
Fast and Loose in Bounded Suboptimal Heuristic Search

Jordan T. Thayer and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

jtd7, ruml atcs.unh.edu

Ephrat Bitton
Dept. of Industrial Eng. and Operations Res.

University of California
Berkeley, CA 94720 USA

ebitton atberkeley.edu

Abstract

Applications often demand we tackle problems that are too
large to solve optimally. In this paper, our aim is to solve
shortest-path problems as quickly as possible while guaran-
teeing that solution costs are bounded within a specified fac-
tor of optimal. We explore two approaches. First, we ex-
tend the approach taken by weightedA

∗, in which all ex-
panded nodes are guaranteed to remain within the bound. We
prove that a looser bound than weightedA

∗’s can be used
and show how an arbitrary inadmissible heuristic can be em-
ployed. As an example, we show how temporal difference
learning can learn a heuristic on-line. Second, we show how
an optimistic search that expands nodes potentially outside
the bound can be modified to ensure bounded solution qual-
ity. We test these methods on grid-world path-finding and
temporal planning benchmarks, showing that these methods
can surpass weightedA∗’s performance.

Introduction
Tasks as important and diverse as planning and multiple se-
quence alignment can be represented as shortest-path prob-
lems. If sufficient computation is available, optimal solu-
tions to such problems can be found usingA∗ search with an
admissible heuristic (Hart, Nilsson, & Raphael 1968). How-
ever, in many practical scenarios, one is willing to accept a
suboptimal solution in return for reduced computation time.
In this paper, we consider the setting in which one wants
the fastest search possible while guaranteeing that the sub-
optimality of the resulting solution is bounded to within a
given factor of the optimal solution’s cost.

The best previously-proposed algorithm for this prob-
lem is weightedA∗ (Pohl 1970), in which the traditional
node evaluation functionf is modified to place additional
weight on the heuristic evaluation functionh, as inf ′(n) =
g(n) + w · h(n). By penalizing nodes with largeh values,
the search becomes greedier. In figure 1, we see what ef-
fect weighting the heuristic has on the two nodesa andb.
In terms off , a is superior tob, that isf(a) < f(b), and so
nodea would be expanded first. When we scale the heuristic
byw, which in this example is set to 2, the order in which the
nodes are to be evaluated changes becausef ′(b) < f ′(a).
All else being equal, weightedA∗ prefers nodes which have
a smaller portion of theirf in h, that is, it prefers nodes that
are closer to a goal. Even when things are not equal, like in

Figure 1: The effect ofw on node ordering

figure 1, weightedA∗ may still prefer a node which is closer
to a goal over one which is potentially better, but further
away from a solution.

The solution returned by weightedA∗ is within a factor
of w of optimal, a condition we will termw-admissibility.
WeightedA∗ is beautifully simple and often performs well,
but other algorithms have been proposed. One is dynami-
cally weightedA∗ (Pohl 1973), which requires an estimate
of the depth of the solution and then decreasesw from its
original value at the root of the tree to 1 at the estimated goal
depth. This maintainsw-admissibility. Another algorithm is
A∗

ǫ (Pearl & Kim 1982), which requires both the traditional
estimate of cost-to-goh but also an estimate of the search
effort or distance-to-god. Of all the nodes in the open list
whosef value is within a factor ofw of the minimumf
value of any node in open, A∗ǫ expands that node whosed
value is minimum. A∗ǫ is w-admissible. These two newer
algorithms have not displaced weightedA∗, which remains
widely used, and in the experiments reported below we will
see that they do not find solutions as quickly.

We propose two new techniques forw-admissible heuris-
tic search. First, we extend the approach taken by weighted
A∗, in which all expanded nodes are guaranteed to be within
the bound. We prove that a looser bound than weightedA∗’s
can be used and show how an arbitrary inadmissible heuris-
tic can be employed to guide the search. To take advan-
tage of this, we introduce an inadmissible heuristic which
uses temporal difference learning to correct the heuristic on-
line. Additionally, we show how an optimistic search that
expands nodes potentially outside the bound can be modified
to ensure bounded solution quality. We investigate these ap-

120



proaches empirically and find that the first consistently out-
performs weightedA∗ on grid-world pathfinding problems
and that the second can consistently achieve the performance
of weightedA∗ running at a high weight while returning a
solution within a lower suboptimality bound.

Maintaining Bounded Sub-optimality
Our first approach will be a strict one, following in the tra-
dition of weightedA∗. Search will be guided by an inad-
missible heuristic. We will achieve the desired suboptimal-
ity bound by ensuring that no expanded node could violate
it. Its w-admissibility derives from the following straight-
forward reasoning, which we will build up in stages. We
will assume thath is admissible. The optimal cost of a path
from the root to a noden will be notatedg∗(n) andoptwill
represent an optimal solution. We start with a special node
p:

Lemma 1 (following Pearl (1984))Let p be the deepest
node onopenthat lies along the optimal path toopt. No
matter how a best-first search selects nodes for expansion,
f(p) ≤ g∗(opt).

Proof: Let p be the deepest node onopenthat lies along
the optimal path toopt. Such a node must exist because an
optimal path tooptexists by definition. The root is on it, and
if a parent node is on it, one of the children must be, and all
children are inserted intoopen. f(p) ≤ f(opt) = g∗(opt)
by our definition ofp and the admissibility ofh. 2

This wonderful property ofp supports a general result for
weighted A*:

Theorem 1 (after Pohl (1970))For any noden expanded by
a best-first search guided byf ′, f ′(n) ≤ w · g∗(opt).

Proof: Consider the optimal path toopt. If all nodes on this
path have been expanded, we have the optimal solution and
the theorem holds trivially. Otherwise, letp be the deepest
node onopenthat lies along the optimal path toopt. When
we expandn, f ′(n) ≤ f ′(p) becausen was selected for
expansion beforep. f ′(p) = g(p) + w · h(p) ≤ w · (g(p) +
h(p)) = w · f(p) by algebra. So we havef ′(n) ≤ w · f(p).
By Lemma 1,w · f(p) ≤ w · f(opt) = w · g∗(opt). 2

Thew-admissibility of weighted A* is just a special case:

Corollary 1 For the solutions returned by weighted A*,
g(s) ≤ w · g∗(opt).

Proof: Becauses is a goal node andh is admissible,h(s) =
0. So g(n) = f(n) = f ′(n) by the definitions off ′ and
f ′(n) ≤ w · g∗(opt) by Theorem 1. 2

We can benefit from the same approach when using an
inadmissible heuristic so long as we restrict how large the
inadmissible heuristic values can be. We wish to allow as
loose a bound as possible, so that the inadmissible heuristic
has freedom to guide the search, while still maintainingw-
admissibility.

The following theorem is analogous to that given for
weightedA∗ , just slightly broader. We will assume that
h is admissible. The optimal cost of a path from the
root to noden will be notatedg∗ and opt will represent
an optimal solution. Our inadmissible heuristic isĥ and

1. open← {initial}
2. if openis empty, return failure
3. n← remove node fromopenwith lowestf̃(n)
4. if n is a goal, return it
5. addn to closed
6. for each ofn’s childrenc
7. if c is duplicated inopenthen
8. keep inopenthe copy with lowerg(c)
9. else ifc is duplicated inclosedthen
10. if f(c) ≤ f(duplicate) then
11. addc to open
12. else addc to open
13. go to step 3

Figure 2: Bounded sub-optimality search using a clamped
heuristic.f̃(n) = min(f̂(n), w · f(n))

f̂(n) = g(n) + ĥ(n). We assume that̂h is 0 at goals. The
clamped node evaluation functioñf is formed asf̃(n) =

min(f̂(n), w · f(n)). Figure 2 provides an outline of such
an algorithm.

Theorem 2 A best-first search guided bỹf will return a so-
lution s with g(s) ≤ w · g∗(opt).

Proof: Consider the optimal path toopt. If all nodes
on this path have been expanded, we have the op-
timal solution and the theorem holds trivially. Oth-
erwise, let p be the deepest node onopen that lies
along the optimal path toopt. When we expandn,
f̃(n) ≤ f̃(p) becausen was selected for expansion before
p. f̃(p) = min(f̂(p), w·f(p)) ≤ w·(g(p)+h(p)) = w·f(p)

by algebra. So we havẽf(n) ≤ w · f(p). By Lemma 1,
w · f(p) ≤ w · f(opt) = w · g∗(opt). 2

Note thatf̃(n) can be significantly greater than weighted
A∗’s f ′(n) becausew(g(n) + h(n)) ≥ g(n) + w · h(n).
They are only the same wheng(n) = 0, which occurs only
at the root. In practice, this difference may be enough to al-
low for an improved search order if we have an inadmissible
heuristicĥ which can help provide more accurate answers
between thef ′(n) andw · f(n)

An Optimistic Approach
The above approach in which the heuristic function is
clamped such that we can guarantee the admissibility bound
is very strict. No node is expanded which could not lead to
aw-admissible goal. Alternatively, one could expand nodes
more aggressively, exploring nodes which might lead to aw-
inadmissible solution. Once a solution is found, additional
nodes are expanded until we can either prove our solution
is w-admissible or we find a better one. This proof ofw-
admissibility relies on the following corollary of Lemma 1:

Corollary 2 (following Pearl (1984) and Hansen &
Zhou (2007))No matter how an open list-based search al-
gorithm selects nodes for expansion, the lowestf value of

121



1. open← {initial}
2. flist← {initial}
3. incumbent←∞
4. if f̂(incumbent) < f̂(first onflist) then
5. n← remove node fromopenwith lowestf̂(n) and

removen from flist
6. elsen← remove node fromflist with lowestf(n) and

removen from open
7. addn to closed
8. if g(incumbent)/f(first onflist) ≤b then
9. returnincumbent
10. if n is a goal then
11. incumbent← n
12. else for each childc of n
13. if c is duplicated inopenthen
14. if c is better than the duplicate then
15. replace the duplicate inopenandflist
16. else ifc is duplicated inclosedthen
17. if c is better than the duplicate then
18. addc to openandflist
19. else addc to openandflist
20. go to step 4

Figure 3: Optimistic Search

any node on the open list is a lower bound on the optimal
solution cost.

Proof: Consider nodep in Lemma 1. The lowestf on open
will be ≤ f(p). 2

This idea allows us to search according to any inadmissi-
ble heuristic and then, once a solution has been identified,
switch to exploring the open list in order off value. This
two-phase search would first try to find a solution, then try
to raise the lower bound to provew-admissibility. Because
a higher weight in weightedA∗ can result in faster searches,
and because the quality of solutions returned by weighted
A∗ are often better than the weight suggests, such a strategy
could result in faster total search time than weightedA∗ it-
self. The risk in such a technique is that the solution found
during the first phase might not bew-admissible, causing
the algorithm to behave likeA∗, expanding all nodes with
f values less than the optimal solution. However, it is easy
to guard against this worst case: if there is a node whose in-
admissible value is less than that of the incumbent solution,
then that node is selected for expansion. Figure 3 is a sketch
of such an algorithm.f̂ can be any arbitrarily inadmissi-
ble heuristic, though in the experiments below, it is set to be
f̂(n) = g(n) + ((b−1) · 2 + 1) · h(n), which is essentially
f̂(n) = g(n)+w ·h(n) wherew is twice as inadmissible as
b, the bound. This is nearly identical tof ′, but herew does
not specify the bound.

Learning an Inadmissible Heuristic
Both the clamped heuristic and clean-up-based approaches
can use an arbitrarily inadmissible heuristic. While inadmis-
sible heuristics are often formed by weighting an admissible
heuristic, we are free to consider any scheme. One idea that
has been mentioned in passing by several authors, including
Michie & Ross (1969) and Nilsson (1998), but never (to our
knowledge) actually pursued, is to learn a heuristic function
during search using the method of temporal differences.

If h were perfect, then thef value of a parent node would
be the same as the lowestf among its children. However,
admissible heuristics usually underestimate the cost to the
goal andf rises in value as the search progresses. The rise
in value from a parent to its best child is a measurement
of the error in the heuristic. As nodes are expanded during
search, one can calculate the average one step error,eh, in h.
If one then assumes like Pearl & Kim (1982) that a function
d is available to estimate search steps to the goal, one can
estimate a corrected value asĥ(n) = h(n) + eh · d(n). This
estimate can occur, for example, just after step 6 in Figure 2,
using thef values of the children.

Instead of calculatingeh as the average error inh at all ex-
pansions, one can use any of a variety of methods for calcu-
lating the offset for the corrected heuristic. One approach is
to use the immediateeh to correct for the error in the heuris-
tic, but its behavior is erratic since it has no history to temper
the current measurement. We can calculate theeh at each
node as a weighted average of the error observed before the
parent and the error observed at the parent. This forceseh at
a node to remain constant and manages to include a portion
of the previous experience. Unfortunately as the search pro-
gresses it misses out on an increasing number of samples.
We found that a global average of one step error performed
best, and so it is used in the results reported below.

A problem with on-line estimate ofeh is that if that es-
timate is changing over time, as it is when modeled by a
global average, then so are theĥ andf̂ of every node. The
overhead of re-sorting the open list after every expansion
seems prohibitive. Two possible approximations are 1) to
re-sort the open list only occasionally, perhaps at a geo-
metrically growing interval and 2) to not re-sort at all and
have each node keep forever thef̂ value computed when it
was generated. In the experiments reported below we used
the second technique and a global average foreh, which
seems to outperform all other combinations. It should be
noted that not resorting the open list has no affect on the
w-admissibility of the solution.

Empirical Evaluation
Although the two approaches we have presented for
bounded sub-optimality search arew-admissible and have
the ability to usef̃ values greater than thef ′ values used
by weightedA∗ running within the same bounds, we have
no guarantee that they will find solutions faster. To gain a
sense of their behavior, we implemented several algorithms
and tested them on two challenging benchmark search prob-
lems: grid-world pathfinding and temporal planning. All

122



algorithms where implemented in Objective Caml and com-
piled to native binaries on 64-bit Intel Linux systems. We
provide a textbook implementation of weightedA∗ (noted
as wA*), clamped heuristic search using on-line estima-
tion of eh (clamped adaptive), and optimistic search using
f̂(n) = g(n) + (1 + 2(w − 1))h(n) with a clean-up phase
(optimistic). We also tested A∗ǫ and dynamically weighted
A∗, but their performance was very poor, and so we only
show their results in grid-world planning problems.

Grid-world Planning

We considered several classes of simple path planning prob-
lems on a 2000 by 1200 grid, using either 4-way or 8-way
movement, three different probabilities of blocked cells, and
two different cost functions. The start state was in the lower
left corner and the goal state was in the lower right corner.
In addition to the standard unit cost function, under which
moves have the same cost everywhere, we tested a graduated
cost function in which moves along the upper row are free
and the cost goes up by one for each lower row. We call this
cost function ‘life’ because it shares with everyday living the
property that a short direct solution that can be found quickly
(shallow in the search tree) is relatively expensive while a
least-cost solution plan involves many annoying economiz-
ing steps. In 8-way movement worlds, diagonal movement
costs

√
2 times as much as movement in any of the cardi-

nal directions. Under both cost functions, simple analytical
lower bounds (ignoring obstacles) are available for the cost
g(n) and distanced(n) (in search steps) to the cheapest goal.
The obstacle density introduces error to the heuristics and
challenge to the problems.

Figure 4 shows the algorithms’ performances on the hard-
est problems we considered in each of the four classes of
worlds (35% blocked cells in the four-way worlds, 45%
in the eight-way worlds). The x axis represents the sub-
optimality bound used, with 1 being optimal and 3 being
three times the optimal solution cost. Samples were taken
at 3, 2.5, 2, 1.75, 1.5, 1.3, 1.2, 1.15, 1.1, 1.05, 1.01, 1.001,
1.0005, and 1. The y axis is the number of nodes gener-
ated, normalized by the number of nodes generated by an
optimalA∗ search and averaged over 20 random worlds. Er-
ror bars indicate 95% confidence intervals around the mean,
although they are typically so tight as to be invisible.

In the unit cost panels of the figure, clamped adaptive
search performs better than weightedA∗ when the sub-
optimality bound is relatively tight (less than 1.25). As
the bound loosens, the adaptive search searches according
to the corrected evaluation function̂f . This value, while
responsive to the properties of the search space, is not di-
rectly influenced by the sub-optimality bound and the search
does not become as aggressively greedy as weightedA∗. As
we approach the high end of weights, clamped adaptive has
trouble competing with weightedA∗, though the weight at
which weightedA∗ begins outperforming clamped adaptive
increases with problem difficulty, where difficulty can be
measured by the reduction in node generations that the al-
gorithms can achieve as the sub-optimality bound loosens.
The shallowest decrease is for four-way problems with the

‘life’ cost model.
We also tested optimistic search. You can see from the

figure that the search performs as if it were weightedA∗

running with a higher weight; in the panels this is seen by
the line resembling that of weightedA∗ but shifted left. Al-
though similar to anytime weightedA∗, the performance
of the two algorithms differs substantially. Our optimistic
search completed all of the planning problems within the al-
lotted time, 4 minutes, while our implementation of anytime
weightedA∗ had trouble solving instances where the sub-
optimality bound was not extremely low or very high. We
attribute the increase in performance to the explicit raising
of the lower bound.

Plots using CPU time instead of nodes were also gener-
ated, to account for the fact that on-line learning consumes
some additional overhead at each node expansion. This
overhead was typically only 10% in our not-particularly-
optimized implementation when measured in grid-world, a
domain with very fast node expansion. The results were very
similar, and averaging across instances introduces some de-
gree of noise due to running the experiments across multiple
machines, so we present the cleaner plots here.

Temporal Planning
There has been increasing interest over the last ten years in
applying heuristic search algorithms to AI planning prob-
lems (Bonet & Geffner 2001; Zhou & Hansen 2006). It is
also a domain in which optimal solutions can be extremely
expensive to obtain (Helmert & Röger 2007). We tested
our algorithms on 31 temporal planning problems from five
benchmark domains taken from the 1998 and 2002 Interna-
tional Planning Competitions where the objective function
is to minimize the plan duration (makespan).

To find the plan, we used the temporal regression plan-
ning framework in which the planner searches backwards
from the goal stateSG to reach the initial stateSI (Bonet &
Geffner 2001). To guide the search, we computeh(n) us-
ing the admissibleH2 heuristic of the TP4 planner (Haslum
& Geffner 2001). This heuristic estimates the shortest
makespan within which each single predicate or pair of
predicates can be reached from the initial stateSI . This
is computed once via dynamic programming before start-
ing the search, taking into account the pairwise mutual ex-
clusion relations between actions in the planning problem.
In order to compute a search-distance-to-go functiond, we
also computed the expected number of steps to reach the
shortest makespan solution. This value was estimated by
first extracting a relaxed plan (Hoffmann & Nebel 2001)
that approximates the closest shortest solution in terms of
makespan from a given search node. The number of regres-
sion steps in this plan is then used as the distance estimate
to the cheapest solution.

Figure 5 shows results on the hardest benchmark problem
from each domain thatA∗ could solve within four minutes.
Again, the x axis represents the sub-optimality bound, where
1 is optimal and 3 is three times the optimal cost. Samples
were taken at the same points as in grid-world path-finding.
The y axis is the number of generated nodes relative to an
optimalA∗ search. A values of -1, as for clamped adaptive

123



Four-way Grid Pathfinding (Unit cost)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

321

dyn wA*
A* eps

wA*
Clamped Adaptive

Optimistic

Eight-way Grid Pathfinding (Unit cost)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

321

dyn wA*
A* eps

wA*
Clamped Adaptive

Optimistic

Four-way Grid Pathfinding (Life cost)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

4

3

2

1

0

Sub-optimality Bound

321

dyn wA*
A* eps

wA*
Optimistic

Clamped Adaptive

Eight-way Grid Pathfinding (Life cost)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

4

3

2

1

0

Sub-optimality Bound

321

dyn wA*
A* eps

Clamped Adaptive
wA*

Optimistic

Figure 4: Performance on grid-world path-finding problems.

on high bounds in the zenotravel domain (upper left), means
that the algorithm in question did not produce a plan within
four minutes.

Overall, the optimistic search strategy performed well in
this domain, and significantly better than in grid-world. Of-
ten, the optimistic search performed just as weightedA∗

would have done with a higher weight. This can be seen
as a copy of the weightedA∗ curve shifted to the left, which
while present in all of the panels is probably easiest to see in
zenotravel and logistics. Considering that the initial aggres-
sive search we used was weightedA∗ running with a weight
higher than the desired bound, this should be expected so
long as the secondary cleanup phase is fast. Despite its
widespread use in the planning community, weightedA∗

seems quite sensitive to the choice of weight, often exhibit-
ing a U-shaped performance curve of improvement and then
disintegration (eg, zenotravel, rovers).

The performance of the clamped adaptive search was
mixed, sometimes providing enormous speedups (zeno-
travel, satellite, rovers) and sometimes performing very
poorly (logistics, blocksworld). To give a broader sense
of its performance, Table 1 provides a qualitative overview.
Each row represents a different planning domain and the
columns represent the relative performance of weighted
A∗ (wA*) versus clamped adaptive search (CA). Each cell
shows the number of problem instances in that domain

wA* CA
Domain dnf worse similar worse dnf

blocksworld 2 5 3
logistics 2 3

rovers 1 4
satellite 1 3

zenotravel 1 4 1 1

Table 1: Qualitative performance of weightedA∗ (wA*) ver-
sus clamped adaptive (CA) on temporal planning problems.
dnf: did not finish; worse: performed worse.

where the corresponding algorithm performed better. This
overview suggests that the two algorithms are roughly com-
parable. Looking at the individual problems, it appeared that
clamped adaptive search improved relative to weightedA∗

as the problems became more difficult, but we have not yet
quantified this impression.

Table 2 provides a similar qualitative comparison for
optimistic search. It seems to have very complementary
strengths to clamped adaptive search.

Discussion
Applications often demand we tackle problems that are too
large to solve optimally. When abandoning optimality, there

124



zenotravel (problem 6)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

2

1

0

-1

Sub-optimality Bound

321

Optimistic
wA*

Clamped Adaptive

satellite (problem 2)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

2

1

0

-1

Sub-optimality Bound

321

wA*
Clamped Adaptive

Optimistic

rovers (problem 5)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

2

1

0

-1

Sub-optimality Bound

321

Optimistic
wA*

Clamped Adaptive

logistics (problem 4)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

2

1

0

-1

Sub-optimality Bound

321

Clamped Adaptive
wA*

Optimistic

blocksworld (problem 10)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

2

1

0

-1

Sub-optimality Bound

321

Clamped Adaptive
wA*

Optimistic

Figure 5: Performance on difficult temporal planning problems.

Domain w A* worse similar Opt worse
blocksworld 4 5 1

logistics 4 1 0
rovers 2 1 2

satellite 2 1 1
zenotravel 2 5

Table 2: Qualitative performance of weightedA∗ (wA*) ver-
sus optimistic search (Opt).

are two basic strategies: bound the time taken by the search
or bound the quality of the resulting solution. Anytime al-
gorithms and real-time search are the main approaches taken
to the bounded-time problem. For bounded sub-optimality,
weightedA∗ has reigned for decades as the superior tech-
nique. We have presented two new approaches for using
an inadmissible heuristic function in search and shown that
they can guarantee a desired sub-optimality bound. One ap-
proach takes a strict perspective and restricts the node evalu-
ation function such thatw-admissibility can be proved. The
other is more optimistic, using an inadmissible heuristic to
find a solution and then performing additional expansions as
necessary if the bound has not been achieved. We introduced
a new inadmissible heuristic based on on-line temporal dif-
ference learning that attempts to estimate the average error
in h. We also showed that duplicate dropping, a technique

pioneered by ARA* (Likhachev, Gordon, & Thrun 2004),
can find broader use in heuristic search.

We tested these techniques on two challenging bench-
mark domains, grid-world path-finding and temporal plan-
ning. In grid-world, the clamped adaptive technique edged
out weightedA∗, the first technique to do so. Its advantage
seemed to increase as problems get more difficult. In tem-
poral planning, the results were more complex. Clamped
adaptive seemed comparable to weightedA∗, although per-
haps more robust on hard problems. Optimistic search also
performed well here, as the domain contains few, if any, du-
plicates.

Although we have presented results using weighted A* as
the aggressive search component, there is no restriction on
the method used. The clean-up phase transforms an arbitrary
inadmissible search into one that can provide bounded sub-
optimality. Ideally, the method would be responsive to the
provided bound. For example, if one were to use RTA* (?),
perhaps the depth of the lookahead should be proportional
to the tightness of the suboptimality bound.

If one were solving many similar problem instances from
the same domain, gathering data on the typical solution qual-
ity as a function of the search aggressiveness, as we saw
displayed in Figure??, might provide a basis for choosing
the level of aggressiveness that is appropriate for the desired
bound. The2(bound−1)+1 formula we experimented with

125



here is, judging by Figure??, quite conservative. However,
it already gives encouraging results.

Conclusions
We addressed the problem of heuristic search with bounded
sub-optimality, introducing two approaches for using in-
admissible heuristics while maintaining a quality guaran-
tee. We showed that it is feasible to improve a heuris-
tic function on-line during search. While our empirical
evaluation did not produce a clear winner, both new meth-
ods demonstrated advantages over weightedA∗. Clamped
Adaptive performs well when searching for goals which are
nearly optimal in complicated search spaces while an op-
timistic search using can effectively shift the performance
of weightedA∗ towards one, offering faster searches at the
same w-admissibility. This is especially noticeable when
bounds are nearly optimal.

In addition to exploring the performance of these methods
on additional domains, it may be fruitful to test additional in-
admissible heuristics. For example, it should be possible to
learn on-line how to combine multiple heuristics, including
pessimistic ones (Sadikov & Bratko 2006). The approaches
we have defined are general and can encompass a wide vari-
ety of heuristic evaluation functions.

Acknowledgements
Many thanks to Minh Do for the planner implementation and
to Rong Zhou for helpful discussions

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence129(1–2):5–33.

Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research28:267–297.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.IEEE
Transactions of Systems Science and CyberneticsSSC-4(2):100–
107.

Haslum, P., and Geffner, H. 2001. Heuristic planning with time
and resources. InProceedings of ECP-01.

Helmert, M., and Röger, G. 2007. How good is almost per-
fect? InProceedings of the ICAPS-2007 Workshop on Heuristics
for Domain-independent Planning: Progress, Ideas, Limitations,
Challenges.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search.Journal of Artificial
Intelligence Research14:253–302.

Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*: Anytime
A* with provable bounds on sub-optimality. InProceedings of
NIPS 16.

Michie, D., and Ross, R. 1969. Experiments with the adaptive
graph traverser. InMachine Intelligence 5, 301–318.

Nilsson, N. J. 1998.Artificial Intelligence: A New Synthesis. San
Francisco, CA: Morgan Kaufmann.

Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible heuris-
tics. IEEE Transactions on Pattern Analysis and Machine Intelli-
gencePAMI-4(4):391–399.

Pearl, J. 1984.Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.

Pohl, I. 1970. Heuristic search viewed as path finding in a graph.
Artificial Intelligence1:193–204.

Pohl, I. 1973. The avoidance of (relative) catastrophe, heuristic
competence, genuine dynamic weighting and computation issues
in heuristic problem solving. InProceedings of IJCAI-73, 12–17.

Sadikov, A., and Bratko, I. 2006. Pessimistic heuristics beat
optimistic ones in real-time search. InProceedings of ECAI-06,
148–152.

Zhou, R., and Hansen, E. 2006. Breadth-first heuristic search.
Artificial Intelligence170(4–5):385–408.

126




