
On Heavy-tailed Runtimes and Restarts
in Rapidly-exploring Random Trees

Nathan A. Wedge and Michael S. Branicky

Department of Electrical Engineering and Computer Science
Case Western Reserve University

10900 Euclid Avenue, Cleveland, OH 44106
nathan.wedge@case.edu, mb@case.edu

Abstract
Randomized, sampling-based planning has a long history of
success, and although the benefits associated with this use
of randomization are widely-recognized, its costs are not
well-understood. We examine a variety of problem in-
stances solved with the Rapidly-exploring Random Tree
algorithm, demonstrating that heavy-tailed runtime distribu-
tions are both common and potentially exploitable. We
show that runtime mean and variability can be reduced
simultaneously by a straightforward strategy such as restarts
and that such a strategy can apply broadly across sets of
queries. Our experimental results indicate that several-fold
improvements can be achieved in the mean and variance for
restrictive problem environments.

Introduction
Randomized, sampling-based approaches to problem-
solving have become commonplace in planning. They
bring noteworthy advantages over existing deterministic
methods, perhaps the most significant of which is their
suitability for high-dimensional problems. However, their
use carries with it a significant drawback: the presence of
random sampling implies that the runtime of the algorithm
is also random. Although common algorithms such as the
Rapidly-exploring Random Tree (RRT – LaValle 1998;
LaValle and Kuffner 2001) and the Probabilistic Roadmap
(PRM – Kavraki et al. 1995) are probabilistically complete
(guaranteed to terminate with probability approaching
one), it is difficult to theoretically characterize the resulting
runtime distribution. Additionally, runtimes may be highly
variable, making use of this class of algorithms problem-
atic in real-time or human-interactive applications.

The lack of predictability in solution quality and runtime
has motivated a pursuit of deterministic and quasi-random
versions of sampling-based planning algorithms (Branicky
et al. 2001; LaValle, Branicky, and Lindemann 2004;
Lindemann and LaValle 2004b). While promising, these
deterministic versions have not yet demonstrated that they

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can provide definitive advantages over their counterparts.
Still, the goal of reducing the random factor in planning
while retaining the advantages of algorithms which exploit
it is highly desirable. Algorithms that retain a high degree
of performance and gain improved predictability are
attractive for many applications.

Work on similar problems such as satisfiability and
constraint satisfaction in other fields (Gomes et al. 2000;
Gomes, Selman, and Kautz 1998) has exploited a feature
common to various randomized algorithms: the tails of
their runtime distributions can be such that the expected
run cost of a new instance would be less than that required
to complete the current instance. The presence of these so-
called heavy-tailed distributions implies that even straight-
forward methods of controlling these algorithms at a high
level, such as enforcing a restart threshold, can provide
performance improvements. We propose to take advantage
of the nature of the runtime distribution of the RRT in a
similar way, with the goal of improving its performance in
terms of both mean and variability of runtime.

We first provide an overview of research related to the
use of sampling-based planning and the methodology for
improving randomized algorithms in Background. We
follow with a short justification of our expectation that
RRT runtimes exhibit distributions that allow restarts to be
of benefit in Motivation. The Theory of Restarts section
introduces a mathematical characterization of restarts,
which we utilize in Experiments to examine the runtime
results of a variety of problems, ranging from a narrow
tunnel to the 16-puzzle and the Alpha-puzzle. We also
implement restarts in several problems that apply well over
a variety of queries. Finally, we provide closing thoughts
and future directions in Conclusions.

Background
Randomized, sampling-based planning algorithms were
originally pioneered in an attempt to defeat the “curse of
dimensionality.” One of the most successful of this class
of algorithms is the RRT, which uses random sampling to

127

probabilistically bias the growth of a tree toward unex-
plored regions. It has been successfully applied to a range
of problems of continuous, discrete, and hybrid type
(Branicky et al. 2006; Morgan and Branicky 2004; Plaku,
Kavraki, and Vardi 2007). However, understanding of the
issues surrounding the use of randomization in planning is
still an open question (Lindemann and LaValle 2004a).

Our work to improve RRT runtimes using appropriately-
chosen restart thresholds are preceded by related works
using other planning algorithms and problem types.
Challou, Gini, and Kumar (1993) used multiple processors
to run parallel copies of a randomized planning algorithm,
taking the first result. This strategy lessens the impact of
“unlucky” choices made in some instances of randomized
algorithms. Isto, Mäntylä, and Tuominen (2003) devel-
oped heuristic-based variants of the PRM with a focus on
reducing its run cost variance. Geraerts and Overmars
(2004) achieved considerable improvements to variability
in the PRM by using restarts in a constrained 3D wrench-
moving problem. Presently, Carroll (2008) is investigating
the use of restarts with a focus on the RRT and hybrid
systems. We follow the spirit of these works by examining
a restart strategy that, although designed in consideration
of the RRT’s properties, treats it as a black-box.

Applying restarts to optimize the behavior of general Las
Vegas algorithms (those with runtime as a random
variable) is a mature concept, with existing methods for
minimizing the expected run length of unknown problem
instances (Luby, Sinclair, and Zuckerman 1993) and for
minimizing tail probabilities (Alt et al. 1996). Gomes,
Selman, and Kautz (1998) took advantage of these ideas to
achieve dramatic improvements in the solving of Boolean
satisfiability and constraint satisfaction problems. Streeter,
Golovin, and Smith (2007b; 2007a) recently extended
these concepts to sets of problem instances and heuristics.

Motivation
The RRT algorithm has a known exponential bound on its
run length tail probabilities (LaValle and Kuffner 2001);
though its use of a nearest neighbor operation implies that
individual iterations require increasing time. Therefore, it
is reasonable to assume that runtime tail probabilities may
arise that are heavier than exponential. Figure 1 illustrates
a potential instance of this phenomenon: two independent
forward-search RRTs solving the same query (a source –
the left dot and a destination – the right dot) can reach
roughly the same level of progress at drastically different
run lengths (166 versus 1887 iterations). In this case, the
“unlucky” tree will take more time to solve the problem
than the “lucky” one. Further, with continuing growth by
random sampling, it is possible that this “unlucky” tree will
require more time to complete than the entire instance of

the “lucky” one. The critical issue we examine is whether
the RRT algorithm generates “lucky” and “unlucky” trees
in such a way that will allow restarts to offer performance
improvements, measured by runtime mean and variability.

Figure 1: “Lucky” and “Unlucky” Instances of an RRT

Theory of Restarts
In a static environment with a fixed query, the runtime of a
randomized algorithm is a stationary random variable,
described with probability density ()xf x and cumulative
distribution ()xxFx ≤ . Following the work of Luby,
Sinclair, and Zuckerman (1993), suppose we define a
restart threshold, β , such that the algorithm runs to the
threshold and restarts from scratch if not completed.
Furthermore, we define the probability that a run will fall
below the threshold (()β≤xFx) as ()βxp . This restart
strategy results in a new distribution, ()xfr , that is
composed of periodic, exponentially-scaled copies of the
lower portion of the original distribution, as given in (1).

 () ()()⎣ ⎦ ⎣ ⎦()ββββ β x
xxr xfpxf

x
−−= 1, (1)

We note that there are no terms corresponding to the tail

of the original distribution, replacing its shape with that of
(roughly) an exponential with base ()βxp−1 and decay
rate 1−β . Similarly, this restart distribution has mean

()βμr , given by (2), and variance ()βσ 2
r , given by (3),

that are determined only by the first portion of the original
distribution, its renormalized statistics (mean ()βμ− and
variance ()βσ 2

−), and the magnitude of the restart
threshold. Under appropriate conditions, the mean and
variance can be improved by this restart strategy.

 () () ()∫=−
β

ββμ
0

1 dxxxf xpx

 () () ()() ()()ββμβμ β
β

xpr p
x

−+= − 1 (2)

 () () ()() ()∫ −− −=
β

β βμβσ
0

212 dxxfx xpx

 () () ()() ()()ββσβσ β
β

xpr p
x

−+= − 1
222 (3)

128

The range of restart thresholds that result in a reduction
in the mean is given by (4). Setting the β -derivative of
(2) to zero results in the optimal (viz. minimal) value of the
restart distribution mean. This optimal restart mean, given
in (5), is bounded above by the mean, since it is always
possible to set the threshold to infinity and leave the
distribution unchanged. However, it can be difficult to
compute (5) accurately from sampled data due to the
appearance of the ()∗βxf term. Instead, we compute the
mean in (2) on a set of logarithmically-spaced thresholds in
the sampled range and take the threshold with the smallest
mean.

 () μβμ ≤r ⇔ () ()

()β
βββμμ ≤

≤−
− ≥− xF

xF
x

x1 (4)

 () ()
()∗

∗≤−∗∗ =
β
ββμ

x

x

f
xF

r
1 (5)

Finally, note that assuming equality in (4) and convert-

ing into a differential equation leads to (6), which shows
that the family of exponential distributions remains
unchanged by restarts. This is helpful as we can use the
presence of tail probabilities with slower-than-exponential
decay as a clue on when to apply restarts. A semilog plot
of the runtime’s survivor function (()xxFx ≤−1), like
Figures 5 and 7, can expose this tendency in a clear-cut
way since the exponential survivor function appears linear.

 () ()

()β
βββμμ ≤

≤−
− =− xF

xF
x

x1

 () () ()xfxfxf xxx ′′=′⇒ 2

 () x
x exf λλ −=⇒ (6)

Experiments
We conducted various simulations to obtain sampled
cumulative distributions of wall clock runtime for RRT
queries (both fixed and randomized) in five problem
environments: Tunnel, Pincer, Passage, 16-puzzle, and
Alpha-puzzle, which are described in the following
subsections. In each setting, we analyze the potential of
various restart strategies, observing as much as order of
magnitude runtime mean and coefficient of variation
improvements in specific cases. Figure 2 depicts the
Tunnel, Pincer, Passage, and Alpha-puzzle problems along
with a typical query for each.

The Pincer, Passage, and Alpha-puzzle were imple-
mented and tested using the Object Oriented Programming
System for Motion Planning (Plaku, Bekris, and Kavraki
2007; Plaku and Kavraki 2008), a recently-released
software package that implements a variety of motion
planning algorithms in a general framework. All tests use
implementations of the bidirectional RRT that ran to

completion on an Intel Core™2 Duo E6850 system with
2GB of RAM. In general, we present the coefficient of
variation (rather than variance) as a measure of runtime
variability, since it is scale-invariant.

Figure 2: Test Problems with Typical Query States

(Tunnel, Pincer, Passage, and Alpha-puzzle)

Tunnel and Pincer
The Tunnel problem environment is a straightforward 2D
narrow-passage problem in which a point robot in []21,0
must solve a fixed query that straddles a length 0.4 tunnel.
An RRT solver with step size 01.0=ε was run 10,000
times for each of 16 tunnel widths ({ }15,,1,0:2 2 K∈− n

n
).

The results were used to compute an approximately-
optimal restart threshold for each problem instance. This
optimal restart threshold results in the minimum restart
mean (seen as the minimum of a plot of (2), as in Figure
6). Each restart threshold fell between 0.5 and 5.0 ms,
following an increasing trend with problem difficulty
(narrowness of the tunnel). Figure 3 compares the baseline
test results to the theoretical restart results from (2) and (3)
and those from 10,000 restart simulations (per point). We
also carried out simulations for 3D and 4D Tunnels, and
the data was qualitatively parallel to that presented in
Figure 3, though the divergence between the baseline and
restart curves occurred at increasing tunnel widths.

Pincer is similar to Tunnel, with the exception that the
agent is a 2D hook-shaped robot that operates in ()2SE .
The experiments share all the same parameters, though the
set of gap distances ({ }8,,1,0:2 2 K∈− n

n
) is relaxed to

account for the robot’s nonzero width. Figure 4 presents
the baseline data and the theoretical effects of implement-
ing the optimal restart thresholds, which were of similar
magnitude as in the Tunnel case: between 6.2 and 24.5 ms.

129

In both cases, we observe that implementing restarts has
little to no benefit in the “easy” problems, in which the
obstacle-free region in configuration space is large.
However, as the gap shrinks, the potential of restarts
becomes apparent as the performance measures separate.
In the most restrictive Tunnel test, where the gap was
approximately 0.5% as large as the space’s bounding box
edge size, restarts provided a mean runtime advantage of
over 20-fold while decreasing the coefficient of variation
by 6-fold. The theoretical results for the Pincer tests
display similar trends as the configuration space of the
environment becomes more restricted.

Figure 3: Runtime Means and Coefficients of Variation for

Tunnel Tests

Figure 4: Runtime Means and Coefficients of Variation for

Pincer Tests

Passage
Passage uses a 2D environment and an ()2SE robot
(StraightC) provided with OOPSMP to test whether a
restart threshold for one problem instance will generalize
to a variety of similar instances. First, we selected a single
pairing in which both states were near the center of the
open area and executed the solver for 1000 runs. From this
data set, we computed an approximately-optimal restart
threshold, which we then applied to solve a set of 1000
randomly-generated queries that required the robot to
move through the passage from left to right. Table 1 lists
the resulting statistics for these simulations (in units of
seconds), including the 1st and 9th deciles, which measure
the times at which 10% and 90% of runs have succeeded.

 Baseline Restarts Change
Mean 0.465 0.392 -15.8%

Variance 0.312 0.202 -35.3%
Coeff. of Var. 1.201 1.147 -4.5%

1st Decile 0.057 0.051 -12.2%
Median 0.272 0.232 -14.9%

9th Decile 1.089 0.956 -12.0%
Table 1: Experimental Statistics for Random Passage Queries

The potential performance benefit of restarts in this

problem is moderate, due to the less restrictive passage in
configuration space. The baseline data predicts a perform-
ance improvement of 23.1% for applying restarts for the
tested pair of initial and final states. When applied to a
diverse set of queries, restarts achieved a mean runtime
speed increase of 18.7%, while the coefficient of variation
was reduced by 4.5%. While the second set of simulations
does not achieve the predicted level of improvement for
the unique query, it does demonstrate that it is possible to
benefit by applying a single restart threshold derived from
a representative initial and final state to a set of queries in a
given environment.

16-puzzle
In contrast to the previous problems, the 16-puzzle is a
discrete search problem based on the common pictorial
tile-shifting puzzle. With more than ten million million
states (13102!16 ≈), this problem is intractable for many
conventional discrete search algorithms such as breadth-
first search. The discrete version of the RRT has been
shown to outperform traditional A* in terms of memory
and solution time (Morgan 2004; Morgan and Branicky
2004). Hence, we expect the 16-puzzle may be tractable
for the discrete RRT using the traditional metric of the sum
of each tile’s Manhattan distance between its current and
goal positions. Figure 5 demonstrates this fact with a plot
of the survivor function of the runtimes, showing that 99%
of instances on a single, randomized initial state complete

130

within 100 seconds. This plot includes a set of exponential
distribution survivor functions (straight lines on the semi-
log axes); the RRT’s survivor function appears to have an
exponential or worse tail, marking it as a possible candi-
date for restarts.

Figure 5: Runtime Distribution for a Single 16-puzzle Instance

As a precursor to applying restarts to the general 16-

puzzle problem, we first examine their potential in this
single initial state case. Figure 6 compares the baseline
runtime mean and coefficient of variation to the theoretical
restart values on a 1,000-sample data set. For the optimal
restart threshold, this implies a 2.9-fold mean runtime
improvement and a halving of the coefficient of variation.

Figure 6: Runtime Means and Coefficients of Variation for a

Single 16-puzzle Instance

In addition to improving solution runtime and variability
for one specific instance of the 16-puzzle, we would like to
be able to provide a solution that allows an average-case
improvement for a variety of initial states. We collected
10,000 samples of the RRT solutions to 16-puzzle, using a
randomized (but solvable) initial state in each case. This
generates an aggregated distribution of solution runtimes
across the 16-puzzle. Note that we cannot necessarily use

this distribution to compute an optimal restart threshold
that will apply well across all 16-puzzle initial states. This
approach implicitly assumes that restarting on a given
query could generate a runtime from any query, which is
troubling if the two queries have solutions of drastically
different lengths. In this case, their individual distributions
should not be well-approximated by the aggregate
distribution. Still, if the aggregate distribution does
provide a reasonable approximation to the set of distribu-
tions for each query, we expect the resulting restart
threshold will apply well.

We tested three different methods of computing a restart
threshold for the 16-puzzle. First, we simply take the
optimal value for the aggregate distribution (466 ms).
Second, we separate the distribution by each (discrete)
value of the metric distance between initial and final states
and compute a restart threshold for each one (on average,
881 ms). Note that in this case, the small number of
samples for some metric values creates false minimums on
the restart threshold means plot and results in prohibitively
small values. In order to avoid endlessly restarting certain
cases, we also enforce a minimum restart threshold of the
aggregate optimal value. Finally, we use the set of metric-
based values to compute a mean restart threshold (415 ms)
that is weighted in proportion to the number of samples for
each metric value. The restart threshold from the aggre-
gate distribution predicts a 3.7-fold improvement in mean
runtime, which can be taken as an upper bound on the
expected performance of these strategies.

 Baseline Aggregate Weighted Metric
Mean 13.54 5.01 6.37 5.85

Variance 810.7 59.8 133.9 63.4
Coeff. of Var. 2.10 1.54 1.82 1.40

1st Decile 0.39 0.28 0.41 0.35
Median 3.81 2.67 3.34 3.14

9th Decile 35.7 12.0 14.2 14.0
Table 2: Experimental Statistics for Random 16-puzzles

Table 2 presents the results of running sets of 1,000

initial states with each restart strategy (in units of seconds).
All three provide notable improvements in both mean and
coefficient of variation. Somewhat surprisingly, the single
aggregate restart threshold provides the best mean runtime
improvement of 2.7-fold, though the individual metric-
based restart thresholds perform slightly better in terms of
coefficient of variation. All three strategies provide major
improvements over the baseline data by most measures.
The one exception is the 1st decile, which we expect to be
unaffected by restart thresholds that fall above it. In
contrast, the 9th decile is greatly improved, since restarts
make extremely long runtimes much less probable without
compromising the potential for extremely short ones.

131

Alpha-puzzle
The final test environment is the Alpha-puzzle, a common
disassembly problem with a narrow passage used to
benchmark motion planning algorithms. The 3D models
used are publicly available (Yamrom 1999). This problem
has the most significant of the runtimes tested, as its agent
has six degrees of freedom and the most complex collision-
checking. Due to our need to collect a representative
sample of solutions runtimes, we use a version of the
traditional puzzle that is scaled by a factor of 1.5 in order
to widen the passage and reduce solution times. In this
puzzle, the vertical gap between the crossed portions of the
obstacle is approximately 18% greater than the agent’s
thickness. This allows a solution in which a portion of the
agent is simply slid through the gap. This type of solution
is also possible in the 1.2-scaled version, though this
measure is reduced to approximately 5%, while the
standard version requires a plan that aligns the crossed
portions of the agent and obstacle in a more complex way.

The distribution of 2000 runtimes for the Alpha-puzzle is
shown in Figure 7 and is very close to the accompanying
exponential fit. Accordingly, we expect restarts to yield a
minimal potential return on this query. Here, the optimal
restart threshold (153.3 s) leads to an improvement in mean
runtime of 2.3% and in coefficient of variation of 4.8%.
Though we also attempted the 1.2-scaled Alpha-puzzle,
solutions repeatedly failed to complete before consuming
all available memory of the test machine (and nearly 45
minutes). However, based on the results of the Tunnel and
Pincer experiments, we expect that less scaled versions
would provide greater potential improvement.

Figure 7: Runtime Distribution for the 1.5-scaled Alpha-puzzle

We note that a parallel strategy like that of Challou,

Gini, and Kumar (1993), in which a set of planners
terminates with the first solution, also fails on this Alpha-
puzzle data. Few planners result in small increases in
mean runtime (4.3% for two planners and 8.9% for three),
with further degradation for larger numbers. Table 3
presents the theoretical statistics for the use of this strategy
on the Alpha-puzzle data (in units of seconds). In this
case, there are fair benefits in variability for few planners,
though this comes at the cost of increased mean runtime.

 Baseline Two Three Four
Mean 98.7 102.9 107.5 112.9

Variance 9652.4 8416.0 8195.5 8512.1
Coeff. of Var. 0.995 0.891 0.842 0.817

1st Decile 15.6 20.4 20.6 23.2
Median 67.3 77.5 83.2 89.6

9th Decile 217.2 216.9 220.3 232.2
Table 3: Theoretical Statistics for Alpha-puzzle Parallel Planners

Conclusions
We have examined the performance of the RRT algorithm
on a variety of problem environments and provided results
on the degree of benefit provided by applying restarts. Our
experiments demonstrate a definite tendency for restarts to
become more useful as the “difficulty” of a particular
planning problem increases. Additionally, we have shown
that cases such as the Passage and the 16-puzzle are
amenable to a single, generalized restart threshold that will
provide runtime speed increases across varied queries.
Though not all problems are well-suited to the restart
strategy, these results provide motivation to further
understand the complex issues introduced by randomized
planning algorithms.

Carroll (2008) observes heavy-tailed distributions in
other examples, including motion planning for a hovercraft
and stabilization of an inverted pendulum. In the first case,
the use of a set of solvers with differing step sizes leads to
improvements in the overall probability of success with
fixed total number of nodes. Clearly, there are many
potential methods of leveraging the features of the RRT’s
run cost distribution. Furthermore, there are a variety of
applicable performance measures: runtime, total iterations,
total nodes, probability of success, memory usage, and
more. A significant open question then relates to how to
optimize these measures in an adaptive and robust way,
without a priori knowledge of the problem.

In particular, we believe that more attention is merited in
the discrete case, in which the application of restarts
provided a significant and pervasive benefit over varied
queries in the 16-puzzle. While it remains to be seen if
similar results would be observed on other discrete
problems of similar and greater complexity, our experi-
ments show promise for the concept. More advanced
strategies that avoid discarding past progress as the restart
strategy does could lead to even more significant changes
in runtime and variability for these and other problems.

Acknowledgements
This work was supported by the Air Force Office of
Scientific Research via an NDSEG Fellowship. We thank
the authors of the OOPS for Motion Planning software.

132

References
Alt, H.; Guibas, L.; Mehlhorn, K.; Karp, R.; and Wigder-
son, A., 1996. A Method of Obtaining Randomized
Algorithms with Small Tail Probabilities. Algorithmica
16:543-547.
Branicky, M. S.; Curtiss, M. M.; Levine, J.; and Morgan,
S. 2006. Sampling-based Planning, Control, and Verifica-
tion of Hybrid Systems. IEE Proceedings Control Theory
and Applications 153:575-590.
Branicky, M. S.; LaValle, S. M.; Olson, K.; and Yang, L.
2001. Quasi-randomized Path Planning. In Proceedings of
the 2001 IEEE International Conference on Robotics and
Automation, 1481-1487. Los Alamitos, CA, USA. IEEE
Publications.
Carroll, S. 2008. Verification Techniques for Hybrid
Systems Using Rapidly-exploring Random Trees. M. S.
thesis, Department of Electrical Engineering and Computer
Science, Case Western Reserve University, Cleveland, OH,
USA. Forthcoming.
Challou, D. J.; Gini, M.; and Kumar, V. 1993. Parallel
Search Algorithms for Robot Motion Planning. In Pro-
ceedings of the 1993 IEEE International Conference on
Robotics and Automation, 46-51. Los Alamitos, CA, USA:
IEEE Publications.
Geraerts, R.; and Overmars, M. H. 2004. Sampling
Techniques for Probabilistic Roadmap Planners. In
Proceedings of the 8th International Conference on
Intelligent Autonomous Systems, 600-609. Amsterdam,
Netherlands: IAS Society.
Gomes, C. P.; Selman, B.; Crato, N.; and Kautz, H. 2000.
Heavy-tailed Phenomena in Satisfiability and Constraint
Satisfaction Problems. Journal of Automated Reasoning
24: 67-100.
Gomes, C. P.; Selman, B.; and Kautz, H. 1998. Boosting
Combinatorial Search through Randomization. In Proceed-
ings of the 15th Conference on Artificial Intelligence, 431-
437. Menlo Park, CA, USA: AAAI Press.
Isto, P.; Mäntylä, M.; and Tuominen, J. 2003. On Address-
ing the Run-cost Variance in Randomized Motion
Planners. In Proceedings of the 2003 IEEE International
Conference on Robotics and Automation, 2934-2939. Los
Alamitos, CA, USA: IEEE Publications.
Kavraki, L. E.; Švestka, P.; Latombe, J.; and Overmars, M.
H. 1996. Probabilistic Roadmaps for Path Planning in
High-dimensional Configuration Spaces. IEEE Transac-
tions on Robotics and Automation 12:566-580.
LaValle, S. M. 1998. Rapidly-exploring Random Trees: A
New Tool for Path Planning, Technical Report, TR 98-11,
Computer Science Department, Iowa State University.
LaValle, S. M.; Branicky, M. S.; and Lindemann, S. R
2004. On the Relationship Between Classical Grid Search
and Probabilistic Roadmaps. International Journal of
Robotics Research 23:673-692.

LaValle, S. M.; and Kuffner, J. J. 2001. Rapidly-exploring
Random Trees: Progress and Prospects. In Algorithmic and
Computational Robotics: New Directions, 293-308.
Boston, MA, USA: A. K. Peters.
Lindemann, S. R.; and LaValle, S. M. 2004a. Current
Issues in Sampling-based Motion Planning. In Proceedings
of the 8th International Symposium on Robotics Research,
36-54. Berlin, Germany: Springer-Verlag.
Lindemann, S. R.; and LaValle, S. M. 2004b. Steps toward
Derandomizing RRTs. In Proceedings of the 4th Interna-
tional Workshop on Robot Motion and Control, 271-277.
Los Alamitos, CA, USA: IEEE Publications.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
Speedup of Las Vegas Algorithms. In Proceedings of the
2nd Israel Symposium on the Theory of Computing and
Systems, 128-133. Los Alamitos, CA, USA: IEEE Publica-
tions.
Morgan, S. 2004. Sampling-based Planning for Discrete
Spaces. M. S. thesis, Department of Electrical Engineering
and Computer Science, Case Western Reserve University,
Cleveland, OH, USA.
Morgan, S.; and Branicky, M. S. 2004. Sampling-based
Planning for Discrete Spaces. In Proceedings of the 2004
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1938-1945. Los Alamitos, CA, USA: IEEE
Publications.
Plaku, E.; Bekris, K. E.; and Kavraki, L. E. 2007. OOPS
for Motion Planning: An Online, Open-source Program-
ming System. In Proceedings of the 2007 IEEE
International Conference on Robotics and Automation,
3711-3716. Los Alamitos, CA, USA: IEEE Publications.
Plaku, E.; and Kavraki, L. E. 2008. “OOPSMP: Object-
oriented Programming System for Motion Planning,” Rice
University Kavraki Lab, February, 2008 [Online]. Avail-
able: http://www.kavrakilab.org/OOPSMP/index.html.
[Accessed March 10, 2008].
Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2007. A
Motion Planner for a Hybrid Robotic System with
Kinodynamic Constraints. In Proceedings of the 2007
IEEE International Conference on Robotics and Automa-
tion, 692-697. Los Alamitos, CA, USA: IEEE Publications.
Streeter, M.; Golovin, D.; and Smith, S. F. 2007a. Combin-
ing Multiple Heuristics Online. In Proceedings of the 22nd
Conference on Artificial Intelligence, 1197-1203. Menlo
Park, CA, USA: AAAI Press.
Streeter, M.; Golovin, D.; and Smith, S. F. 2007b. Restart
Schedules for Ensembles of Problem Instances. In
Proceedings of the 22nd Conference on Artificial Intelli-
gence, 1204-1210. Menlo Park, CA, USA: AAAI Press.
Yamrom, B. 1999. “Alpha Puzzle,” Texas A&M University
Algorithms & Applications, June, 1999 [Online]. Avail-
able: http://parasol-www.cs.tamu.edu/dsmft/benchmarks/.
[Accessed March 24, 2008].

133

