
TρFSP: Forward Stochastic Planning using Probabilistic Reachability

Teichteil-Königsbuch Florent and Infantes Guillaume
ONERA-DCSD

2 Avenue douard-Belin – BP 74025
31055 Toulouse Cedex 4

FRANCE

Abstract
In order to deal with real-world sequential decision making,
stochastic outcomes for actions have to be explicitly taken
into account, as in the Markov Decision Processes (MDPs)
framework. While MDPs have been studied for a long time,
dealing with a large number of states is still an open issue.
As the initial state is given, most state-of-the-art algorithms
use heuristic information over the MDP domain, in order to
deal only with states that are reachable from the initial one.
But we think this information still is under-exploited. We
give a formal definition of such probabilistic reachability and
propose a new algorithm that uses much more explicitly this
information in a parametric way. We present results that show
that our algorithm outperforms previous algorithms.

Introduction
Planning under uncertainty in large stochastic domains has
been a very active field of Artificial Intelligence research for
many years. Most of recent algorithms use either approx-
imation techniques (Poupart et al. 2002; O. and Aberdeen
2006) or a heuristic function to guide the search of the best
solution towards the “good” states that are reachable from
a given initial state (Hansen and Zilberstein 2001; Barto,
Bradtke, and Singh 1995; Buffet and Aberdeen 2007). In
the case of optimal heuristic algorithms like LAO∗(Hansen
and Zilberstein 2001), the information gathered from the
reachable states is still under-exploited: the quest of opti-
mality conduces such algorithms to optimize the problem
over much more states than the ones that are reachable with
the current solution.

In this paper, we propose a new optimal heuristic algo-
rithm for planning under uncertainty, named FSP, that only
optimizes the states that are reachable from a given initial
state. We introduce as well an extended version named
TρFSP, that performs a probabilistic reachability analy-
sis in order to prune the states whose probability of being
reached from the initial state is compared to a given thresh-
old ρ.

In section 2, we present Markov Decision Processes
(MDPs), that are a popular framework for planning under
uncertainty, and LAO∗. In sections 3 and 4, we respec-
tively present our algorithm FSP and its extended version

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

TρFSP. In section 5, we compare our algorithms to RTDP
and LAO∗, that still remain state-of-the-art heuristic algo-
rithms, for two different heuristics: we show that FSP and
TρFSP perform better than RTDP and LAO∗ depending on
the quality of the heuristic. We then conclude with a discus-
sion and some perspectives for future work.

Background: MDPs and LAO∗

In this section, we give a brief overview of Markov Decision
Processes (MDPs) (Puterman 1994) and present an in-deep
view of a state-of-the art heuristic search algorithm: LAO∗
(Hansen and Zilberstein 2001).

Markov Decision Processes
Formalism

Definition 1 (MDP) An MDP is defined by:

• a set of states S = {s1, · · · , sp},
• a set of actions A = {a1, ..., aq},
• a transition function S × A × S → [0, 1] denoted
T (s, a, s′) = P (st+1 = s′|st = s, at = a), where st
is state at time t and at the action chosen at time t;
• a set of reward/cost functions S × A × S → R, denoted
R(s, a, s′).

Definition 2 (Policy) A policy π is a function S → A that
associates an action a to every state s of the MDP such that
this a is applicable to this state s. A partial policy associates
actions to a subset of S .

The solution of an MDP is a policy π that maximizes for
each state s the average sum V π(s) of rewards (minimizes
the sum of costs) over a given horizon and all stochastic tra-
jectories starting from s. This horizon may be infinite, in
this case, a discount factor 0 < γ < 1 is given in order to
discount future reward, such that maximizing reward in the
short term is preferred.

An MDP problem may come with:

• an initial state, that is the solution policy needs to maxi-
mize rewards along trajectories starting from this state;

• a goal state, meaning that only transitions going to only
one state lead to reward, and this state is absorbing.

114

An even more special case of MDP is the shortest stochas-
tic path problem, where the MDP has an initial state, a goal
state and all actions but the ones leading to the goal state
have an uniform cost. In some case, a set of adjacent goal
states is provided, this case can be easily reduced to the
canonical shortest stochastic path problem.

In general, when an initial state is fixed, that means that
the answer of the MDP problem can be a partial policy: ac-
tions are not given (computed) for un-reachable states.

Heuristic optimization of MDPs If the states have some
values {V π(s)}s∈S for a given policy π, it is possible to im-
prove the policy of a given state s in one step, by computing
a Bellman backup (Puterman 1994). The improved value
V π

+
(s) is given by:

V π
+
(s) = max

a∈A

{∑
s′∈S

T (s, a, s′) · (R(s, a, s′) + γV π(s′))

}
(1)

If all the states in S are iteratively improved in that way,
then it is proved that the value of states converge to the
value function V ∗ of any optimal policies, whatever the
initial value (or initiasl policy) of states (Bellman 1957;
Puterman 1994).

Nevertheless, if an initial state s0 is known, one would
like to only improve the values of states that are reachable
from s0. Let L ⊂ S be the set of states that are reachable
from s0 by following a given policy. If the values of states
in S are initialized with upper bounds of the optimal val-
ues, then the values of states in L are optimal as soon as L
is stable: i.e. the set of states reachable by following the
improved policy is included in the states reachable by fol-
lowing the previous policy. Indeed, this property means that
even if the value of a state s′ in S \L is supposed to have an
optimistic upper bound, its discounted value along all possi-
ble trajectories leading from s0 to s′ could not be better than
the value of a trajectory leading to a reward inside L.

The upper bounds of the optimal values are named ad-
missible heuristic values. Formally, the heuristic values of
states is a function h such that: ∀s ∈ S, h(s) > V ∗(s).
The closer the heuristic function h is to the optimal function
V ∗, the less states are explored. The computation of a good
heuristic is an open problem that will not be adressed in this
paper. Yet, as we will see in section Experiments, the fol-
lowing easily computable uniform upper bound V ∗sup of V ∗
allows to prune a lot of states, since it is not so far from V ∗:
V ∗sup = maxs∈S maxa∈A

P
s′∈S T (s,a,s′)·R(s,a,s′)

1−γ . For short-
est stochastic path problems, the Manhattan distance from
any states to the goal state is usually very efficient (Barto,
Bradtke, and Singh 1995).

LAO∗: Principle and algorithm
LAO∗ is a heuristic search algorithm that finds partial opti-
mal solutions of MDPs knowing a given initial state. A par-
tial solution is a policy that is only computed over states that
are reachable from the initial state. The main loop of LAO∗
alternates two kinds of computation: reachability analysis
and partial optimization.

Gi−1

I

Gi−1

best tip state n

Li

I

Gi−1

best tip state n

Li

Zi

I
(a) (b) (c)

Figure 1: ith loop of LAO∗: (a) Gi−1 is the set of explored
states at iteration i − 1 — (b) Li is the set of states in Gi−1

that are reachable from I by following the best current policy
; the best tip state n is identified — (c) Zi is the set of states
in Gi−1 from which it is possible to reach n by following the
best current policy from any state in Gi−1 ; value iteration
at iteration i + 1 is performed inside Zi ; the new explored
states are Gi = Gi−1 ∪ {n}

Figure 1 shows a schematic view of its behavior. Starting
from the initial state I , it searches in the current set of ex-
plored states for the non explored states that are reachable
using the current policy. These are called tip states. If no
tip states are reachable, the optimal partial solution is found
and the algorithm stops. Otherwise, it selects the best tip
state w.r.t. its admissible heuristic (fig. 1 b). Then it com-
putes the set of all possible ancestors of this best tip state in
the set of explored states (fig 1 c) and improves the policy in
this set only.

Detailed algorithm is shown as Alg. 1. The set of tip
states is denoted F . On line 13, the best one n is selected.
On line 14, n is expanded, i.e. all new successors of n for
all actions are added to G and their values are initialized with
their heuristic values. Then the set of states that from which
it is possible to reach n using best partial policy is computed
(lines 15 to 20). Then the policy is improved only on these
ancestor states (line 4). It is actually improved at the begin-
ning of the main loop in order to initialize the initial state’s
policy. The policy is optimized over Z using the iterative
Bellman backup of equation 1. This algorithm ends if they
are no more tip states.

Analysis
LAO∗ performs very efficiently for two main reasons:
• it stops whenever it cannot find any tip state, that is the

frontier of explored states is not attractive anymore;
• it updates only the states that have a chance to lead to the

currently chosen tip state, and not all explored states.
In is worth noting that both policy iteration or value iter-

ation may be used indifferently to improve policy. Another
point is that computation is going significantly faster if se-
lecting all best states (line 13), instead of only one. In this
case, improvement of the policy (which is by far the most ex-
pensive part) will be done far less often. Having more than
one best state is directly tied to the quality of the heuristic.
If it is well informed, less states are going to have the same
heuristic value, whereas if it is only an upper bound, all of
them are going to be the best ones.

115

Algorithm 1: LAO∗

// F is a set of tip states
// L is a set of reachable states
// Z is a set of ancestor states
// G is a set of explored states
// I is the initial state of the

algorithm
// π is a partial policy over G
G ← {I};1
Z ← {I};2
repeat3

// improve policy
π ← compute policy(Z);4
// compute tip states
L ← {I};5
L′ ← {I};6
F ← ∅;7
repeat8
L′ ← {s ∈ S \ L : ∃s′ ∈ L′, T (s′, π(s′), s) > 0};9
F ← F ∪ (L′ ∩ (S \ G));10
L ← L ∪ (L′ ∩ G);11

until L′ ∩ G = ∅ ;12
// identify best tip state and

expand it
n← best(F);13
G ← G ∪ expand tip state(n);14
// compute ancestor states
Z ← {n};15
Z ′ ← {n};16
repeat17
Z ′ ← {s ∈ G \ Z : ∃s′ ∈ Z ′, T (s, π(s), s′) > 0};18
Z ← Z ∪ Z ′;19

until Z ′ 6= ∅ ;20

until F = ∅ ;21

FSP: Forward Stochastic Planner
We present in this section a new algorithm called Forward
Stochastic Planner (FSP) that uses reachability from start
state not only for finding tip nodes, but also for pruning even
more the set of states whose policy needs to be updated.

Possible improvement over LAO∗

In its fourth phase, LAO∗ computes the ancestors of the se-
lected tip node, that is the set of nodes from where applying
current policy may lead to this tip node. This is clearly a
way of pruning the set of states to update: the only new in-
formation is about this new tip state (whose value has been
initialized to its heuristic value), and this information has in-
fluence only over its ancestors. Since the heuristic is an op-
timistic value, the policy can not be changed aver the states
from which the tip state can not be reached.

But this set still may be considered as “too large”: some
states in it may be totally unreachable from the initial state,
and thus useless for any trajectory starting from it. We pro-
pose, with the FSP algorithm, to update only states that al-
low to reach the tip state and that are reachable from the

initial state.
Unluckily, doing this in a straightforward way does not

work. More precisely: if we replace line 4 of algorithm 1
with π ← compute policy(Z ∩ L), the algorithm does not
find optimal policies anymore. The reason for that is tied
to the use of the admissible heuristic and the search for tip
states in reachable states from the initial state only. Intu-
itively, the algorithm should not follow a policy that is not
up-to-date with the information given by recent updates. Be-
cause of the admissible heuristic, such a policy would tend
to lead to tip nodes that are now known to be not as good
as formerly hoped, and in some cases this out-of-date pol-
icy would lead to miss other interesting tip nodes. As a re-
sult, the algorithm would prematurely terminate without be-
ing optimal. In LAO∗, this case never happens because the
new information is spread whenever needed, independently
of the reachability (Z is the set of parents of the tip node).

Defining a new algorithm

In order to avoid this problem, we simply do not consider
the policy so far for states that were unreachable and be-
come reachable again (G \ L). We keep in memory the set
L of reachable states from one iteration to the next one of
the main loop, because they are the most up-to-date states
among the explored states. Contrary to LAO∗, the new
reachable states are computed inside the previous set of
reachable states, but not inside the set of explored states. As
soon as a reachable state is found outside L, it is considered
as a tip state, even if it has already been explored earlier.

Figure 2 shows FSP in action: the set Z of states that
are optimized are enclosed in the set L of reachable states,
and that the new reachable states are computed inside the
previous ones. It is worth noting that the algorithm would
not converge if the set Li of new reachable states were com-
puted inside the set Zi−1 of optimized states. Indeed, Z
may be non-connex as shown in Figure 2 c, meaning that
some absorbant states are reachable from the initial state (no
tip states are reachable from these states). If the reachable
states would be computed inside Zi−1 instead of Li−1, they
would be added to Li but never to Zi: also, the fringe of
reachable states would never be empty so that the algorithm
would never terminate. Therefore, Li−1 is the smallest set in
which the new reachable states can be computed. Algorithm
2 gives an in-deep view of FSP.

Analysis

The main differences with LAO∗ is that the set of reach-
able states L in FSP plays the part of the set of explored
states G in LAO∗. When a state is reached with the cur-
rent policy, that means that its policy is up-to-date and that
it can be used to search for tip nodes. This allow to update
a lot less states when computing new policy. On the other
hand, as less states are updated every time, convergence may
be slower when some states switch often from reachable to
unreachable. But FSP still performs better than LAO∗, as
shown in section 5.

116

Gi−1

Li−1
I

reachable fringe Fi

Gi−1

Li−1

Li

reachable fringe Fi

Gi−1

Li−1

Li
Zi

(a) (b) (c)

Figure 2: ith loop of FSP: (a) Gi−1 is the set of explored states at iteration i − 1 ; Li−1 is the set of states that are reachable
from I by following the policy at iteration i − 1 — (b) Li is the set of states in Li−1 that are reachable from I by following
the best current policy at iteration i ; Fi is the set of reachable states that are just outside Li−1 — (c) Zi is the set of states in
Li from which it is possible to reach the fringe Fi by following the best current policy from any state in Li ; value iteration at
iteration i+ 1 is performed inside Zi ; the new explored states are Gi = Gi−1 ∪ Fi

Extension to thresholded reachability
The notion of reachability does not have to be binary.
Clearly, as the MDP is intrinsically stochastic, some states
are more reachable than other, using the current policy. This
can help to prune even more the computation, focusing on
states that are more reachable than others. This informa-
tion can be very helpful especially if the heuristic is well-
informed. In this case, computation will focus even more on
“good” states w.r.t. the heuristic function.

Thresholded reachability
Definition 3 (Forward reachability) We define the for-
ward reachability of a state s, denoted P̃πt (s | I), as the
probability that s has been visited at least once between
timestep 0 and t, by a trajectory that executes the current
policy π, starting from the initial state I .

In order to compute this, we need to compute the probabil-
ity to be in any state s′ at time t, starting from I and without
having ever visited a given state s. We denote this proba-
bility Ut(s′ | s, I). By using Bayes’ rules and Markov’s
property, we can demonstrate that:

Ut(s′ | s, I) =

{
0 ifUt−1(s | s, I) = 1P

s′′ 6=s P (s′|s′′,π(s′′))Ut−1(s
′′|s,I)

1−Ut−1(s|s,I) otherwise

with U1(s′ | s, I) = P (s′ | I, π(I))

We can then compute the forward reachability probability
as:

P̃πt (s | I) = 1−
[
(1− Ut(s | s, I))(1− P̃πt−1(s | I))

]
with P̃π0 (s | I) = δI(s) =

{
1 if s = I
0 otherwise

It is easy to demonstrate that the sequence of P̃πt (· | I)
functions converges when t tends towards +∞, what allows

us to iteratively compute it. This demonstration relies on
two different cases. If there exists a timestep t such that
Ut(s | s, I) = 1, then it is obvious that P̃πt′ (s | I) = 1
for all t′ > t. Otherwise, it means that we always have
Ut(s | s, I) < 1, so that P̃πt (s | I) > P̃πt−1(s | I) for all
t. In this case, the sequence of P̃πt (· | I) functions increases
(and 1 is an upper bound): it necessarily converges.

Definition 4 (Backward reachability) Symmetrically, we
define a backward reachability for a state s, denoted P̂πt (s |
F) as the probability to reach in t steps the current frontier
F (of tip states) starting from s and executing the current
policy π.

We have that:

P̂πt (s | F) =
∑
s′∈S

P (s′ | s, π(s))P̂πt−1(s
′ | F)

with P̂πo (s | F) = δF (s)

The idea now is to only focus on states that have a high
reachability value, that is are likely to be on trajectories
given by the current policy. The sequence of P̂πt (· | F)
functions also convergences when t tends towards +∞, but
the demonstration is slightly more difficult than the conver-
gence proof of the forward reachability probability. Unfor-
tunately, place is insufficient to present this demonstration
in this paper.

Definition 5 (Thresholded Reachability) At iteration i,
we define the thresholded reachability 0 6 ρ 6 1 such that
the subspaces Li and Zi are filtered by ρ:

F = {s ∈ S : ∃s′ ∈ Li−1, T (s′, π(s′), s) > 0} (2)

Li = {s ∈ Li−1 ∪ F : P̃π+∞(s | I) > 1− ρ} (3)

Zi = {s ∈ Li : P̂π+∞(s | F) > 1− ρ} (4)

117

Algorithm 2: FSP
// F is a set of tip states
// Z is a set of ancestor states
// G is a set of explored states
// Li is a set of reachable states at

iteration i
// I is the initial state of the

algorithm
// π is a partial policy over G
G ← {I};1
Z ← {I};2
L0 ← {I};3
i← 0;4
repeat5

i← i+ 1;6
// improve policy
π ← compute policy(Z);7
// compute (reachable) tip nodes
Li ← {I};8
L′ ← {I};9
F ← ∅;10
repeat11
L′ ← {s ∈ S \ Li : ∃s′ ∈ L′, T (s′, π(s′), s) > 0};12
F ← F ∪ (L′ ∩ (S \ Li−1));13
Li ← Li ∪ (L′ ∩ Li−1);14

until L′ ∩ Li−1 = ∅ ;15
// expand all non-explored tip

states
G ← G ∪ expand tip states(F \ G);16
// compute reachable ancestor

states
Z ← F ;17
repeat18
Z ′ ← {s ∈ Li \ Z : ∃s′ ∈ Z ′, T (s, π(s), s′) > 0};19
Z ← Z ∪ Z ′;20

until Z ′ 6= ∅ ;21

until F = ∅ ;22

Clearly, if ρ = 1, this reachability is the same as the one
used in FSP. The thresholded reachability allows to filter the
states whose reachability probability is considered too low
w.r.t the real tracking of the final policy by an autonomous
agent. If the agent arrives during the mission in an unex-
plored state that is though reachable, the policy is recom-
puted from this new initial state. Statistically, this recompu-
tation occurs with a probability of 1− ρ.

Updating FSP algorithm
The modification to Alg. 2 are quite straightforward. Lines
8 to 15 need to be replaced by Equations 2 and 3. Lines 17
to 21 are replaced by Equation 4 too.

The other main change is on line 22. FSP (as LAO∗)
stops when the set of tip nodes is empty. In our case, we
stop whenever there is no tip node n such that P̃π+∞(n |
I) > 1− ρ.

As we already noticed, the reachability probabilities can

be computed at a relatively low cost, especially if they are
approximately computed. Indeed, we do not need to reach
the same precision in the probabilities computation as in
the computation of states values, because the precision of
MDPs algorithms is generally related to the Bellman’s error
on states values (Puterman 1994).

Comparison
In order to compare TρFSP to LAO∗ and RTDP, we ran-
domly generated MDPs with a variable number of states.
States have the same applicable actions that lead to neighbor
states with some probability of success, and a probability of
“sweeping” to another neighbor state. Some states are re-
moved in order to make the domain more complex, creating
dead-ends randomly. We generated both:

• general case problems where 1 % of rewards or costs are
randomly spread in [−1; 1];

• shortest stochastic path problems where a goal state is
randomly defined that is absorbing and leads by itself to
all rewards of the domain; all other actions have the same
uniform cost −1.

As RTDP and TρFSP (with ρ < 1) do not compute a
policy for every reachable state, we use them as “real-time”
algorithms, meaning that we simulate the execution of the
policy and recompute a policy whenever an unknown state
is reached. In this case, a new policy starting from this un-
known state is computed, and played. For shortest stochastic
path, this is done until goal is reached, while in general case,
this is done over a given horizon H for which rewards gath-
ered at timestep H+1 has no more influence on the optimal
value of the initial state (Puterman 1994).

Heuristic: uniform upper bound
The uniform upper bound of the optimal values of states pre-
sented in paragraph is used to solve general case problems.
Clearly, this heuristic is quite poor in the sense that no tip
state is preferred to the others during the search. Yet, such
heuristic is still usefull because it allows to stop the search
as soon as explored rewards become better than any unex-
plored rewards (whose cumulated value is guaranteed to be
less than the heuristc value of tip states).

Table presents a comparison of computation time and
value of the initial state. 3 × 105 is the size of the biggest
problem we could generate on our Centrino Duo computer
with 2Go of memory. These results confirm the optimal-
ity of FSP and show that FSP is slightly faster than LAO∗.
RTDP is always the fastest algorithm, but it is not optimal.
Moreover, it appears that the use of thresholded reachability
does not help when the heuristic is very little informative:
the current policy has a high chance to be very different from
the optimal one, so that good states are too often pruned by
TρFSP (ρ < 1). The next subsection shows that results are
totally different for good heuristics.

Heuristic: Manhattan distance
For shortest stochastic path problems, we use the Man-
hattan distance heuristic (Barto, Bradtke, and Singh 1995)

118

size RTDP LAO∗ FSP T0.95FSP T0.9FSP T0.85FSP

102 0.01
1.63

0.008
1.58

0.002
1.61

0.0218
1.58

0.0237
1.53

0.0282
1.55

103 0.188
2.16

0.418
2.42

0.14
2.43

10.2
2.08

1.62
1.92

1.21
1.68

104 0.443
1.62

0.96
1.81

0.442
1.81

20.9
1.28

4.22
0.683

2.51
0.608

105 0.657
2.19

1.37
2.53

1.07
2.54

19.9
1.93

3.03
1.32

2.06
0.787

3.105 2.16
2.03

3.75
2.31

3.26
2.27

31.5
1.68

4.54
1.3

2.9
0.89

Table 1: General problems (10 random problems per size, 20
simulation trials per problem): the first column is the num-
ber of states — for each cell, the bold line is the average
computation time in seconds, and the italic line is the aver-
age value of the initial state

size RTDP LAO∗ FSP T0.95FSP T0.9FSP T0.85FSP

102 0.0024
-5.63

0.002
-5.52

0.004
-5.61

0.0078
-5.6

0.00585
-5.69

0.00395
-5.6

103 0.0154
-7.37

0.086
-7.38

0.057
-7.37

0.233
-7.4

0.0531
-7.37

0.0348
-7.37

104 0.611
-9.98

12.7
-9.98

22.2
-9.98

14.4
-9.99

1.02
-9.99

0.481
-9.99

105 18.6
-9.99

86.6
-9.99

140
-9.99

17
-9.99

1.14
-9.99

0.612
-10

3.105 23
-10

158
-10

23.5
-10

11.5
-10

2.36
-10

2.01
-10

Table 2: Shortest stochastic path problems (10 random prob-
lems per size, 20 simulation trials per problem): the first col-
umn is the number of states — for each cell, the bold line is
the average computation time in seconds, and the italic line
is the average value of the initial state

which is the minimum number of steps required to reach
the goal state from any state. Summary Table shows that
T{0.85,0.9,0.95}FSP outperforms LAO∗ and RTDP as the
state space size increases. The computation time drastically
decreases as ρ decreases, without affecting the optimality of
the solution.

Conclusion

We have proposed a new heuristic algorithm named TρFSP
that performs probabilistic reachability analysis in order to
prune the states that have a low chance to be reached from a
given initial state. For general MDPs problems solved with a
“poor” heuristic, T1FSP is slightly faster than LAO∗ while
being optimal. For shortest stochastic path problems, for
which a “good” heuristic is known, TρFSP (ρ < 1) outper-
forms LAO∗ and RTDP.

One interesting feature of the TρFSP algorithm class is
that any update fo the policy may be used, and that prob-
abilistic reachability may be defined for non-discrete state
spaces. One of our future goals is to use this algorithmic
framework to work on hybrid MDPs (Guestrin, Hauskrecht,
and Kveton 2004), where state space is both continuous and
discrete. Another interesting perspective of this work is its
extension to symbolic factored representations using deci-
sion diagrams (Feng and Hansen 2002).

Acknowledgment
This research was supported by the French Délégation
générale pour l’armement grant 07.60.031.00.470.75.01.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence 72:81–138.
Bellman, R. 1957. Dynamic Programming. Princeton, NJ:
Princeton University Press.
Buffet, O., and Aberdeen, D. 2007. Ff+fpg: Guiding
a policy-gradient planner. In Proceedings of the Seven-
teenth International Conference on Automated Planning
and Scheduling (ICAPS’07), volume 17.
Feng, Z., and Hansen, E. 2002. Symbolic heuristic search
for factored markov decision processes. In Proceedings
18th AAAI, 455–460.
Guestrin, C.; Hauskrecht, M.; and Kveton, B. 2004. Solv-
ing factored MDPs with continuous and discrete variables.
In Proceedings of UAI.
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129:35–62.
O., O. B., and Aberdeen, D. 2006. The factored policy
gradient planner (ipc-06 version). In Proceedings of the
Fifth International Planning Competition.
Poupart, P.; Boutilier, C.; Patrascu, R.; and Schuurmans,
D. 2002. Piecewise linear value function approximation
for factored mdps. In Proceedings 18th AAAI, 292–299.
Puterman, M. L. 1994. Markov Decision Processes. John
Wiley & Sons, INC.

119

