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Abstract 
Randomized, sampling-based planning has a long history of 
success, and although the benefits associated with this use 
of randomization are widely-recognized, its costs are not 
well-understood.  We examine a variety of problem in-
stances solved with the Rapidly-exploring Random Tree 
algorithm, demonstrating that heavy-tailed runtime distribu-
tions are both common and potentially exploitable.  We 
show that runtime mean and variability can be reduced 
simultaneously by a straightforward strategy such as restarts 
and that such a strategy can apply broadly across sets of 
queries.  Our experimental results indicate that several-fold 
improvements can be achieved in the mean and variance for 
restrictive problem environments. 

Introduction  
Randomized, sampling-based approaches to problem-
solving have become commonplace in planning.  They 
bring noteworthy advantages over existing deterministic 
methods, perhaps the most significant of which is their 
suitability for high-dimensional problems.  However, their 
use carries with it a significant drawback: the presence of 
random sampling implies that the runtime of the algorithm 
is also random.  Although common algorithms such as the 
Rapidly-exploring Random Tree (RRT – LaValle 1998; 
LaValle and Kuffner 2001) and the Probabilistic Roadmap 
(PRM – Kavraki et al. 1995) are probabilistically complete 
(guaranteed to terminate with probability approaching 
one), it is difficult to theoretically characterize the resulting 
runtime distribution.  Additionally, runtimes may be highly 
variable, making use of this class of algorithms problem-
atic in real-time or human-interactive applications. 

The lack of predictability in solution quality and runtime 
has motivated a pursuit of deterministic and quasi-random 
versions of sampling-based planning algorithms (Branicky 
et al. 2001; LaValle, Branicky, and Lindemann 2004; 
Lindemann and LaValle 2004b).  While promising, these 
deterministic versions have not yet demonstrated that they 
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can provide definitive advantages over their counterparts.  
Still, the goal of reducing the random factor in planning 
while retaining the advantages of algorithms which exploit 
it is highly desirable.  Algorithms that retain a high degree 
of performance and gain improved predictability are 
attractive for many applications. 

Work on similar problems such as satisfiability and 
constraint satisfaction in other fields (Gomes et al. 2000; 
Gomes, Selman, and Kautz 1998) has exploited a feature 
common to various randomized algorithms: the tails of 
their runtime distributions can be such that the expected 
run cost of a new instance would be less than that required 
to complete the current instance.  The presence of these so-
called heavy-tailed distributions implies that even straight-
forward methods of controlling these algorithms at a high 
level, such as enforcing a restart threshold, can provide 
performance improvements.  We propose to take advantage 
of the nature of the runtime distribution of the RRT in a 
similar way, with the goal of improving its performance in 
terms of both mean and variability of runtime. 

We first provide an overview of research related to the 
use of sampling-based planning and the methodology for 
improving randomized algorithms in Background.  We 
follow with a short justification of our expectation that 
RRT runtimes exhibit distributions that allow restarts to be 
of benefit in Motivation.  The Theory of Restarts section 
introduces a mathematical characterization of restarts, 
which we utilize in Experiments to examine the runtime 
results of a variety of problems, ranging from a narrow 
tunnel to the 16-puzzle and the Alpha-puzzle.  We also 
implement restarts in several problems that apply well over 
a variety of queries.  Finally, we provide closing thoughts 
and future directions in Conclusions. 

Background 
Randomized, sampling-based planning algorithms were 
originally pioneered in an attempt to defeat the “curse of 
dimensionality.”  One of the most successful of this class 
of algorithms is the RRT, which uses random sampling to 
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probabilistically bias the growth of a tree toward unex-
plored regions.  It has been successfully applied to a range 
of problems of continuous, discrete, and hybrid type 
(Branicky et al. 2006; Morgan and Branicky 2004; Plaku, 
Kavraki, and Vardi 2007).  However, understanding of the 
issues surrounding the use of randomization in planning is 
still an open question (Lindemann and LaValle 2004a). 

Our work to improve RRT runtimes using appropriately-
chosen restart thresholds are preceded by related works 
using other planning algorithms and problem types.  
Challou, Gini, and Kumar (1993) used multiple processors 
to run parallel copies of a randomized planning algorithm, 
taking the first result.  This strategy lessens the impact of 
“unlucky” choices made in some instances of randomized 
algorithms.  Isto, Mäntylä, and Tuominen (2003) devel-
oped heuristic-based variants of the PRM with a focus on 
reducing its run cost variance.  Geraerts and Overmars 
(2004) achieved considerable improvements to variability 
in the PRM by using restarts in a constrained 3D wrench-
moving problem.  Presently, Carroll (2008) is investigating 
the use of restarts with a focus on the RRT and hybrid 
systems.  We follow the spirit of these works by examining 
a restart strategy that, although designed in consideration 
of the RRT’s properties, treats it as a black-box. 

Applying restarts to optimize the behavior of general Las 
Vegas algorithms (those with runtime as a random 
variable) is a mature concept, with existing methods for 
minimizing the expected run length of unknown problem 
instances (Luby, Sinclair, and Zuckerman 1993) and for 
minimizing tail probabilities (Alt et al. 1996).  Gomes, 
Selman, and Kautz (1998) took advantage of these ideas to 
achieve dramatic improvements in the solving of Boolean 
satisfiability and constraint satisfaction problems.  Streeter, 
Golovin, and Smith (2007b; 2007a) recently extended 
these concepts to sets of problem instances and heuristics. 

Motivation 
The RRT algorithm has a known exponential bound on its 
run length tail probabilities (LaValle and Kuffner 2001); 
though its use of a nearest neighbor operation implies that 
individual iterations require increasing time.  Therefore, it 
is reasonable to assume that runtime tail probabilities may 
arise that are heavier than exponential.  Figure 1 illustrates 
a potential instance of this phenomenon: two independent 
forward-search RRTs solving the same query (a source – 
the left dot and a destination – the right dot) can reach 
roughly the same level of progress at drastically different 
run lengths (166 versus 1887 iterations).  In this case, the 
“unlucky” tree will take more time to solve the problem 
than the “lucky” one.  Further, with continuing growth by 
random sampling, it is possible that this “unlucky” tree will 
require more time to complete than the entire instance of 

the “lucky” one.  The critical issue we examine is whether 
the RRT algorithm generates “lucky” and “unlucky” trees 
in such a way that will allow restarts to offer performance 
improvements, measured by runtime mean and variability. 
 

  
Figure 1: “Lucky” and “Unlucky” Instances of an RRT 

Theory of Restarts 
In a static environment with a fixed query, the runtime of a 
randomized algorithm is a stationary random variable, 
described with probability density ( )xf x  and cumulative 
distribution ( )xxFx ≤ .  Following the work of Luby, 
Sinclair, and Zuckerman (1993), suppose we define a 
restart threshold, β , such that the algorithm runs to the 
threshold and restarts from scratch if not completed.  
Furthermore, we define the probability that a run will fall 
below the threshold ( ( )β≤xFx ) as ( )βxp .  This restart 
strategy results in a new distribution, ( )xfr , that is 
composed of periodic, exponentially-scaled copies of the 
lower portion of the original distribution, as given in (1). 
 

 ( ) ( )( )⎣ ⎦ ⎣ ⎦( )ββββ β x
xxr xfpxf

x
−−= 1,  (1) 

 
We note that there are no terms corresponding to the tail 

of the original distribution, replacing its shape with that of 
(roughly) an exponential with base ( )βxp−1  and decay 
rate 1−β .  Similarly, this restart distribution has mean 

( )βμr , given by (2), and variance ( )βσ 2
r , given by (3), 

that are determined only by the first portion of the original 
distribution, its renormalized statistics (mean ( )βμ−  and 
variance ( )βσ 2

− ), and the magnitude of the restart 
threshold.  Under appropriate conditions, the mean and 
variance can be improved by this restart strategy. 
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The range of restart thresholds that result in a reduction 
in the mean is given by (4).  Setting the β -derivative of 
(2) to zero results in the optimal (viz. minimal) value of the 
restart distribution mean.  This optimal restart mean, given 
in (5), is bounded above by the mean, since it is always 
possible to set the threshold to infinity and leave the 
distribution unchanged.  However, it can be difficult to 
compute (5) accurately from sampled data due to the 
appearance of the ( )∗βxf  term.  Instead, we compute the 
mean in (2) on a set of logarithmically-spaced thresholds in 
the sampled range and take the threshold with the smallest 
mean. 
 
 ( ) μβμ ≤r  ⇔  ( ) ( )

( )β
βββμμ ≤

≤−
− ≥− xF

xF
x

x1  (4) 

 ( ) ( )
( )∗

∗≤−∗∗ =
β
ββμ

x

x

f
xF

r
1  (5) 

 
Finally, note that assuming equality in (4) and convert-

ing into a differential equation leads to (6), which shows 
that the family of exponential distributions remains 
unchanged by restarts.  This is helpful as we can use the 
presence of tail probabilities with slower-than-exponential 
decay as a clue on when to apply restarts.  A semilog plot 
of the runtime’s survivor function ( ( )xxFx ≤−1 ), like 
Figures 5 and 7, can expose this tendency in a clear-cut 
way since the exponential survivor function appears linear. 
 
 ( ) ( )

( )β
βββμμ ≤

≤−
− =− xF

xF
x

x1  

 ( ) ( ) ( )xfxfxf xxx ′′=′⇒ 2  

 ( ) x
x exf λλ −=⇒  (6) 

Experiments 
We conducted various simulations to obtain sampled 
cumulative distributions of wall clock runtime for RRT 
queries (both fixed and randomized) in five problem 
environments: Tunnel, Pincer, Passage, 16-puzzle, and 
Alpha-puzzle, which are described in the following 
subsections.  In each setting, we analyze the potential of 
various restart strategies, observing as much as order of 
magnitude runtime mean and coefficient of variation 
improvements in specific cases.  Figure 2 depicts the 
Tunnel, Pincer, Passage, and Alpha-puzzle problems along 
with a typical query for each. 

The Pincer, Passage, and Alpha-puzzle were imple-
mented and tested using the Object Oriented Programming 
System for Motion Planning (Plaku, Bekris, and Kavraki 
2007; Plaku and Kavraki 2008), a recently-released 
software package that implements a variety of motion 
planning algorithms in a general framework.  All tests use 
implementations of the bidirectional RRT that ran to 

completion on an Intel Core™2 Duo E6850 system with 
2GB of RAM.  In general, we present the coefficient of 
variation (rather than variance) as a measure of runtime 
variability, since it is scale-invariant. 
 

 

 
Figure 2: Test Problems with Typical Query States 

(Tunnel, Pincer, Passage, and Alpha-puzzle) 

Tunnel and Pincer 
The Tunnel problem environment is a straightforward 2D 
narrow-passage problem in which a point robot in [ ]21,0  
must solve a fixed query that straddles a length 0.4 tunnel.  
An RRT solver with step size 01.0=ε  was run 10,000 
times for each of 16 tunnel widths ( { }15,,1,0:2 2 K∈− n

n
).  

The results were used to compute an approximately-
optimal restart threshold for each problem instance.  This 
optimal restart threshold results in the minimum restart 
mean (seen as the minimum of a plot of (2), as in Figure 
6).  Each restart threshold fell between 0.5 and 5.0 ms, 
following an increasing trend with problem difficulty 
(narrowness of the tunnel).  Figure 3 compares the baseline 
test results to the theoretical restart results from (2) and (3) 
and those from 10,000 restart simulations (per point).  We 
also carried out simulations for 3D and 4D Tunnels, and 
the data was qualitatively parallel to that presented in 
Figure 3, though the divergence between the baseline and 
restart curves occurred at increasing tunnel widths. 

Pincer is similar to Tunnel, with the exception that the 
agent is a 2D hook-shaped robot that operates in ( )2SE .  
The experiments share all the same parameters, though the 
set of gap distances ( { }8,,1,0:2 2 K∈− n

n
) is relaxed to 

account for the robot’s nonzero width.  Figure 4 presents 
the baseline data and the theoretical effects of implement-
ing the optimal restart thresholds, which were of similar 
magnitude as in the Tunnel case: between 6.2 and 24.5 ms. 
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In both cases, we observe that implementing restarts has 
little to no benefit in the “easy” problems, in which the 
obstacle-free region in configuration space is large.  
However, as the gap shrinks, the potential of restarts 
becomes apparent as the performance measures separate.  
In the most restrictive Tunnel test, where the gap was 
approximately 0.5% as large as the space’s bounding box 
edge size, restarts provided a mean runtime advantage of 
over 20-fold while decreasing the coefficient of variation 
by 6-fold.  The theoretical results for the Pincer tests 
display similar trends as the configuration space of the 
environment becomes more restricted. 
 

 

 
Figure 3: Runtime Means and Coefficients of Variation for 

Tunnel Tests 
 

 

 
Figure 4: Runtime Means and Coefficients of Variation for 

Pincer Tests 

Passage 
Passage uses a 2D environment and an ( )2SE  robot 
(StraightC) provided with OOPSMP to test whether a 
restart threshold for one problem instance will generalize 
to a variety of similar instances.  First, we selected a single 
pairing in which both states were near the center of the 
open area and executed the solver for 1000 runs.  From this 
data set, we computed an approximately-optimal restart 
threshold, which we then applied to solve a set of 1000 
randomly-generated queries that required the robot to 
move through the passage from left to right.  Table 1 lists 
the resulting statistics for these simulations (in units of 
seconds), including the 1st and 9th deciles, which measure 
the times at which 10% and 90% of runs have succeeded. 
 

 Baseline Restarts Change 
Mean 0.465 0.392 -15.8% 

Variance 0.312 0.202 -35.3% 
Coeff. of Var. 1.201 1.147 -4.5% 

1st Decile 0.057 0.051 -12.2% 
Median 0.272 0.232 -14.9% 

9th Decile 1.089 0.956 -12.0% 
Table 1: Experimental Statistics for Random Passage Queries 

 
The potential performance benefit of restarts in this 

problem is moderate, due to the less restrictive passage in 
configuration space.  The baseline data predicts a perform-
ance improvement of 23.1% for applying restarts for the 
tested pair of initial and final states.  When applied to a 
diverse set of queries, restarts achieved a mean runtime 
speed increase of 18.7%, while the coefficient of variation 
was reduced by 4.5%.  While the second set of simulations 
does not achieve the predicted level of improvement for 
the unique query, it does demonstrate that it is possible to 
benefit by applying a single restart threshold derived from 
a representative initial and final state to a set of queries in a 
given environment. 

16-puzzle 
In contrast to the previous problems, the 16-puzzle is a 
discrete search problem based on the common pictorial 
tile-shifting puzzle.  With more than ten million million 
states ( 13102!16 ≈ ), this problem is intractable for many 
conventional discrete search algorithms such as breadth-
first search.  The discrete version of the RRT has been 
shown to outperform traditional A* in terms of memory 
and solution time (Morgan 2004; Morgan and Branicky 
2004).  Hence, we expect the 16-puzzle may be tractable 
for the discrete RRT using the traditional metric of the sum 
of each tile’s Manhattan distance between its current and 
goal positions.  Figure 5 demonstrates this fact with a plot 
of the survivor function of the runtimes, showing that 99% 
of instances on a single, randomized initial state complete 
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within 100 seconds.  This plot includes a set of exponential 
distribution survivor functions (straight lines on the semi-
log axes); the RRT’s survivor function appears to have an 
exponential or worse tail, marking it as a possible candi-
date for restarts. 
 

 
Figure 5: Runtime Distribution for a Single 16-puzzle Instance 

 
As a precursor to applying restarts to the general 16-

puzzle problem, we first examine their potential in this 
single initial state case.  Figure 6 compares the baseline 
runtime mean and coefficient of variation to the theoretical 
restart values on a 1,000-sample data set.  For the optimal 
restart threshold, this implies a 2.9-fold mean runtime 
improvement and a halving of the coefficient of variation. 
 

 

 
Figure 6: Runtime Means and Coefficients of Variation for a 

Single 16-puzzle Instance 
 

In addition to improving solution runtime and variability 
for one specific instance of the 16-puzzle, we would like to 
be able to provide a solution that allows an average-case 
improvement for a variety of initial states.  We collected 
10,000 samples of the RRT solutions to 16-puzzle, using a 
randomized (but solvable) initial state in each case.  This 
generates an aggregated distribution of solution runtimes 
across the 16-puzzle.  Note that we cannot necessarily use 

this distribution to compute an optimal restart threshold 
that will apply well across all 16-puzzle initial states.  This 
approach implicitly assumes that restarting on a given 
query could generate a runtime from any query, which is 
troubling if the two queries have solutions of drastically 
different lengths.  In this case, their individual distributions 
should not be well-approximated by the aggregate 
distribution.  Still, if the aggregate distribution does 
provide a reasonable approximation to the set of distribu-
tions for each query, we expect the resulting restart 
threshold will apply well. 

We tested three different methods of computing a restart 
threshold for the 16-puzzle.  First, we simply take the 
optimal value for the aggregate distribution (466 ms).  
Second, we separate the distribution by each (discrete) 
value of the metric distance between initial and final states 
and compute a restart threshold for each one (on average, 
881 ms).  Note that in this case, the small number of 
samples for some metric values creates false minimums on 
the restart threshold means plot and results in prohibitively 
small values.  In order to avoid endlessly restarting certain 
cases, we also enforce a minimum restart threshold of the 
aggregate optimal value.  Finally, we use the set of metric-
based values to compute a mean restart threshold (415 ms) 
that is weighted in proportion to the number of samples for 
each metric value.  The restart threshold from the aggre-
gate distribution predicts a 3.7-fold improvement in mean 
runtime, which can be taken as an upper bound on the 
expected performance of these strategies. 
 

 Baseline Aggregate Weighted Metric 
Mean 13.54 5.01 6.37 5.85 

Variance 810.7 59.8 133.9 63.4 
Coeff. of Var. 2.10 1.54 1.82 1.40 

1st Decile 0.39 0.28 0.41 0.35 
Median 3.81 2.67 3.34 3.14 

9th Decile 35.7 12.0 14.2 14.0 
Table 2: Experimental Statistics for Random 16-puzzles 

 
Table 2 presents the results of running sets of 1,000 

initial states with each restart strategy (in units of seconds).  
All three provide notable improvements in both mean and 
coefficient of variation.  Somewhat surprisingly, the single 
aggregate restart threshold provides the best mean runtime 
improvement of 2.7-fold, though the individual metric-
based restart thresholds perform slightly better in terms of 
coefficient of variation.  All three strategies provide major 
improvements over the baseline data by most measures.  
The one exception is the 1st decile, which we expect to be 
unaffected by restart thresholds that fall above it.  In 
contrast, the 9th decile is greatly improved, since restarts 
make extremely long runtimes much less probable without 
compromising the potential for extremely short ones. 
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Alpha-puzzle 
The final test environment is the Alpha-puzzle, a common 
disassembly problem with a narrow passage used to 
benchmark motion planning algorithms.  The 3D models 
used are publicly available (Yamrom 1999).  This problem 
has the most significant of the runtimes tested, as its agent 
has six degrees of freedom and the most complex collision-
checking.  Due to our need to collect a representative 
sample of solutions runtimes, we use a version of the 
traditional puzzle that is scaled by a factor of 1.5 in order 
to widen the passage and reduce solution times.  In this 
puzzle, the vertical gap between the crossed portions of the 
obstacle is approximately 18% greater than the agent’s 
thickness.  This allows a solution in which a portion of the 
agent is simply slid through the gap.  This type of solution 
is also possible in the 1.2-scaled version, though this 
measure is reduced to approximately 5%, while the 
standard version requires a plan that aligns the crossed 
portions of the agent and obstacle in a more complex way. 

The distribution of 2000 runtimes for the Alpha-puzzle is 
shown in Figure 7 and is very close to the accompanying 
exponential fit.  Accordingly, we expect restarts to yield a 
minimal potential return on this query.  Here, the optimal 
restart threshold (153.3 s) leads to an improvement in mean 
runtime of 2.3% and in coefficient of variation of 4.8%.  
Though we also attempted the 1.2-scaled Alpha-puzzle, 
solutions repeatedly failed to complete before consuming 
all available memory of the test machine (and nearly 45 
minutes).  However, based on the results of the Tunnel and 
Pincer experiments, we expect that less scaled versions 
would provide greater potential improvement. 
 

 
Figure 7: Runtime Distribution for the 1.5-scaled Alpha-puzzle 

 
We note that a parallel strategy like that of Challou, 

Gini, and Kumar (1993), in which a set of planners 
terminates with the first solution, also fails on this Alpha-
puzzle data.  Few planners result in small increases in 
mean runtime (4.3% for two planners and 8.9% for three), 
with further degradation for larger numbers.  Table 3 
presents the theoretical statistics for the use of this strategy 
on the Alpha-puzzle data (in units of seconds).  In this 
case, there are fair benefits in variability for few planners, 
though this comes at the cost of increased mean runtime. 

 Baseline Two Three Four 
Mean 98.7 102.9 107.5 112.9 

Variance 9652.4 8416.0 8195.5 8512.1 
Coeff. of Var. 0.995 0.891 0.842 0.817 

1st Decile 15.6 20.4 20.6 23.2 
Median 67.3 77.5 83.2 89.6 

9th Decile 217.2 216.9 220.3 232.2 
Table 3: Theoretical Statistics for Alpha-puzzle Parallel Planners 

Conclusions 
We have examined the performance of the RRT algorithm 
on a variety of problem environments and provided results 
on the degree of benefit provided by applying restarts.  Our 
experiments demonstrate a definite tendency for restarts to 
become more useful as the “difficulty” of a particular 
planning problem increases.  Additionally, we have shown 
that cases such as the Passage and the 16-puzzle are 
amenable to a single, generalized restart threshold that will 
provide runtime speed increases across varied queries.  
Though not all problems are well-suited to the restart 
strategy, these results provide motivation to further 
understand the complex issues introduced by randomized 
planning algorithms. 

Carroll (2008) observes heavy-tailed distributions in 
other examples, including motion planning for a hovercraft 
and stabilization of an inverted pendulum.  In the first case, 
the use of a set of solvers with differing step sizes leads to 
improvements in the overall probability of success with 
fixed total number of nodes.  Clearly, there are many 
potential methods of leveraging the features of the RRT’s 
run cost distribution.  Furthermore, there are a variety of 
applicable performance measures: runtime, total iterations, 
total nodes, probability of success, memory usage, and 
more.  A significant open question then relates to how to 
optimize these measures in an adaptive and robust way, 
without a priori knowledge of the problem. 

In particular, we believe that more attention is merited in 
the discrete case, in which the application of restarts 
provided a significant and pervasive benefit over varied 
queries in the 16-puzzle.  While it remains to be seen if 
similar results would be observed on other discrete 
problems of similar and greater complexity, our experi-
ments show promise for the concept.  More advanced 
strategies that avoid discarding past progress as the restart 
strategy does could lead to even more significant changes 
in runtime and variability for these and other problems. 
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