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Abstract

Real-time search methods allow an agent to perform
path-finding tasks in unknown environments. Some
real-time heuristic search methods may plan several el-
ementary moves per planning step, requiring lookahead
greater than inspecting inmediate successors. Recently,
the propagation of heuristic changes in the same plan-
ning step has been shown beneficial for improving the
performance of these methods. In this paper, we present
a novel approach that combines lookahead and propaga-
tion. Lookahead uses the well-known A* algorithm to
develop a local search space around the current state. If
the heuristic value of a state inspected during lookahead
changes, a local learning space is constructed around
that state in which this change is propagated. The num-
ber of actions planned per step depends on the quality
of the heuristic found during lookahead: one action if
some state changes its heuristic, several actions other-
wise. We provide experimental evidence of the benefits
of this approach, with respect to other real-time algo-
rithms on existing benchmarks.

Introduction
Let us consider an agent who has to perform a path-finding
task from a start position to a goal position in an unknown
environment. It can only sense the surrounding area within
the range of its sensors (visibility radius), and remembers
previously visited positions. An example of this task appears
in Figure 1. This situation may happen in real-time com-
puter games (Bulitko & Lee 2006) and control in robotics
(Koenig 2001). Off-line search, like A* (Hart, Nilsson, &
Raphael 1968) and IDA* (Korf 1985) are not appropriate
because they require to know the terrain in advance. In-
cremental A* methods, like D* (Stentz 1995) and D*Lite
(Koenig & Likhachev 2002), and real-time search methods
(Korf 1990) are adequate. (a comparison between incremen-
tal versions of A* and real-time heuristic search appears in
(Koenig 2004)). If the first-move delay (the time required
for the agent to start moving) is required to be short, incre-
mental A* methods are discarded because they require to
compute the complete solution before start moving, which
may be long. Real-time heuristic search remains the only
applicable strategy for this task.
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Figure 1: An example of path-finding task: (i) the exact map
(ii) what the agent, represented by a dot, knows at the begin-
ning (iii) after some steps, the agents knows more about the
exact map, which is partially revealed.

Real-time search interleaves planning and action execu-
tion in an on-line manner. In the planning phase the agent
plans one or several actions which are performed in the ac-
tion execution phase (in this paper we assume that an action
produces an elementary move from an state to one of its suc-
cessors). The agent has a short time to perform the planning
phase. Due to this hard requirement, real-time methods re-
strict search to a small part of the state space around the
current state, called the local search space. The size of this
space is small and independent of the size of the complete
state space. Searching in this local space is usually called
lookahead, that is feasible in the limited planning time. The
agent finds how to move in this local space and plans one or
several actions, to be performed in the next action execution
phase. It is debatable if planning one action is better than
planning several actions per planning step, with the same
lookahead. The whole process iterates with new planning
and action execution phases until a goal is found.

At each step, real-time methods compute the beginning of
the trajectory from the current state to a goal. Search is lim-
ited to a small portion of the state space, so there is no guar-
antee to produce an optimal trajectory. Some methods guar-
antee that after repeated executions on the same instance, the
trajectory converges to an optimal path. Real-time methods
update heuristic values of some states. Propagation of these
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changes has improved the performance of these methods.
In this paper, we present a novel approach to real-time

search that combines lookahead, bounded propagation and
dynamic selection of one or several actions per planning
step. Previously, bounded propagation considered heuris-
tic changes at the current state only. Now, if lookahead
is allowed, we extend the detection and repair (including
bounded propagation) of heuristic changes to any expanded
state. In addition, we consider the quality of the heuristic
found during lookahead as a criterion to decide between one
or several actions to perform per planning step. We imple-
ment these ideas in the LRTA*LS(k, d) algorithm, which
empirically shows a better performance than other real-time
search algorithms on existing benchmarks.

The structure of the paper is as follows. We define
the problem and summarize some solving approaches. We
present our approach and the LRTA*LS(k, d) algorithm,
with empirical results. Finally, we extract some conclusions
from this work.

Preliminaries
The state space is (X,A, c, s,G), where (X, A) is a finite
graph, c : A �→ [ε,∞), ε > 0, is a cost function that asso-
ciates each arc with a positive finite cost, s ∈ X is the start
state, and G ⊂ X is a set of goal states. X is a finite set
of states, and A ⊂ X × X \ {(x, x)}, where x ∈ X , is a
finite set of arcs. Each arc (v, w) represents an action whose
execution causes the agent to move from state v to w. The
state space is undirected: for any action (x, y) ∈ A there
exists its inverse (y, x) ∈ A such that c(x, y) = c(y, x).
The cost of the path between state n and m is k(n, m). The
successors of a state x are Succ(x) = {y|(x, y) ∈ A}. A
heuristic function h : X �→ [0,∞) associates to each state
x an approximation h(x) of the cost of a path from x to a
goal g where h(g) = 0 and g ∈ G. The exact cost h∗(x) is
the minimum cost to go from x to any goal. h is admissible
iff ∀x ∈ X, h(x) ≤ h∗(x). h is consistent iff 0 ≤ h(x) ≤
c(x, w)+h(w) for all states w ∈ Succ(x). An optimal path
{x0, x1, .., xn} has h(xi) = h∗(xi), 0 ≤ i ≤ n.

A real-time search algorithm governs the behavior of an
agent, which contains in its memory a map of the enviroment
(memory map). Initially, the agent does not know where
the obstacles are, and its memory map contains the initial
heuristic. The agent is located in a specific (current) state
and it senses the environment, identifying obstacles within
its sensors range (visibility radius). This information is up-
loaded in its memory map, performing the planning phase:

• Lookahead: the agent performs a local search around the
current state in its memory map.

• Learning: if better (more accurate) heuristic values are
found during lookahead, these values are backed-up,
causing to change the heuristic of one or several states.

• Action selection: according to the memory map, one or
several actions are selected for execution.

In practice, only states which change its heuristic value are
kept in memory (usually in a hash table), while the value
of the other states can be obtained using the initial heuristic

function. The action execution phase consists of performing
the selected action in the environment. As result, the agent
moves to a new state that becomes the current state. The
whole process is repeated until finding a goal. Notice that
obstacles are discovered by the agent (and registered in its
memory map) as the agent goes close to them and they are
detected by its sensors. Following (Bulitko et al. 2007),
most existing real-time search algorithms can be described
in terms of:

• Local search space: those states around the current state
which are visited in the lookahead step of each planning
episode.

• Local learning space: those states which may change its
heuristic in the learning step of each planning episode.

• Learning rule: how the heuristic value of a state in the
local learning space changes.

• Control strategy: how to select the next action to perform.

Some well-known real-time search algorithms are summa-
rized in Figure 2 (for details the reader should consult the
original sources). For simplicity, we assume that the dis-
tance between any two neighbor states is 1. LRTA* (Korf
1990), possibly the most popular real-time search algorithm,
is considered in its simplest form with lookahead 1. Its cy-
cle is as follows. Let x be the current state and y = arg
minz∈Succ(x)[c(x, z) + h(z)]. If h(x) < c(x, y) + h(y) (the

updating condition), LRTA* updates h(x) to c(x, y)+h(y).
In any case, the agent moves to the state y. With lookahead
d > 1, the local search space is {t|dist(x, t) ≤ d} and the
learning rule is the minimin strategy, while the local learn-
ing space and control selection remain unchanged. In a state
space like the one assumed here (finite, minimum positive
costs, finite heuristic values) where from every state there is
a path to a goal, LRTA* is complete. If h is admissible, over
repeated trials (each trial takes as input the heuristic values
computed in the previous trial), the heuristic converges to its
exact values along every optimal path (random tie-breaking)
(Korf 1990).

Regarding LRTA*(k) (Hernandez & Meseguer 2005), it
combines LRTA* (lookahead 1) with bounded propagation.
If the heuristic of the current state changes, this change is
propagated to its successors. This idea is recursively ap-
plied to the successors that change (and their sucessors, etc.).
To limit computation time, propagation is bounded: up to a
maximum of k states can be reconsidered per planning step.
This is implemented using the queue Q, where a maximum
of k states could enter. The idea of bounded propagation is
better developed in LRTA*LS(k) (Hernandez & Meseguer
2007). If the current state changes, the local learning space
I is constructed from all states which may change its heuris-
tic as consequence of that change. The learning rule uses the
shortest path algorithm from F , the frontier of I .

Koenig proposed a version of LRTA* (Koenig 2004)
which performs lookahead using A*, until the number of
states in CLOSED reaches some limit. At this point, the
heuristic of every state in CLOSED is updated following a
shortest paths (Dijkstra) algorithm from the states in OPEN.
Looking for a faster updating, a new version called RTAA*
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Local Search Space Local Learning Space Learning Rule Control Strategy

LRTA* {x} ∪ succ(x) {x} max{h(x), minv∈succ(x)[c(x, v) + h(v)]} move to best successor

LRTA*(k) {x} ∪ succ(x) Q max{h(y), minv∈succ(y)[c(y, v) + h(v)]} move to best successor

LRTA*LS (k) {x} ∪ succ(x) I max{h(y), minf∈F [k(y, f) + h(f)]} move to best successor

where k[y, f ] is the shortest distance from y to f in I

LRTA* OPEN ∪ CLOSED CLOSED max{h(y), minf∈OP EN [k(y, f) + h(f)]} move to best state in OPEN
(Koenig) of A* started at x of A* started at x where k[y, f ] is the shortest distance from y to f in CLOSED by the shortest path in CLOSED
RTAA* OPEN ∪ CLOSED CLOSED max{h(y), f(z) − dist(x, y)} move to best state in OPEN

of A* started at x of A* started at x where z is the best state in OPEN by the shortest path in CLOSED
LRTS {t|dist(x, t) ≤ d} {x} max{h(x), [k(x, w) + h(w)]}, where w is move to best state at distance d

argmaxi=1,...,dmint|dist(x,t)=i[k(x, t) + h(t)] by the shortest path in LSS

Figure 2: Summary of some real-time search algorithms: x is the current state, y is any state of the local learning space.

was proposed (Koenig & Likhachev 2006). Its only differ-
ence is the learning rule, which updates using the shortest
distance to the best state in OPEN. In both algorithms, the
best state in OPEN is selected as the next state to move,
which may involve several elementary moves.

Bulitko and Lee proposed the LRTS algorithm (Bulitko &
Lee 2006), which performs lookahead using a breadth-first
strategy until reaching nodes at distance d from the current
state. Then, the heuristic of the current state is updated with
the maxi-min learning rule (the maximum of the minima at
each level is taken for update). The control strategy selects
the best state at level d as the next state to move, which may
involve several elementary moves.

Ii is assumed that moves are computed with the free space
assumption: if a state is not within the agent sensor range
(visibility radius) and there is no memory of an obstacle,
that state is assumed feasible. When moving, if an obsta-
cle is found in a feasible state, execution stops and another
planning starts.

Moves and Lookahead: LRTA*LS(k, d)
Lookahead greater than visiting inmediate successors is
required for planning several actions per step. In this
case, more opportunities exist for propagation of heuris-
tic changes. Previous approaches including bounded prop-
agation consider changes in the heuristic of the current
state only. Now, the detection and propagation of heuris-
tic changes can be extended to any state expanded during
lookahead. In this way, heuristic inaccuracies found in the
local search space can be repaired, no matter where they
are located inside that space. To repair a heuristic inaccu-
racy, we generate a local learning space around it and up-
date the heuristic of its states, as done in the procedure LS
presented in (Hernandez & Meseguer 2007). Independently
of bounded propagation, two types of lookahead are consid-
ered: static lookahead, when the whole local search space is
traversed independently of the heuristic, and dynamic looka-
head, when traversing the local search space stops as soon
as there is evidence that the heuristic of a state may change.

There is some debate around the adequacy of planning
one action versus several actions per planning step, with
the same lookahead. Typically, single-action planning pro-
duces trajectories of minor cost. However, the overall CPU
time devoted to planning in single-action planning is usu-
ally longer than in several actions planning, since the whole

lookahead effort produces a single move. Nevertheless,
planning several actions is an attractive option that has been
investigated in different settings (Koenig 2004), (Bulitko &
Lee 2006).

Planning a single action per step is conservative. The
agent has found the best trajectory in the local search space.
But from a global perspective, it is unsure whether this tra-
jectory effectively brings the agent closer to a goal or to an
obstacle (if the path is finally wrong this will become ap-
parent after some moves, when more parts of the map are
revealed). In this situation, the least commitment is to plan
a single action: the best move from the current state.

Planning several actions per step is risky, for similar rea-
sons. Since the local search space is a small fraction of the
whole search space, it is unclear if the best trajectory at local
level is also good at global level. If it is finally wrong, some
effort is required to come back (several actions to undo). But
if the trajectory is good, performing several actions in one
step will bring the agent closer to the goal than performing
a single move.

These are two extremes of a continuum of possible plan-
ning strategies. In addition, we propose the dynamic ap-
proach, that consist in taking into account the quality of the
heuristic found during lookahead. If there is some evidence
that the heuristic quality is not perfect at local level, we do
not trust the heuristic values and plan one action only. Oth-
erwise, if the heuristic quality is perfect at local level, we
trust it and plan several actions. Specifically, we propose
not to trust the heuristic when one of the following condi-
tions holds:

1. the final state for the agent (= first state in OPEN when
lookahead is done using A*) satisfies the updating condi-
tion,

2. there is a state in the local space that satisfies the updating
condition.

These ideas are implemented in the LRTA*LS(k, d) algo-
rithm, that includes the following features:

• Local search space. Following (Koenig 2004), looka-
head is done using A* (Hart, Nilsson, & Raphael 1968).
It stops when (i) |CLOSED| = d (static lookahead) or
(ii) when an heuristic inaccuracy is detected, although
|CLOSED| < d (dynamic lookahead), or (iii) when a gal
is found. The local search space is formed by CLOSED ∪
OPEN.
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• Local learning space. When the heuristic of a state x in
CLOSED ∪{best-state(OPEN)} changes, the local space
(I, F ) around x (I is the set of interior states and F is
the set of frontier states) is computed using the procedure
presented in (Hernandez & Meseguer 2007). |I| ≤ k.

• Learning rule. Once the local learning space I is selected,
propagation of heuristic changes in I is done using the Di-
jkstra shortest paths algorithm, as done in (Koenig 2004).

• Control strategy. We consider three possible control
strategies: single action, several actions or dynamic.

Since there are two options for lookahead and three pos-
sible control strategies, there are six different versions of
LRTA*LS(k, d). Their relative performance are discussed
in the next section. Before considering specific details,
we want to stress the fact that, in LRTA*LS(k, d), the lo-
cal search and local learning spaces are developed inde-
pendently (parameters d and k determine the sizes of both
spaces). There is some intersection between them, but the
local learning space is not necessarily included in the local
search space (in fact, this is true for all algorithms that in-
clude bounded propagation, check the local search and local
learning spaces in Figure 2). This is a novelty, because the
local learning space was totally included in the local search
space of other real-time search algorithms.

LRTA*LS(k, d) with dynamic lookahead and dynamic
control appears in Figure 3. The central procedure is
LRTA*-LS(k,d)-trial, that is executed once per trial
until finding a solution (while loop, line 2). This proce-
dure works at follows. First, it performs lookahead from
the current state x using the A* algorithm (line 3). A*
performs lookahead until (i) it finds a state which heuristic
value satisfies the updating condition, (ii) there are d states
in CLOSED, or (iii) it finds a solution state. In any case, it
returns the sequence of states, path, that starting with the
current state x connects with (i) the state which heuristic
value satisfies the updating condition, (ii) the best state in
OPEN, or (iii) a solution state. Observe that path has at least
one state x, and the only state that might change its heuris-
tic value is last(path). If this state satisfies the updating
condition (line 4), then this change is propagated: the local
learning space is determined and updated using the Dijkstra
shortest paths algorithm (line 5). One action is planned and
executed (lines 6-7), and the loop iterates. If last(path)
does not change its heuristic, actions passing from one state
to the next in path are planned and executed (lines 9-12).

Function SelectLS(k, d) computes (I, F ). I is the lo-
cal learning space around x, and F surrounds I immedi-
ate and completely. This function keeps queue Q that con-
tains state candidates to be included in I or F . Q is ini-
tialized with the current state x and I and F are empty
(line 1). At most k states will enter I , controlled by the
counter cont. A loop is executed until Q contains no el-
ements or cont is equal to k (while loop, line 2). The
first state v of Q is extracted (line 3). The state y ←
argminw∈Succ(v)∧w/∈I [c(v, w)+h(w)] is computed (line 4).
If v is going to change (line 5), it enters I and the counter
increments (line 6). Those successors of v which are not in
I or Q enter Q by rear (line 8). If v does not change, v enters

procedure LRTA*-LS(k,d)(X, A, c, s, G, k, d)
1 for each x ∈ X do h(x) ← h0(x);
2 repeat
3 LRTA*-LS(k,d)-trial(X, A, c, s, G, k, d);
4 until h does not change;

procedure LRTA*-LS(k,d)-trial(X, A, c, s, G, k, d)
1 x ← s;
2 while x /∈ G do
3 path ← A*(x, d, G); z ← last(path);
4 if Changes?(z) then
5 (I, F ) ← SelectLS(z, k); Dijkstra(I, F );
6 y ← argminv∈Succ(x)[c(x, v) + h(v)];
7 execute(a ∈ A such that a = (x, y)); x ← y;
8 else
9 x ← extract-first(path);
10 while path �= ∅ do
11 y ← extract-first(path);
12 execute(a ∈ A such that a = (x, y)); x ← y;

function SelectLS(x, k): pair of sets;
1 Q ← 〈x〉; F ← ∅; I ← ∅; cont ← 0;
2 while Q �= ∅ ∧ cont < k do
3 v ← extract-first(Q);
4 y ← argminw∈Succ(v)∧w/∈I [c(v, w) + h(w)];
5 if h(v) < c(v, y) + h(y) then
6 I ← I ∪ {v}; cont ← cont + 1;
7 for each w ∈ Succ(v) do
8 if w /∈ I ∧ w /∈ Q then Q ← add-last(Q, w);
9 else if I �= ∅ then F ← F ∪ {v};
10 if Q �= ∅ then F ← F ∪ Q;
11 return (I, F );

function Changes?(x): boolean;
1 y ← argminv∈Succ(x)[c(x, v) + h(v)];
2 if h(x) < c(x, y) + h(y) then return true; else return false;

Figure 3: The LRTA*LS(k, d) algorithm, with dynamic
lookahead and dynamic control.

F (line 9). When exiting the loop, if Q still contains states,
they are added to F . Function Changes?(x) returns true if
x satisfies the updating condition, false otherwise (line 2).

Since the heuristic always increases, LRTA*LS(k, d) is
complete (Theorem 1 (Korf 1990)). If the heuristic is ini-
tially admissible, updating the local learning space with
shortest paths algorithm keeps admissibility (Koenig 2004),
so LRTA*LS(k, d) converges to optimal paths in the same
terms as LRTA* (Theorem 3 (Korf 1990)). LRTA*LS(k, d)
inherits the good properties of LRTA*.

One might expect that LRTA*LS(k, d) collapses into
LRTA*LS(k) when d = 1. It is almost the case. While
in LRTA*LS(k) the only state that may change is x (the cur-
rent state), in LRTA*LS(k, d = 1) it may also change the
best of successors of x (best state in OPEN).

Experimental Results
We have six versions of LRTA*LS(k, d) (from two looka-
head options times three control strategies). Experimentally
we have seen that the version selecting always a single action
produces the lowest cost, both in first trial and convergence,
while the version selecting always several actions requires
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the lowest time, also in first trial and convergence. A rea-
sonable trade-off between cost and time occurs for the ver-
sion with dynamic lookahead and dynamic selection of the
number of actions depending on the heuristic quality. In the
following, we present results of this version.

We compare the performance of LRTA*LS(k, d) with
LRTA* (version of Koenig), RTAA* and LRTS(γ = 1,T=
∞). Parameter d is the size of the CLOSED list in A*,
and determines the size of the local search space for the
three first algorithms. We have used the values d =
2, 4, 8, 16, 32, 64, 128. For LRTS, we have used the values
2, 3, 4, 6 for the lookahead depth. Parameter k is the max-
imum size of the local learning space for LRTA*LS(k, d).
We have used the values k = 10, 40, 160.

To evaluate algorithmic performance, we have used syn-
thetic and computer games benchmarks. Synthetic bench-
marks are four-connected grids, on which we use Manhattan
distance as the initial heuristic. We have used the following
ones:

1. Grid35. Grids of size 301 × 301 with a 35% of obsta-
cles placed randomly. Here, Manhattan distance tends to
provide a reasonably good advice.

2. Maze. Acyclic mazes of size 181 × 181 whose corri-
dor structure was generated with depth-first search. Here,
Manhattan distance could be very misleading, because
there are many blocking walls.

Computer games benchmarks are built from different maps
of two commercial computer games:

1. Baldur’s Gate 1. We have used 5 maps with 2765, 7637,
13765, 14098 and 16142 free states, respectively.

2. WarCraft III 2. We have used 3 maps, which have 10242,
10691 and 19253 free states, respectively.

In both cases, they are 8-connected grids and the initial
heuristic of cell (x, y) is h(x, y) = max(|xgoal−x|, |ygoal−
y|). In synthetic and computer games benchmarks, the start
and goal states are chosen randomly assuring that there is
a path from the start to the goal. All actions have cost 1.
The visibility radius of the agent is 1 (that is, agent sensors
can ”see” what occur in inmediate neighbors of the current
state). Results consider first trial and convergence to optimal
trajectories in solution cost (= number of actions performed
to reach the goal) and total planning time (in milliseconds),
plotted against d, averaged over 1500 instances (Grid35 and
Maze), 10000 instances (Baldur’s Gate) and 6000 instances
(WarCraft III). We present results for Maze and Baldur’s
Gate only (the other two benchmarks show similar results).

LRTA*, RTAA* and LRTA*LS(k, d) results appear in
Figure 4, while LRTS(γ = 1,T= ∞) results appear in Table
1. They are not included in Figure 4 for clarity purposes.
Solution costs and planning times are worse than those ob-
tained by LRTA*LS(k, d). From this point on, we limit the
discussion to LRTA*, RTAA* and LRTA*LS(k, d).

1Baldur’s Gate is a registered trademark of BioWare corpora-
tion. See www.bioware.com/games/baldur gate.

2WarCraft III is a registered trademark of Blizzard Entertain-
ment. See www.blizzard.com/war3.

Results of first trial on Maze appear in the first and second
plots of Figure 4. We observe that solution cost decreases
monotonically as d increases, and for LRTA*LS(k, d) it also
decreases monotonically as k increases. The decrement in
solution cost of LRTA*LS(k, d) with d for medium/high k is
very small: curves are almost flat. The best results with low
lookahead are for LRTA*LS(k, d), and all algorithms have
a similar cost with high lookahead. Regarding total plan-
ning time, LRTA*LS(k, d) increases monotonically with d,
while LRTA* and RTAA* first decrease and later increase.
The best results are for LRTA*LS(k, d) with medium/high
k and low d, and for RTAA* with medium d. However, the
solution cost of LRTA*LS(k, d) with medium k and low d is
much lower than the solution cost of RTAA* with medium
d. So LRTA*LS(k, d) with medium k and low d offers the
lowest solution cost with the lowest total time.

Results of convergence on Maze appear in the third
and forth plots of Figure 4. Regarding solution cost,
curve shapes and their relative position are similar to those
of first trial on Maze. Regarding total planning time,
LRTA*LS(k, d) versions increase monotonically with d (a
small decrement with small d is also observed), while
LRTA* and RTAA* decrease monotonically with d. The
best results appear for LRTA*LS(k, d) with low d and
medium/high k, and for LRTA* and RTAA* with high d.
Comparing the solution cost of these points, the best results
are for LRTA*LS(k, d) with low d and high k, while RTAA*
and LRTA* with high d go next. LRTA*LS(k, d) obtains the
minimum cost and the shortest time with low d and high k.

Results of first trial on Baldur’s Gate appear in the fifth
and sixth plots of Figure 4. Regarding solution cost, curve
shapes and their relative positions are similar to those of
first trial on Maze. Here, we observe that from medium
to high lookahead the solution cost of LRTA* and RTAA*
are better than the cost obtained by LRTA*LS(k, d) with
low k. LRTA*LS(k, d) curves are really flat after the first
values of d. Algorithms offering best cost solutions are
LRTA*LS(k, d) with medium/high k and any d, followed by
LRTA* and RTAA* with high d. Regarding total planning
time, curve shapes are also similar to Maze first trial. Here,
RTAA* is not so competitive, its best results are not so close
to the best results of LRTA*LS(k, d) as in Maze. The best
time is for LRTA*LS(k, d) with medium/high k and low d,
which also offers a very low solution cost.

Results of convergence on Baldur’s Gate appear in the
last two plots of Figure 4. Regarding solution cost, curve
shapes and their relative positions are similar to those of
first trial on the same benchmark. Regarding total plan-

First trial Maze Convergence Maze
Cost Time Cost Time

2 286,298.0 384.8 9,342,177.6 12,495.8
3 318,744.6 411.0 13,484,604.6 17,103.7
4 346,511.8 439.7 6,213,024.9 7,692,1
6 349,338.4 445.0 6,925,467.7 8,431.9

Table 1: LRTS(γ = 1, T= ∞) results. The lookahead depth
appears in the leftmost column.
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Figure 4: Experimental results on Maze and Baldur’s Gate: solution cost and total planning time for first trial and convergence.
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ning time, curve shapes are also similar to those of Baldur’s
Gate first trial. Here, the best results in time are obtained by
LRTA*LS(k, d) with high k and low d, followed by RTAA*
with high d. The best results in time are also the best results
in solution cost, so the clear winner is LRTA*LS(k, d) with
high k and low d.

In summary, regarding solution cost we observe a com-
mon pattern in both benchmarks, in first trial and conver-
gence. LRTA* and RTAA* solution cost decrease monoton-
ically with d, from a high cost with low d to a low cost with
high d. In contrast, LRTA*LS(k, d) offers always a low so-
lution cost for any d (variations with d are really small), and
cost decreases as k increases. The best results are obtained
for medium/high k and any d. So, if minimizing solution
cost is a major concern, LRTA*LS(k, d) is the algorithm of
choice. Regarding total planning time, there is also a com-
mon pattern in both benchmarks. We observe that LRTA* is
always more expensive in time than RTAA*, so we limit the
discussion to the latter. LRTA*LS(k, d) with high k (in some
cases also with medium k) and low d obtain the shortest
times. In those points where RTAA* obtains costs compa-
rable with LRTA*LS(k, d) (points with high d), RTAA* re-
quires much more time than LRTA*LS(k, d) with high k and
low d. The only exception is convergence on Maze, where
RTAA* time is higher than but close to LRTA*LS(k, d)
time. From this analysis, we conclude that LRTA*LS(k, d)
with high k and low d is the best performant algorithm, both
in solution cost and time.

Let us consider LRTA*LS(k, d) parameters. Regarding
solution cost, d does not cause significant changes, while
k is crucial to obtain a good solution cost. Regarding to-
tal planning time, both d and k are important (d seems to
have more impact). The most performant combination is
high k and low d. This generates the following conclusion:
in these algorithms, it is more productive to invest in prop-
agation than in lookahead. If more computational resources
are available in a limited real-time scenario, it seems more
advisable to use them for bounded propagation (increase k)
than to make larger lookahead (increase d).

Conclusions
We have presented LRTA*LS(k, d), a new real-time algo-
rithm able to plan several moves per planning step. It com-
bines features already introduced in real-time search (looka-
head using A*, bounded propagation, use of Dijkstra short-
est paths). In addition, it considers the quality of the heuris-
tic to select one or several actions per step. LRTA*LS(k, d)
is complete and converges to optimal paths after repeated ex-
ecutions on the same instance. Experimentally, we have seen
on several synthetic and computer games benchmarks that
LRTA*LS(k, d) outperforms LRTA* (version of Koenig),
RTAA* and LRTS(γ = 1,T= ∞).

LRTA*LS(k, d) presents several differences with other
competitor algorithms. It is good to know which are details
and which are matter of substance. LRTA*LS(k, d) belongs
to the LRTA* family and is not very far from LRTA* (ver-
sion of Koenig): (i) both have the same local search space,
(ii) both use the same learning rule and (iii) although dif-
ferent, their control strategies are related. Their main differ-

ence is the local learning space, CLOSED in LRTA* and I in
LRTA*LS(k, d). CLOSED is a kind of generic local learn-
ing space, built during lookahead but not customized to the
heuristic depression that generates the updating. However, I
is a local learning space that is built specifically to repair the
detected heuristic inaccuracy. I may not be totally included
in the local search space, something new with respect to the
other considered algorithms. According to the experimental
results, using customized local learning spaces seems to be
more productive than using generic ones. And the size of
these customized local learning spaces (upper bounded by
k) is significant for the performance of real-time heurisitic
search algorithms.
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