
Heuristic Search for Target Value Path Problem

Lukas Kuhn, Tim Schmidt, Bob Price, Johan de Kleer, Rong Zhou and Minh Do

Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304 USA

lukas.kuhn@parc.com

Abstract

In this paper, we define a class of combinatorial search
problems in which the objective is to find a set of paths
in a graph whose elements’ value is as close as possible
to some target value. Unlike the usual shortest path prob-
lem, the goal is not necessarily to find paths with minimum
length. We show that in most cases it is possible to decom-
pose the problem into components where heuristic search
can be used. We demonstrate the benefits of this approach
on a synthetic domain and illustrate an instantiation of the
approach for a problem in model-based diagnosis.

1. Introduction
In this paper, we define a class of combinatorial search
problems in which the objective is to find a set of paths in a
graph whose elements’ value is as close as possible to some
target value. Unlike the usual shortest path problem, the
goal is not to find a path with minimum length.

These target value problems arise in a variety of do-
mains. In consumer recommendation domains people often
have approximate targets [6]. For instance one might want
to plan a hike in a park with a duration of about 3 hours and
have a system pull together a selection of trails and lookouts
that would take close to 3 hours to complete. In diagnosis,
we often wish to find plans which succeed with a probabil-
ity as close to a certain value as possible in order to test a
hypothesis. To find such a plan we can define a valuation
related to the probability of success and search for a plan
whose value matches some target value as close as possible.

Unfortunately, this important class of combinatorial
problems cannot be solved straightforwardly with heuristic
search methods such as A∗ [4]. We show, however, that a
principled understanding of the nature of target value search
leads to a decomposition of which significant parts can be
solved using A∗ methods.

In the next section we formally define the target value
problem and derive a heuristic search method. The heuris-
tic search is then evaluated on a set of (synthetic) problems

from the diagnosis domain designed to explore the perfor-
mance envelope of this new technique.

2. Target Value Search
2.1. Problem Definition
Let G = (VG,EG) be a finite, acyclic, directed graph, VG

be a set of vertices and EG ⊆ VG × VG be a set of edges
with positive edge weights. A sequence p = 〈s0, ..., sn〉 is
called a path from s0 to sn inG iff ∀si ∈ p : si ∈ VG∧∀i ∈
[1;n] : (si−1, si) ∈ EG.

We define the length of path ||p|| as the number of ele-
ments in its sequence minus one, that is, in other words, its
number of transitions. Let s, g ∈ VG be vertices of G and
Ps→g be the set of all paths from s to g in G. Let predeces-
sor ≺G⊆ VG×VG and successor �G⊆ VG×VG be rela-
tions on vertices of a graph, such that a ≺G b⇔ ∃p ∈ PG :
p = 〈a, ..., b〉 and a �G b ⇔ ∃p ∈ PG : p = 〈b, ..., a〉. We
denote their respective complements⊀G= (VG×VG)\ ≺G

and�G= (VG×VG)\ �G. Furthermore, let v : EG → R+

be a function mapping each edge to a postive real, from
here on referred to as the value function. In some notational
abuse, we define v(p) for some path in G as the sum of the
values of edges in p and call v(p) the value of a path.

For some value T ∈ R we call a path p ∈ Ps→g whose
value v(p) is closest to T a target value path with respect to
s,g and T and denote the set of these paths PT

s→g . Formally,

PT
s→g = argmin

p∈Ps→g

|v(p)− T | (1)

2.2. Target Value Search Algorithm
In the following, we describe a non-deterministic version
of target value search, that returns some target value path
pT

s→g ∈ PT
s→g . Extension to a deterministic version is

straightforward and will be sketched out where it differs
from the following considerations. Formally,

pT
s→g ∈ argmin

p∈Ps→g

|v(p)− T | (2)

76

A target value path set in regards to s, g and T can be
straightforwardly computed in the following way: one can
iteratively or recursively construct the Ps→g set and eval-
uate (1). Due to the finiteness of G, the set Ps→g will be
finite ∀s, g ∈ VG, and each path p ∈ Ps→g will be of finite
lengh, so the set can always be constructed and thus, (1) can
be evaluated.

Note that argmin is a function 2S × (S → R) → 2S.
Let δ : P × R → R be a function defined as the dif-
ference between the value of some path to some value
δ(p, t) = v(p) − t. Then the set of target value paths can
be recursively defined as,

PT
s→g =

{〈g〉} if s = g

∅ if g �G s
∧ s 6= g

s ◦ argmin
p′∈

⋃
(s,s′)∈EG

PT s′

s′→g

|δ(p′, T s′)| otherwise

(3)
with T s′ = T − v(〈s, s′〉) target value minus the value
of the path 〈s, s′〉. The mapping ◦ : V × 2P → 2P is
defined for (vertex, set of paths) pairs, such that there are
edges between vertex and the first element of each path in
the set defined in G. It maps those pairs to the set com-
prising of the concatenations of s and each path, resulting
in a path in G. Equation 3 shows the recursive definition
of PT

s→g . The set of target value paths, is either the sin-
gleton {〈g〉} iff s = g, the empty set ∅ iff g �G s (this
case ensures, that PT

s→g is defined for all pairs of vertices
s, g ∈ VG) or the set of paths resulting from concatenat-
ing to s the ”best” (with respect to the respective target
values T s′ of the successors) completions in G. Note that
for paths p = 〈s0, s1, ..., sn〉, p′ = 〈s1, ..., sn〉 and values
t, t′ = t − v(〈s0, s1〉) , δ(p, t) = δ(p′, t′). Hence, in the
third case, the optimal completions can always be found in
the union of target value path sets of the immediate succes-
sors s′, g and their respective target value T − v(〈s, s′〉).
Hence, the definition is tree recursive in the first argument
of argmin. It remains to be shown, that this recursion is
guaranteed to terminate. As G is a finite DAG, it follows
that all sets of paths between two vertices of the graph are
finite ∀s, g ∈ VG,∀p ∈ Ps→g : |Ps→g| < ∞ and that
all paths in these sets are finite ∀s, g ∈ G,∀p ∈ Ps→g :
||p|| < ∞. Furthermore, if a vertex v′ is an immediate
successor of some vertex v and v′′ is a common succes-
sor to both, it follows that longest path form v to v′′ is at
least one step longer than the longest path from v′ to v′′

and there is at least one successor to v such that its longest
path to g is exactly one step shorter ≺ g → ∀s′ � s :
argmaxp∈Ps→g

||p|| = argmaxp′∈Ps′→g
||p′|| + 1. Finally,

if the longest path in some Ps→g is 1, it follows that s equals

g (argmaxp∈Ps→g
||p|| = 1 → s = g). From these proper-

ties it follows that the recursive depth of the decomposition
of PT

s→g is bounded by the (finite) length of the longest path
in Ps→g (maxp∈Ps→g ||p||) and is guaranteed to terminate.
It follows, that pT

s→g can be calculated straightforwardly
through the above decomposition.

Unfortunately, due to the tree recursive nature of this al-
gorithm, the computation can be quite expensive, especially
on graphs with high fan-out. For example, the graphs used
in the experiments section (roughly 40 nodes, avg. fan-out
of 3) result in a recursion tree of about 20000 nodes. How-
ever, there is a way to significantly reduce the costs for com-
puting the target value path set. To this end, we first have
to introduce some concepts and lay out a simple algorithm
the target value search problem. Assume we are given an
extract of some graph G = (VG,EG) as shown in Figure 1.
We define the successor graph SG

v of a vertex v ∈ G as

s

g

Figure 1: Extract of some graph G

the subgraph comprising of all successors of v in G and all
edges between these successors in G. Formally,

SG
v = (VSG

v
,ESG

v
)

= ({v ∈ VG|v �G s},

{(v1, v2)|v1, v2 ∈ VSG
v
∧ (v1, v2) ∈ EG}) (4)

Figure 2 shows the successor graph SG
s of the extract of

some graph G.
Analogously, we define the predecessor graph PG

v of a
vertex v ∈ G as the subgraph comprising of all predecessors
of v in G and all edges between these predecessors in G.

77

s

g

Figure 2: Successor graph of s

Formally,

PG
v = (VP G

v
,EP G

v
)

= ({v ∈ VG|v ≺G s},

{(v1, v2)|v1, v2 ∈ VP G
v
∧ (v1, v2) ∈ EG})(5)

Figure 3 shows the predecessor graph PG
g of the extract of

some graph G.

s

g

Figure 3: Predecessor graph of g

Finally, we define the connection graph CG
v1→v2

of ver-
tices v1, v2 ∈ G as the intersection of the successor graph

of v1 in G and the predecessor graph of v2 in G. Formally,

CG
v1→v2

= (VCG
v1→v2

,ECG
v1→v2

)

= (VSG
v1
∩ VP G

v2
,ESG

v1
∩ EP G

v2
) (6)

The resulting connection graph from vertex s to vertex g is
shown in Figure 4.

s

g

Figure 4: Connection graph CG
s→g of two vertices s and g

The above, decomposition algorithm can be thought of
as expanding the connection graph CG

s→g into a directed
tree, beginning with (s, T) as its root node, iteratively gen-
erating for each node (n, t) a child for each successor n′ of
n inCG

s→g , with the node labeled (n′, t−v((n, n′)). Due to
the structure of CG

s→g expansion will end with a tree where
all leaves are labeled with g and some value ti, due to g
being (by construction) the only node without successors in
CG

s→g . These leaf nodes each represent one of the possible
paths between s and g with their respective ti denoting their
absolute difference to the target value, or formally the ab-
solute value of the |δ|-function of the path in regards to T .
Consequently, the paths from the root node of the expansion
tree to the leaves with minimal |ti| comprise the target value
path set PT

s→g . See Fig 2.2 for an example. Listing 1 gives
the pseudo code for the tvs algorithm.

Algorithm 1: tvs(G,s,g,T)

begin
C = conGraph(G,s,g);
Tree = (s,T);
expand(Tree.root,C);
return T.bestSolutions();

end

78

e1 , 1e 2,
 2

e3, 2

e 5,
 3

e4 , 2

s s,5

a

g

b

e1

a,4 b,3

e2

b,2 g,1

e3 e5

g,0

e4

g,1

e4

Figure 5: Connection graph with edge weights and its cor-
responding expansion tree for a target value of 5. The target
value paths set is PT

s→g = {〈s, a, b, g〉}

Algorithm 2: expand((n,t),C)

begin
foreach n’ : C.succOf(n) do

t’ = t-v(n,n’);
(n,t).addChild(n’, t’);
expand(n’,t’);

end

2.3. Heuristic Target Value Search Algorithm
Let l : VCG

s→g
→ R+

0 and u : VCG
s→g
→ R+

0 be functions
such that ∀n ∈ VCG

s→g
: l(n) ≤ minp∈Pn→g v(p) ∧ u(n) ≥

maxp∈Pn→g
v(p) some lower bound. The nodes’ T values

during generation of the above tree represent the target val-
ues for their respective suffix paths. If for a given node
(n, t), t ≤ l(n) holds, the best completion for this node is
the shortest path in Pn→g , as each other completion will re-
sult in a larger offset from the target value. In the analogous
case of t ≥ u(n) the best completion is the longest path in
Pn→g . Thus, if either of these conditions hold for a node,
graph expansion for that node can be stopped and its com-
pletion can be calculated by a shortest (longest) path search
in Ln→g . In both cases this can be done efficiently using
the A∗-Algorithm with heuristics l and u respectively. Note
as Ln→g is a subgraph of G it will also be cycle free, thus
longest path search can be done with a modified A∗.

Consequently, the htvs algorithm operates in two phases.
The first phase is graph expansion, where successors for
nodes (n, t) are generated unless either the leaf level is
reached (i.e. n = g), or t falls out of the [l(n), u(n)] in-

terval. These nodes are stored in a candidate list for later
processing. At the end of this phase, the algorithm deter-
mines the leaf node with the minimum t value. The al-
gorithm should terminate as soon as no better path can be
found, so in case some generated leaf node is optimal (i.e.
its t value is zero), the algorithm terminates and returns the
corresponding path. Otherwise the algorithm advances to
phase two, where it marks the best solution found in phase
1 (or∞, if the leaf level was not reached) and searches the
candidate list for pairs (n, t1), (n, t2), such that both t1 and
t2 are lower (resp. greater) than l(n) (resp. u(n)). In such
cases the node with the larger (resp. lower) t is pruned, as
the corresponding path will always be worse. Finally it ini-
tializes, for each node (n, t) in the retained set, a shortest
(respectively longest) path A∗ search from n to g in their
particular graph CG

n→g , with initial cost set to the corre-
sponding ti. Note, that these searches are done in the much
smaller graph space, as opposed to the tree expansion in
prefix space. Once again the CG

n→g DAGs are cycle free,
so A∗ longest path searches are straightforward. Now, in
each step the algorithm first checks the termination condi-
tion: is the current best solution’s t value lower or equal
then the intermediate t values of all the first elements in the
open queues? The intermediate t values is the f function
value of theA∗ search plus the t value of the original candi-
date node. If this condition is satisfied, there can be no bet-
ter path and the algorithm returns the current best solution.
Otherwise the search with the lowest intermediate t value is
advanced (one node expanded). Should the selected A∗ ter-
minate, its solution is compared to the current best solution,
which it eventually displaces. If all A∗ searches terminate,
the current best solution is returned. Note that (htvs) is non-
deterministic, i.e. it only calculates a single representative
of PT

n→g . However, extension to a deterministic version is
straightforward. Listing 3 gives the pseudo code for this
heuristic target search algorithm.

79

Algorithm 3: htvs(G,s,g,T,l,u)

begin
/* Phase I */

C = conGraph(G,s,g);
Tree = (s, T);

/* Main I */
expandH(Tree.root,C, Candidates);
if Tree.hasSolution() then

Best = Tree.bestSolutions().some();
else

Best = (<>,infinity);
/* Phase II */

Candidates.pruneDuplicates();
foreach (n,t) : Candidates do

if t <= l(n) then
A*[].add(new Amin*(n,g), new Offset(t));

else
A*[].add(new Amax*(n,g), new Offset(t));

/* Main II */
while A*[].hasCandidate() do

if Best.t <= A*[].getBestIntermediateT() then
return Best;

A*[].advanceBestIntermediateT();
if A*[].searchFinished() &&
A*[].lastFinishedSearch().t < Best.t then

Best = A*[].lastFinishedSearch();

return Best;
end

Algorithm 4: expandH((n,t),Candidates,C,l,u)

begin
if t<=l(n) || t>=u(n) && (C.hasSucc(n)) then

Candidates.add((n,t));
else

foreach n’ := C.succOf(n) do
t’ = t-v(n,n’);
(n,t).addChild(n’, t’);
expandH(n’,t’);

end

2.4. Heuristic for the Target Value Search
In A∗ search, heuristics are generally created by hand using
deep insight into the domain. There are a number of meth-
ods for generating heuristics automatically. One method
relies on using dynamic programming to compute actual
path completion costs [1]. Complete dynamic program-
ming would solve the problem. A novel sparse form of dy-
namic programming, however provides accurate lower and
upper bounds for each vertex.

The graph structure and edge values can be used to com-
pute a search heuristic. The idea is to calculate value bounds

for each vertex n of the graph for the path leading to the goal
vertex g that goes through n. We construct the heuristic by
exploring the graph similar to breadth-first search (BFS).
Intuitively, we start from the goal vertex g and examine all
the immediate predecessor vertices by computing the bound
interval for their path value to g. Then for each of those im-
mediate predecessor vertices, we examine their immediate
predecessor vertices recursively, and so on, until we have
examined the entire graph.

The data structures used to compute these bounds are a
queue of vertices and a map map(n) = (l(n), u(n)), where
the keys are vertices and the values are intervals. For each
vertex n the associated interval (l(n), u(n)) represents the
best value bounds for paths from n to g with a lower bound
l(n) and an upper bound u(n).

We set the bounds of the interval associated with g to
zero because the value of a zero length path is zero. All
other bounds are initialized to positive infinity for the lower
bound and zero for the upper bound. We start the con-
struction of the heuristic by putting the goal vertex g in the
queue. Then we continue to pop and examine the first vertex
from the queue until the queue is empty. The examination
of a vertex n includes two operations: (1) add all the imme-
diate predecessors of vertex n to the end of the queue, and
(2) update their bounds. The bounds update for a predeces-
sor vertex m is defined as follows:

l(m) = min(v(m,n) + l(n), l(m))

u(m) =

max(v(m,n) + u(n), u(m)) if u(m)

< T + l(m)

∞ otherwise
(7)

If the queue is empty, the bounds for every vertex of the
graph have reached a fixed point. The computed map has
the lower and upper bounds for the path value. We can use
this map as l and u functions to guide the search.

3 Motivating Application: Diagnosis

As part of our group work on self-aware, planner-driven
systems [3] we have designed and built the modular redun-
dant printing engines illustrated in Figure 6. The system
is controlled by a model-based planner [2]. The model of
the systems describes all the components in the system, the
connections between the components and all the actions a
component can take. The task of the planner is to find the
sequence of actions, called plan, which will move sheets
through the system to generate the requested output.

Expanding this work on model-based controlled system
we introduced a framework which integrates planning and

80

Figure 6: Model of PARC’s prototype highly redundant printer.
It consists of two towers each containing 2 printers (large rectan-
gles). Sheets enters on the left and exit on the right. Dark black
edges with small rollers represents a possible paper path. There are
three main paper (horizontal) highways within the fixture. The fix-
ture incorporates 2 types of media handling modules represented
by small lighter edge rectangles. The motivation for this design is
to continue printing even if some of the print engines fail or some
of the paper handling modules fail or jam.

diagnosis to optimize production for long-run productivity
called ‘Pervasive Diagnosis’ [5].

4 Pervasive Diagnosis

Pervasive diagnosis is a new paradigm in which production
is actively manipulated to maximize diagnostic information.
Active diagnosis and production can therefore occur simul-
taneously leading to higher long run productivity than pas-
sive diagnosis or alternating active diagnosis with produc-
tion.

The integration of diagnostic goals in the production
strategy results in informative production. The primary
objective in informative production is to continue produc-
tion. Under the assumption that there are various ways
to achieve the production goals, informative production si-
multaneously maximizes diagnostic information. The liter-
ature describes different types of production such as sim-
ple production, time efficient production, cost efficient pro-
duction and, robust production. All of those share the pri-
mary objective of achieving production but differ in the way
they approach the goal. In simple production any strategy
that achieves the production goal qualifies. In all other
approaches the set of production strategies, those which
achieve the production goals, are ranked by a secondary

objective function and the best production strategy domi-
nates. For example in time efficient production, strategies
are ranked by cost and the most cost efficient production
strategy dominates. Similar to other production strategies
informative production ranks the set of plans that achieve
production goals by their potential information gain and se-
lects the most promising strategy.

5 System Architecture

Figure 7: Overall System Architecture

Figure 7 illustrates the basic architecture of the system.
The basic task of the planner is to schedule sheets through
the reprographic machine. The extended task of the diag-
nosis engine is to estimate action failure probabilities and
provide diagnostic guidance to the planner. Both the plan-
ner and diagnosis engine operate with a common model of
the machine state.

The reprographic machines receive a continuous stream
of print jobs. Each print job consists of a sequence of
sheets of paper. The planner is to translates job requests
into optimal (optimal to a given objective function) pro-
duction plans. These plans p consisting of a sequence of
actions a1, a2, . . . , an drawn from Asys. We denote the
set of unique actions in a plan Ap =

⋃
i{ai}. Executing

an action potentially changes the system state. We assume
catastrophic failures such that a plan fails if one or more of
it’s action fail. Due to physical or economical constraints
executing a plan p results in a single observable, the plan
outcome or observation O. In keeping with the diagnosis
literature, we define two outcomes: the abnormal outcome,
denoted ab(p), in which the plan fails to achieve its produc-
tion goal and the not abnormal outcome, denoted ¬ab(p),
in which the plan does achieve the production goal.

Based on the continuous stream of plan and observation
pairs the diagnosis engine estimates the action failure prob-
abilities which we denote Pr(ab(a)). We apply Bayes’ rule
to estimate the hypothesis probabilities:

Pr(ab(a)|o) = αPr(o|ab(a))Pr(ab(a))

81

In a forthcoming paper, we introduce a compact represen-
tation and an update algorithm for a more general hypothe-
sis space. For this paper we assume that the diagnosis en-
gine estimates the action failure probabilities Pr(ab(a)|o)
for each action a.

6. Search for Highly Diagnostic Plans
The objective of pervasive diagnosis is to use the diagno-
sis engine’s beliefs to influence production plans to gain
additional information about the condition of the system.
A plan is said to be informative, if it contributes informa-
tion to the diagnosis engine’s beliefs. We can measure this
formally as the mutual information between the system be-
liefs Pr(ab(a)) and the plan outcome conditioned on the
plan executed, I(ab(a);O|P = p). The mutual information
is defined in terms of entropy or uncertainty implied by a
probability distribution. A uniform distribution has high un-
certainty and a deterministic one low uncertainty. An infor-
mative plan reduces the uncertainty of the system’s beliefs.
Intuitively, plans with outcomes that are hard to predict are
the more informative. If we know a plan will succeed with
certainty, we learn nothing by executing it. In a forthcom-
ing paper, we explain how to calculate the optimal amount
of uncertainty T a diagnosis engine should seek in a diag-
nosis plan in order to maximize information. In the case
of persistent faults, the optimal uncertainty in outcome is
T = 0.5. In the intermittent case, 0.36 ≤ T ≤ 0.5. In this
paper, we focus on the persistent fault case T = 0.5.

In order to apply target-value path search to pervasive
diagnosis, we need a precise mapping of pervasive diagno-
sis onto the target-value problem. The planning objective in
pervasive diagnosis is to find a plan that achieves the goal
and is informative:

popt = argminachievesGoal(p)∈P |Pr(ab(p))− T |. (8)

We formulate the problem as a target value path prob-
lem. Let the action set Asys be the edge set E, let the fail-
ure probability of an action be the value of an action and
let the optimal uncertainty about the outcome be the target
value. In the case of persistent faults T = 0.5. Note that
we don’t want to count a failure probability twice because
of the persistent fault assumption. In contrast to the costs
in the target-value problem the failure probability of a plan
doesn’t increase in the persistent fault case if the same ac-
tion appears multiple times in the plan. Therefore the prob-
lem becomes non-decomposable since we can’t calculate
the failure probability of the prefix plan and the suffix plan
independently.

In the following sections of this paper, we discuss the
single fault/single appearance scenario where there is no de-
pendencies between pI→s and ps→G and f(s) is naturally
decomposable into g(s) and h(s).

6.1. Single Fault Diagnosis
In the simplest case we make two assumptions: (1) there is
at most one fault in the system at any given time; the single
fault assumption. (2) an action appears at most once in a
single plan; the single action appearance assumption.

Because of the single fault and the single action appear-
ance assumption a plan pI→G decomposes into two partial
plans pI→s and ps→G with two non-overlapping action sets
ApI→s

and Aps→G
.

Therefore the plan fault probability for a complete plan
pI→G can be decomposed into the plan fault probability of
its decomposed partial plans pI→s and ps→G with s being
any node visited by the plan pI→G:

Pr(ab(pI→G)) = Pr(ab(pI→s)) + Pr(ab(ps→G)) (9)

We can now apply the target-value path problem. First
we construct the heuristic by recursively construct the
heuristic starting from the goal state G. For each action
asm→sn

leading from state sm to sn we update the heuris-
tic as shown in Equation 7 where vertices v corresponds
to states s and the cost of an arc c(vm, vn) corresponds to
Pr(ab(asm→sn)).

After the construction of the heuristic each state s is
associated to an interval representing the lower and upper
bound for the failure probability of plans from state s to the
goal state G. The heuristic can then be used in the target-
value search shown in Equation 3 where the cost for a path
c(ps→vn) corresponds to Pr(ab(pI→s)).

The search algorithm uses an admissible heuristic to
guide the search and is therefore guarantee to return an op-
timal solution.

7 Experiments

In this section we present some results to illustrate how the
algorithm performs on synthetic data and on a real-world
diagnostic task. We implemented a graph generator con-
structing directed weighted graphs. A finite set of k costs
is chosen for the edges in the graph. The actual cost of any
edge will be randomly selected from this finite list of costs.
The graphs consist of a start node s, a grid of interior nodes
and a goal node g. The grid is parameterized by width W
and length L. The start vertex s connects to every initial
vertex of the grid and the goal vertex g is connected to ev-
ery terminal vertex in the grid. The horizontal connections
are present for every interior node. The diagonal connec-
tions between vertices in the grid are made with probability
’p’. An example of a generated grid appears in Figure 8.
This graph is motivated by an application to modeling man-
ufacturing processes.

82

Figure 8: Schematic of graph parameterization

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

target-value

#
 o

f
n

o
d

e
 e

x
p

a
n

s
io

n
s

 tvs

 htvs

Figure 9: Number of node expansions for different target values.

For the experiments presented below, we set the width to
5 nodes, the length to 5 nodes and the interior node diago-
nals probability to 0.5. We plot the results for 30 different
target values, each averaged over 15 runs. We run two dif-
ferent algorithms on this problem: the brute force tvs algo-
rithm and the heuristic htvs algorithm.

In Figure 9 we can see that the heuristic algorithm is sev-
eral orders of magnitude faster than a brute force search.
As far as we know, this is the first heuristic search algo-
rithm for this problem. We also note that the problem dif-
ficulty clearly varies with target. When the target value is
close to the minimum cost (1.28) or maximum length plans
(5.8), the problem is considerably easier. When the target
value lies in between, the problem is more difficult. This
makes sense, as the problem basically becomes an ordinary
A∗ search or inverse A∗ search for the former cases.

8 Conclusions
We have presented a novel and efficient algorithm to find
paths closest to a target value. We are unaware of any other
efficient algorithms for this problem. This technology is key
to enabling heuristic search for problems with target values
such as recommendations to users and finding informative
diagnosis plans goal-driven systems.

References
[1] J. Culberson and J. Schaeffer. Pattern databases. Com-

putational Intelligence, 14(3):318–334, 1998.

[2] Minh Do, Wheeler Ruml, and Rong Zhou. On-line
planning and scheduling: An application to controlling
modular printers. In Proceedings of the 23rd AAAI Con-
ference on Artificial Intelligence (AAAI-08), 2008, to
appear.

[3] Markus P.J. Fromherz, Daniel .G. Bobrow, and Jo-
han de Kleer. Model-based computing for design and
control of reconfigurable systems. The AI Magazine,
24(4):120–130, 2003.

[4] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics
(SSC), 4(2):100–107, 1968.

[5] Lukas Kuhn, Bob Price, Johan de Kleer, Minh Do, and
Rong Zhou. Pervasive diagnosis: the integration of ac-
tive diagnosis into production plans. In Proceedings
of the 23rd AAAI Conference on Artificial Intelligence
(AAAI-08), 2008, to appear.

[6] Stephan Winter. Route specifications with a linaer dual
graph. In Symposium on Geospatial Theory, 2002.

83

