt clauses size (LCC) and the conflict clause size
(CCS), the fraction of assigned vars before backtracking
(ABB) and after backtracking (AAB), the ratio between
these two features and its inverse, and the log of the WBE

55

prediction (LWBE). The full list of features used is shown
in Table 1. All the features used can be calculated in con-
stant time and space with the exception of the WBE which
takesO(d) time and space. We therefore only computed
WBE everyd conflicts whered is the depth recorded at the
previous estimate.

To deal with restarts, we wait until the observation win-
dow is contained within a single restart. In addition, we ex-
ploited estimates from earlier restarts to help improve later
estimates. To do this, we augmented the feature vector with
all the search cost predictions from previous restarts.

Experiments
We ran experiments with these two methods using MiniSat
(Een and Sorensson 2003). This is a state-of-the-art modern
solver, which uses clause learning and clause deletion along
with an improved version of VSIDS for variable ordering
and a geometrical restart scheme. We used a geometrical
factor of 1.5, which is the default for MiniSat. A geometrical
factor of 1.2 yielded results of a similar quality. We used
three different distributions of SAT problems.

• rand: An ensemble of 500 satisfiable and 500 unsatisfi-
able randomly generated 3-SAT problems with 200 to 550
variables and a clause-to-var ratio of 4.1 to 5.0.

• bmc:An ensemble of software verification problems gen-
erated by CBMC1 based on a binary search algorithm
coded in C. The different examples used different array
sizes and different number of loop unwindings. In order to
generate satisfiable problems, a faulty piece of code that
causes memory overflow was added to the binary search
code. These problems create a very homogeneous ensem-
ble of problems. We used 250 satisfiable and 250 unsatis-
fiable problems.

• fv: An ensemble of hardware formal verification prob-
lems distributed by Miroslav Velev2. These problems
were produced by the same technique but not for the same
underlaying problem, and create an ensemble which is
less homogeneous than the previous one. We used 56 sat-
isfiable and 68 unsatisfiable problems.

Since training examples can be scarce, we restricted the size
of our training set to no more than 500 problems. For the
formal verification problems, we obviously had far less than
that. In the first part of our experiments, when restarts were
turned off, many of the formal verification problems were
not solved. Our results in this part will only compare the
other datasets. When restarts were enabled, all three data
sets were used. In all experiments we used 10-fold cross val-
idation, never using the same instance for both training and
testing purposes. We measured the quality of the predictor
by observing the percent of predictions which are within a
certain factor of the correct cost (theerror factor). For ex-
ample, 80% for error factor 2, denotes that for 80% of the
instances, the predicted search cost was within a factor of 2
of the actual search cost.

1http://www.cs.cmu.edu/ modelcheck/cbmc/
2http://www.miroslav-velev.com/satbenchmarks.html

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

R
at

io
 -

 e
st

im
at

e
to

 a
ct

ua
l

Percent through search

PB UNSAT
WBE UNSAT

PB SAT
WBE SAT

Figure 2: Mean ratio of WBE and PB estimates over time
for therand dataset.

We compare our results with the ones obtained by the
Progress Bar (PB) (Kokotov and Shlyakhter 2000). In
order to make the comparison possible, we instrumented
MiniSat with the Progress Bar. Kokotov and Shlyakhter
proposed several different heuristics (Constant, Historical-
Basic, Historical-Weighted and Clause Count). We observed
similar results with all of these heuristics. We present results
here for the Historical-Weighted heuristic since it performs
slightly better for these data sets. We used the progress bar’s
default settings. Note that if the initial search is too deep,
the Progress Bar may not provide any estimate.

Search Without Restarts

Figure 2 compares the quality of the WBE prediction and
the Progress Bar prediction over time, for therand dataset.
Both predictors return unbiased results for the unsatisfiable
problems and converge to the correct value given enough
time. WBE is generally more accurate than PB both for sat-
isfiable and unsatisfiable instances. In all cases, both estima-
tors start by over-estimating the search cost but their predic-
tion improves with time as we backjump over nodes. Fig-
ure 3 presents the same data for thebmc dataset. For struc-
tured problems, WBE initially over estimates search cost by
a large factor (in some cases with by a factor greater than
21000). During this period the Progress Bar does not make
any prediction as the tree is too deep for it to work, and
the “search space left” is estimated to be 100%. At some
later point in search, we often observed a sharp improve-
ment in the accuracy of both estimators. Typically this cor-
responds to search backjumping over an early mistake to a
node very close to the root of the tree (or the root itself).
For most instances PB starts returning run-time predictions
at this point. The WBE also starts returning good prediction
at this point. For unsatisfiable problems in thebmcdataset,
this point occurs after 72% of the search (on average), but
it appears to occur after a smaller percentage of the search
for harder instances. We found a correlation coefficient of
−0.45 between the total size of the search tree and the per-
cent through search where this improvement occurs.

56

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

R
at

io
 -

 e
st

im
at

e
to

 a
ct

ua
l

Percent through search starting with first PB prediction

PB UNSAT
WBE UNSAT

PB SAT
WBE SAT

Figure 3: Mean ratio of WBE and PB estimates over time
for thebmc dataset. Only starts when PB generates its first
prediction.

x2 x4 x8

sat

bmc
PB 3.8 6.8 8.9

WBE 3.4 5.5 5.9
LMP 40.7 68.7 85.8

rand
PB 0.9 2.6 4.9

WBE 2.2 7.8 14.4
LMP 39.7 71.3 86.6

unsat

bmc
PB 4.9 10.3 12.8

WBE 4.9 10.3 13.8
LMP 36.9 68.5 93.6

rand
PB 3.7 7.4 15.5

WBE 12.7 29.4 47.3
LMP 92.0 100.0 100.0

Table 2: Percentage of estimates within error factor after
2000 backtracks

x2 x4 x8

sat

bmc
PB 24.5 36.2 47.3

WBE 21.8 36.2 45.7
LMP 49.1 78.9 95.0

rand
PB 1.2 4.0 10.4

WBE 4.0 12.0 22.5
LMP 50.2 76.7 89.9

unsat

bmc
PB 22.0 35.4 43.8

WBE 32.8 48.4 48.4
LMP 78.1 98.4 100.0

rand
PB 17.7 42.2 58.3

WBE 38.9 67.0 81.6
LMP 96.7 100.0 100.0

Table 3: Percentage of estimates within error factor after
35000 backtracks

0 %

20 %

40 %

60 %

80 %

100 %

x2 x4 x8

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or

Error factors

SAT-Mean
SAT-Oracle

UNSAT-Mean
UNSAT-Oracle

Figure 4: Quality of prediction when using an oracle to de-
termine whether an instance is satisfiable or the geometric
mean of satisfiable and unsatisfiable models (denotedMean)
- rand dataset

In order to compare the quality of prediction of WBE, PB
and LMP, we generated an estimate after a constant time,
regardless of the true size of the problem. In all cases the
estimate generated by LMP was superior to those generated
by WBE and PB. Comparisons of the performance of those
three methods after 2000 and 35000 backtracks are shown
in tables 2 and 3 respectively. Satisfiable problems are
harder to predict for all methods, due to the abrupt way in
which search terminates with open nodes. The linear model
deals better with random problems than crafted ones. We
conjecture this is due to greater balance in the search tree.
WBE performs better than PB for unstructured problems,
while they perform similarly for structured instances. The
significant improvement of both PB and WBE for structured
problems after 35000 backtracks is due to the fact that
easier instances are already converging rapidly on the
correct answer.

Since we observe very different behaviour with satisfiable
and unsatisfiable instances, we trained models on each type
of instance separately. With a new (non-training) instance,
we may not know if it satisfiable or unsatisfiable. Indeed,
the point of search is often to decide this. Given a problem
of unknown satisfiability, we therefore queried both mod-
els and returned the geometrical mean of the two estimates.
Figures 4 and 5 compare using the geometric mean of the
two models and using an oracle to decide which model to
query for therand andbmc datasets respectively. We see
that the geometric mean returns reasonable predictions. Al-
ternatively we could train with just one model using both
satisfiable and unsatisfiable instances. The performance is
similar to the geometric mean of the two models (it is a bit
better forsat problems and a bit worse forunsat problems)
but is sensitive to the proportion of satisfiable and unsatisfi-
able instances.

57

0 %

20 %

40 %

60 %

80 %

100 %

x2 x4 x8

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or

Error factors

SAT-Mean
SAT-Oracle

UNSAT-Mean
UNSAT-Oracle

Figure 5: Quality of prediction when using an oracle to de-
termine whether an instance is satisfiable or the geometric
mean of satisfiable and unsatisfiable models (denotedMean)
- bmc dataset

0 %

20 %

40 %

60 %

80 %

100 %

x2 x4 x8

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or

Error factors

rand
bmc

fv

Figure 6: Quality of prediction forsat problems with
restarts, (after 2000 backtracks in thequery restart)

Search With Restarts

When restarts are used, we have to use smaller observation
windows to give a prediction early in search as many early
restarts are small. Figures 6 and 7 compare the quality of
prediction of LMP for the 3 different datasets, forsat and
unsat instances respectively. The quality of estimates im-
proves with thebmc data set when restarts are enabled. We
conjecture this is a result of restarts before the observation
window reducing the noise in the data.

In order to check our hypothesis that predictions from
previous restarts improve the quality of prediction in the
current restart, we opened an observation window at every
restart. The window size is defined bymax(1000, 0.01 · s)
and it starts after a waiting period ofmax(500, 0.02 · s),
when s is the size of the current restart. At the end
of each observation window, two feature vectors were
created. The first(xr) holds all features from Table
1, while the second(x̂r) is defined asx̂r = {xr} ∪

0 %

20 %

40 %

60 %

80 %

100 %

x2 x4 x8

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or

Error factors

rand
bmc

fv

Figure 7: Quality of prediction forunsat problems with
restarts, (after 2000 backtracks in thequery restart)

0 %

20 %

40 %

60 %

80 %

100 %

 10 11 12 13 14 15 16 17

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or
 X

2

Restart

bmc - no previous
bmc - with previous

random - no previous
random - with previous

Figure 8: The effect of using predictions from previous
restarts, forsat instances. Quality of predictions, through
restarts, using two datasets (bmc,rand). The plots represent
the percentage of instances within a factor of 2 from the cor-
rect size.

{

fw1
(x1) , fŵ2

(x̂2) , . . . , fŵr−1
(x̂r−1)

}

. A comparison of
the two methods, forsat andunsat instances, is given in
Figures 8 and 9 respectively. We see that predictions from
earlier restarts improve the quality of later predictions but
not greatly.

Solver selection using LMP
In our final experiment, we used these estimates of search
cost to improve solver performance. We used two differ-
ent versions of MiniSat. SolverA used the default MiniSat
setting (geometrical factor of 1.5), while solverB used a ge-
ometrical factor of 1.2. The challenge is to select which is
faster at solving a problem instance.

Table 4 describes the percentage improvement of the fol-
lowing strategies compared to the average run time for both
solvers:

• oracle: Use an oracle to tells us which solver is better for

58

Dataset Oracle LMP (oracle) LMP(AVG)

rand
sat 40.8 7.0 10.5
unsat 7.5 -0.9 -1.4

fv
sat 66.7 17.2 16.8
unsat 14.8 -0.6 -3.3

bmc
sat 59.6 13.3 13.6
unsat 17.2 0.3 -0.4

Table 4: Percentage improvement over average run time for
both solverA andB.

0 %

20 %

40 %

60 %

80 %

100 %

 10 11 12 13 14 15 16 17 18

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or
 X

2

Restart

bmc - no previous
bmc - with previous

random - no previous
random - with previous

Figure 9: The effect of using predictions from previous
restarts, forunsat instances. We compare the quality of
predictions, through restarts, using two datasets (bmc,rand).
The plots represent the percentage of instances within a fac-
tor of 2 from the correct size.

the problem (min(A,B)).

• LMP (oracle): Use both solvers until each reaches the
observation window (restart 9 for solverA, restart 19 for
solverB), and generate a prediction, using an oracle that
indicates which model should be queried. Terminate the
one predicted to be worse.

• LMP (AVG):Same asLMP (oracle), but without an ora-
cle to determine whether the instance issator unsat. We
instead query both models and use the geometric mean as
the prediction.

These results show that for satisfiable problems, where
solver performance varies more significantly, our method
reduces the total cost. For unsatisfiable problems, where
solvers performance does not vary as much, our method does
not improve search cost. However, as performance does not
change significantly on unsatisfiable instances, the overall
impact of our method on satisfiable and unsatisfiable prob-
lems is positive.

Conclusions and Future Work
We have presented two different methods to generate esti-
mates for the size of the search tree explored by modern day
SAT solvers. The WBE method simply observes the search
tree and requires no prior knowledge of the problem dis-

tribution. This method, like other tree-size based methods
performs poorly for satisfiable instances. The LMP method,
on the other hand, uses linear models which are trained on
a problem set. We have shown that it is possible to train the
model using a relatively small training set, which is of value
when training examples are in short supply. We have demon-
strated the effectiveness of both method on random prob-
lems, as well as on bounded model checking and hardware
verification problems. We also proposed a simple way to
use such predictions to select between different SAT solvers.
There are many directions for future work. For instance, we
conjecture it may be effective to use these methods to select
between very different types of solver. We are currently us-
ing LMP to select between a geometric restart strategy and
Luby’s restart scheme.

Acknowledgements
This paper contains work that is to appear in (Haim and
Walsh 2008). In particular, the LMP method is described
in (Haim and Walsh 2008). However, the extension of
the WBE method to conflict driven solvers, along with all
results comparing WBE and LMP to the Progress Bar for
SAT Solvers are presented here for the first time.

The second author is funded by the Department of Broad-
band, Communications and the Digital Economy, and the
Australian Research Council.

References
Een, N., and Sorensson, N. 2003. An extensible SAT-
solver.SAT2919:502–518.

Haim, S., and Walsh, T. 2008. Online Estimation of SAT
Solving Runtime.Lecture Notes in Computer Science. In
Press.

Horvitz, E.; Ruan, Y.; Gomes, C.; Kautz, H.; Selman, B.;
and Chickering, M. 2001. A bayesian approach to tack-
ling hard computational problems.Proceedings the 17th
Conference on Uncertainty in Artificial Intelligence (UAI-
2001).

Kilby, P.; Slaney, J.; Thíebaux, S.; and Walsh, T. 2006.
Estimating search tree size. InProceedings of the Twenty-
First National Conference of Artificial Intelligence, AAAI.

Knuth, D. 1975. Estimating the Efficiency of Backtrack
Programs.Mathematics of Computation29(129):121–136.

Kokotov, D., and Shlyakhter, I. 2000. Progress Bar for
SAT Solvers. InUnpublished manuscript, http://sdg. lcs.
mit. edu/satsolvers/progressbar.html.

Leyton-Brown, K.; Nudelman, E.; and Shoham, Y. 2002.
Learning the empirical hardness of optimization problems:
The case of combinatorial auctions. InCP ’02: Proceed-
ings of the 8th International Conference on Principles and
Practice of Constraint Programming, 556–572. Springer-
Verlag.

Samulowitz, H., and Memisevic, R. 2007. Learning to
Solve QBF. In proc. of 22nd Conference on Artificial In-
telligence, AAAI.

59

Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2007.
SATzilla-07: The Design and Analysis of an Algorithm
Portfolio for SAT. Lecture Notes in Computer Science
4741:712.
Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2007. Hier-
archical hardness models for sat. InPrinciples and Prac-
tice of Constraint Programming (CP-07), volume 4741 of
Lecture Notes in Computer Science, 696–711. Springer-
Verlag.

60

