
Exploring Infeasibility for Abstraction-Based Heuristics

Fan Yang
Computing Science Department

University of Alberta
Edmonton, Alberta T6G 2E8 Canada

fyang@cs.ualberta.ca

Abstract
Infeasible heuristics are heuristic values that cannot be the
optimal solution cost. Detecting infeasibility is a useful tech-
nique (Yang et al. 2008) to improve the quality of heuristics
because it allows the heuristic value to be increased without
risking it becoming inadmissible. However, extra memory is
required when applying this technique. Is checking for in-
feasibility the best way to use this extra memory? Can this
technique be extended to problems with non-uniform edge
costs? Can infeasibility only be detected for additive heuris-
tics? These questions guide us to explore infeasibility further.
Comparative experimental results show the potential benefits
of this technique.

Introduction
Heuristic search is a general problem-solving mechanism in
artificial intelligence. Guided by a heuristic evaluation func-
tion, heuristic search finds the shortest path between two
nodes in a problem-space graph. A common way to com-
pute heuristic values includes two steps. The first step is to
define the abstract state space and the second is to determine
the distance from the abstract state to the abstract goal.

Given multiple abstractions of a state space, a standard
method for defining a heuristic function is the maximum of
the abstract distances given by the abstractions individually.
This heuristic is referred to as hmax.

A set of abstractions is called “additive” if the sum of the
costs returned by a set of abstractions is admissible(Korf &
Felner 2002; Felner, Korf, & Hanan 2004). The heuristic
calculated using additive abstractions is referred to as hadd.
For some cases (Korf & Felner 2002; Felner, Korf, & Hanan
2004; Yang et al. 2008) additive abstraction-based heuristics
can be very powerful, but hadd is not always as accurate as
we expected.

A new technique(Yang, Culberson, & Holte 2007; Yang
et al. 2008) is sometimes able to identify that some addi-
tive abstraction-based heuristic value is provably too small
(infeasible). Detecting the infeasible heuristic value is very
useful because it allows the heuristic value to be increased
without risking it becoming inadmissible. The additive
abstraction-based heuristic improved by checking for infea-
sibility is referred to as hadd−check. As additional memory

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is required, some questions arise when applying hadd−check.
Given extra memory, is it the best way to store extra infor-
mation only to identify infeasibility? As a great variety of
real-world problems can be modeled as problems of search-
ing with non-uniform edge costs, can this technique also be
extended for problems with non-uniform edge costs? Is this
technique only effective for additive abstractions? These
questions guide us to explore infeasibility further. The fol-
lowing summarizes our research contributions in this paper.

• Comparative results showed that given additional mem-
ory, it is a competitive choice to store extra information to
detect infeasibility.

• We showed that checking for infeasibility can also be use-
ful for problems with non-uniform edge costs.

• A first attempt was made to identify infeasibility for stan-
dard abstractions.

The remainder of the paper is organized as follows. First we
present the technical background for infeasibility. Second
we give an algorithm to compute necessary information to
improve the quality of heuristics. Then in order to show
the potential benefits of hadd−check, taking the sliding tile
puzzles and the pancake puzzle as selected case studies, we
compare the performances of heuristic search using hmax

and hadd−check under different edge cost definitions. Next
we explore the method to identify infeasibility for standard
abstractions (i.e. hmax). The last section summarizes our
work and directions of our future work.

Background
This section provides the technical background useful for
understanding the approach to identify infeasibility.

Definitions and Notations
Definition 1: A state space is a weighted directed graph
S = 〈T,Π, C〉where T is a finite set of states, Π ⊆ T×T is
a set of directed edges (ordered pairs of states) representing
state transitions, and C : Π −→ N = {0, 1, 2, 3, . . .} is the
edge cost function.
Definition 2: An abstract state space is a directed graph
with two weights per edge, defined by a four-tuple Ai =
〈Ti,Πi, Ci, Ri〉. Ti is the set of abstract states and Πi

is the set of abstract edges, as in the definition of a state

134



space. In an abstract space there are two costs associated
with each πi ∈ Πi, the primary cost Ci : Πi −→ N
and the residual cost Ri : Πi −→ N . We split each ab-
stract edge cost into two parts. This idea is inspired by the
fact that the most common way to define additive abstrac-
tions (Korf & Felner 2002; Felner, Korf, & Hanan 2004)
is the sum of the distances in a set of abstract spaces in
which only some edge costs are counted and others are ig-
nored. Previous papers (Yang, Culberson, & Holte 2007;
Yang et al. 2008) have provided examples to explain this
idea in detail.
Definition 3: An abstraction mapping ψi : S −→ Ai be-
tween state space S and abstract state space Ai is defined
by a mapping between the states of S and the states of Ai,
ψi : T → Ti, that satisfies the two conditions. The first
condition is that the connectivity in the original space be
preserved, i.e., ∀(u, v) ∈ Π, (ψi(u), ψi(v)) ∈ Πi. The sec-
ond condition is that abstract edges must not cost more than
the edges they correspond to in the original state space, i.e.,
∀π ∈ Π, Ci(πi) + Ri(πi) ≤ C(π). These two conditions
guarantee that the heuristic generated by each individual ab-
straction is admissible and consistent.

We use the shorthand notation ti = ψi(t) for the abstract
state in Ti corresponding to t ∈ T .
Definition 4: A path ~q from state ti to state gi in the abstract
state space Ai is defined by ~q = 〈π1

i , . . . , π
n
i 〉, π

j
i ∈ Πi

where πj
i = (tj−1

i , tji ), j ∈ {1, . . . , n} and t0i = ti, t
n
i = gi.

We use Paths(Ai, ti, gi) to denote the set of all paths from
ti to gi in Ai.
Definition 5: An Abstraction System is a triple< S,A,Ψ >
where S is a state space, A = {A1, . . . ,Ak} is an indexed
set of abstract state spaces and Ψ = {ψ1, . . . , ψk} is an
indexed set of abstraction mappings ψi : S −→ Ai.
Definition 6: The heuristic obtained from abstract space Ai

for the cost from state t to g is defined by

hi(t, g) = min
~q∈Paths(Ai,ti,gi)

{Ci(~q) +Ri(~q)}.

Definition 7: The common hmax heuristic from state t to
state g defined by an abstraction system < S,A,Ψ > is

hmax(t, g) =
k

max
i=1

hi(t, g)

Definition 8: An abstraction system < S,A,Ψ > is addi-
tive if ∀π ∈ Π,

∑k
i=1 Ci(πi) ≤ C(π).

Definition 9: Given an additive abstraction system the addi-
tive heuristic hadd is defined to be

hadd(t, g) =
k∑

i=1

C∗i (ti, gi) , where

C∗i (ti, gi) = min
~q∈Paths(Ai,ti,gi)

Ci(~q)

is the minimum primary cost of a path in the abstract space
from ti to gi.
Definition 10: The conditional optimal residual cost is the
minimum residual cost among the paths in ~Pi(ti, gi):

R∗i (ti, gi) = min
~q∈~Pi(ti,gi)

Ri(~q)

where ~Pi(ti, gi) is the set of abstract paths from ti to gi

whose primary cost is minimal, i.e., ~Pi(ti, gi) = {~q | ~q ∈
Paths(Ai, ti, gi) and Ci(~q) = C∗i (ti, gi)}.

The Approach to identify infeasibility
Given an additive abstraction system, the key to identify in-
feasibility is to check whether there exists some j(1 ≤ j ≤
k) such that hadd(t, g) < C∗j (tj , gj) + R∗j (tj , gj). If there
exists such j, then hadd(t, g) is an infeasible heuristic value.
Once identified the infeasible values can be increased to give
a better estimate of the solution cost. Formally, the heuristic
hadd−check is defined by hadd−check(t, g) ={

hadd(t, g) + ε, If hadd(t, g) is identified to be infeasible.

hadd(t, g), Otherwise.

Generally, ε is assigned to be one for the state space with
unit edge costs, or more according to some special structural
property. For example, it is well-known that the additive
heuristic value of the sliding tile puzzle has the parity prop-
erty, therefore 2 can be added to the infeasible hadd(t, g) of
the sliding tile puzzle.

The algorithm to compute C∗ and R∗

To obtain hadd−check, in addition to the primary cost (C∗
for short), we need to store values of the conditional optimal
residual cost (R∗ for short) to identify infeasibility. This
section describes an algorithm to compute both C∗ and R∗
as follows.

Algorithm: To compute C∗ and R∗

//X – a Min-Heap working as an Open List
// Cij – the primary cost for arc(i, j)
// Rij – the residual cost for arc(i, j)
// MUL – a fixed number that is larger than any Ri.
// Vi – to store the value of Ci×MUL +Ri for node i.
Initialize the values of Vi to be infinit for any node i.
X←− φ
X←− X ∪ {s} /∗ s is the goal state.∗/
While (X6= φ)
Do begin

k←− element of X such that Vk ≤ Vx, for any x ∈ X.
X←− X − {k}.
If k is in the the Closed List

continue;
end
Put k to the Closed List;
For each arc(k,j)
Do begin
costkj=Ckj×MUL +Rkj

if ((Vk + costkj) < Vj)
Vj = Vk + costkj

X←− X ∪ {j}
end

end
end

135



This algorithm is adapted from Dijkstra’s algorithm (Cor-
men et al. 2001). Because it always chooses the vertex
with the least value of V , this algorithm terminates with
Vi = C∗i × MUL +R∗i . Here MUL is defined by the mini-
mum multiple of 10 such that for any possible value of the
residual cost R, R / MUL=0, and R mod MUL=R. For
example, assuming that the maximum optimal solution cost
in the state space is no more than 50 such that R ≤ 50,
we can define MUL=100. If Ci = 17 and Ri = 9, then
Vi = 17 × 100 + 9 = 1709 and when the algorithm termi-
nates, if Vi = 1709, C∗i and R∗i can be calculated to be 17
and 9, respectively.

All experiments in this paper will store the values of C∗
and R∗ defined by each abstraction into a lookup table in
the form of a pattern database(Culberson & Schaeffer 1994),
and we perform IDA∗ (Korf 1985) as the heuristic search
algorithm.

Comparison between hmax and hadd−check

As shown in the previous work (Yang et al. 2008), it is nec-
essary to store R∗ to identify the infeasible heuristic val-
ues. Therefore, more memory is needed for this technique.
Given additional memory, to show that checking for infea-
sibility is a competitive choice we compare hadd−check to
hmax with the same memory requirement in two domains:
the 15-puzzle and the 14-puzzle.

In the 15-puzzle there are 16 locations in the form of a 4×
4 grid and 15 tiles, numbered 1–15, with the 16th location
being empty (or blank). A tile that is adjacent to the empty
location can be moved into the empty location vertically or
horizontally. The 14-puzzle is defined to be the same as the
15-puzzle, except that a tile numbered 5 is always fixed in
its goal location, the shaded square shown in Figure 3 and
Figure 4.

Experimental Results
The results are shown in Table 1 and Table 2. The Abs col-
umn shows the set of abstractions used to generate heuris-
tics whose partitionings were described in Figure 1–4. The
Heuristic column indicates different methods to combine
the costs returned by the abstractions. The Nodes column
shows the average number of nodes generated in solving
randomly generated start states. The Time column gives
the average number of CPU seconds needed to solve these
start states on an AMD Athlon(tm) 64 Processor 3700+ with
2.4GHz clock rate and 1GB memory. According to the par-
ity property of the puzzle, once hadd is identified to be in-
feasible, hadd−check = hadd + 2.

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Figure 1: Left: 5-5-5∗ partitioning. Right: 5-5-5∗a partition-
ing.

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Figure 2: Left: 6-6-3∗ partitioning. Right: 6-6-3∗a partition-
ing.

Abs Heuristic Nodes Time
5-5-5∗ hadd1 2,237,899 0.552
5-5-5∗a hadd2 5,929,024 1.471

5-5-5∗ & 5-5-5∗a hmax 946,754 0.349
5-5-5∗ hadd−check 912,661 0.340
6-6-3∗ hadd1 1,261,566 0.336
6-6-3∗a hadd2 3,041,540 0.817

6-6-3∗ & 6-6-3∗a hmax 415.075 0.162
6-6-3∗ hadd−check 479,781 0.173

Table 1: Experimental results on 1000 standard test prob-
lems for the 15-puzzle. (The average solution length was
52.522 moves). hmax=max{hadd1 , hadd2}.

Every four rows consist of a group. In each group, the first
two rows show results using different hadd respectively; the
third row presents the result using hmax, the maximum of
the above two hadd; the fourth row shows the result of using
hadd−check. hmax and hadd−check have the same memory
requirement, because hadd−check is just based on one set
of additive abstractions and it requires double size of the
space to store extra information to detect infeasibility. While
hmax need two sets of additive abstractions that need double
size of the space for a single set of additive abstractions.
The blank is always regarded as a distinguished tile for each
abstraction since there is sufficient memory to store these
pattern databases. It leads to the results that the performance
of original hadd reported in Table 1 is somewhat better than
that reported in the previous work (Felner, Korf, & Hanan
2004; Yang et al. 2008).

In Table 1 and Table 2, the average running time of IDA*
using hadd−check is over 2 times faster than the running
time required on average without checking for infeasibility
(hadd1) on the same machine.

The first group of each table shows that when the ab-
straction is based on smaller number of distinguished tiles,
hadd−check outperforms hmax in terms of nodes generated
and the running time. The second group of results implies
when the abstraction involves more distinguished tiles, the
effectiveness of hadd−check drops a little compared to that
of hmax. It is because more distinguished tiles involved pro-
vide more accute hadd such that hmax benefits directly but
little room is left for improving hadd by detecting infeasi-
bility. This character is very important because as problems
scale up, memory limitations will preclude using abstrac-
tion with more distinguished tiles and the only option will
be to use abstractions with fewer distinguished tiles each.

136



1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Figure 3: Left: 4-5-5∗ partitioning. Right: 4-5-5∗a partition-
ing. Tile 5 is a fixed tile

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Figure 4: Left: 5-6-3∗ partitioning. Right: 5-6-3∗a partition-
ing.

The results shown in both Table 1 and Table 2 indicate that
hadd−check will be the method of choice in this situation.

hadd−check For Non-uniform Edge Costs
The usefulness of infeasibility has been demonstrated ex-
perimentally for the domain with unit edge cost(Yang et al.
2008). In this section, we present the experimental results
to show that this technique can also be effective for prob-
lems with non-uniform edge costs. As a demonstration, we
consider the pancake puzzle with non-uniformed costs.

In the domain of the N -pancake puzzle, for each state
defined by a permutation of N tiles (1...N ), there are N −
1 applicable operators with the N th operator reversing the
order of the first (N + 1) tiles of the permutation.

A Simple Example
The location-based cost defintion (Yang et al. 2008) is for-
mally introduced as an effective method to generate addi-
tive heuristics for the pancake puzzle. Now we present a
simple example to explain how to apply this method for the
same domain with non-uniform costs. In this example the
N th operator OPN cost N . The problem is represented by
STRIPS planning model where a state is represented by a set
of logical atoms that are true in the state; the atom (at l n)
indicates that the tile numbered n is at the lth location; P ,
A, andD are precondition list, add list and delete list respec-
tively. For example, in Figure 5 the state 3 4 2 1 is
represented by {(at 1 3), (at 2 4), (at 3 2), (at 4 1)}.

As shown in Figure 6, an abstraction is defined by speci-
fying a subset of the atoms and restricting the abstract state
descriptions and operator definitions to include only atoms
in the subset. The two subsets in this example are {(at –
1), (at – 3)} and {(at – 2), (at – 4)} repectively, where {(at
– n)} represents a set of atoms indicating the location of
tile numbered n. The location-based costs are defined by
choosing a set of atoms B in the add list for each operator
and assigning the full original cost to the primary cost of an

Abs Heuristic Nodes Time
4-5-5∗ hadd1 2,945,864 0.594
4-5-5∗a hadd2 15,432,669 3.060

4-5-5∗,4-5-5∗a hmax 1,149,332 0.320
4-5-5∗ hadd−check 996,210 0.230
5-6-3∗ hadd1 2,185,207 0.457
5-6-3∗a hadd2 14,754,628 3.124

5-6-3∗,5-6-3∗a hmax 553,711 0.161
5-6-3∗ hadd−check 739,990 0.183

Table 2: Experimental results on 100 random problems for
the 14-puzzle. (The average solution length was 53.280
moves.) hmax=max{hadd1 , hadd2}.

3 4 2 1

4 3 2 1

1 2 3 4

P={(at 1 3), (at 2 4)}

A={(at 1 4), (at 2 3)}

D={(at 1 3), (at 2 4)}

:1OP

P={(at 1 4), (at 2 3), (at 3 2), (at 4 1)}

A={(at 1 1), (at 2 2), (at 3 3), (at 4 4)}

D={(at 1 4), (at 2 3), (at 3 2), (at 4 1)}

:3OP

cost C=1

cost C=3

Figure 5: Two state transitions in the original state space of
the 4-pancake puzzle.

3 * * 1

* 3 * 1

1 * 3 *

P={(at 1 3)}

A={(at 2 3)}

D={(at 1 3)}

:1OP

P={(at 2 3), (at 4 1)}

A={(at 1 1), (at 3 3)}

D={(at 2 3), (at 4 1)}

:3OP

primary cost =0

residual cost =1

primary cost =3

residual cost =0

* 4 2 *

4 * 2 *

* 2 * 4

P={(at 2 4)}

A={(at 1 4)}

D={(at 2 4)}

:1OP

P={(at 1 4), (at 3 2)}

A={(at 2 2), (at 4 4)}

D={(at 1 4), (at 3 2)}

:3OP
primary cost =0

residual cost =3

primary cost =1

residual cost =0

Figure 6: Two state transitions in additive abstractions us-
ing location-based costs. Left: state transitions in the first
abstract state space. Right: state transitions in the second
abstract state space.

operator, if B appears in the add list of the operator defini-
tion; otherwise, the primary cost is zero. The residual costs
are defined to be complementary to the primary costs (i.e.
Ri(πi) = C(π)− Ci(πi)). For the pancake puzzle, B=(at 1
–) that represents a set of atoms describing which tile is in
the first location, because in this domain the first location is
so special that every operator changes the tile in this loca-
tion. Since atoms are partitioned such that any atom (at 1 –)
appears in at most one abstraction, this method will define
additive costs.

137



Experimental Results
Two questions guide our study: does the location-based
method still work on the non-uniform pancake puzzle? Is
infeasibility check still effective to improve heuristics? We
consider the 12-pancake puzzle with non-uniform edge costs
and our experiments compares hadd−check to hmax under
different edge cost definitions. Edge costs are defined in
terms of eleven operators (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11).
Both hadd and hmax were obtained using the same 4-4-41

abstractions. The results of these experiments are shown in
Table 3. The Edge Cost Def. No. column indicates the edge
cost definition with di implying that if the edge applies the
ith operator the edge cost is i; otherwise edges cost 1. The
Average Solution column shows the average solution length
of 1000 start states. The Heuristic column indicates differ-
ent methods to combine the costs returned by abstractions.
The Nodes column shows the average number of nodes gen-
erated in solving randomly generated start states. The Time
column gives the average number of CPU seconds needed to
solve these start states on an AMD Athlon(tm) 64 Processor
3700+ with 2.4GHz clock rate and 1GB memory.
hadd outperforms hmax for all edge cost definitions listed

in Table 3, which shows that the location-based method can
work on the domain with non-uniform edge costs. Com-
pared to hadd, hadd−check results in further reductions in
nodes generated and CPU time. Although hadd−check dou-
bles the amount of memory required by hmax, hadd−check

reduces the number of nodes generated and the CPU time by
over a factor of 40. Note that when the edge cost is defined
by “d11” (i.e. only the 11th operator cost 11; other edges
cost 1.), the performance achieved by hmax is the worst
compared to that of the other edge cost definition. While
in this situation, hadd−check results in reductions in nodes
generated and CPU time by over a factor of 400.

An Attempt to Identify Infeasibility of hmax

Previous work(Yang et al. 2008) on infeasibility is restricted
to hadd. Now we made a first attempt to detect infeasibil-
ity for hmax that is the maximum of k standard abstrac-
tions. Define Cmax

i (h) = max{Ci : Ci + Ri = h} and
Rmin

i (h) = min{Ri : Ci + Ri = h}. It follows that
Cmax

i (h) + Rmin
i (h) = h. Now we define two types of

infeasibility, called “Type I” and “Type II” infeasibility.
As each abstraction preserves any path in the original

space, there must be a pair of values (Ci, Ri)(1 ≤ i ≤ k)
representing the solution path. Thus, in an abstract space if
the pair of (Cmax

i (h), Rmin
i (h)) does not exist, h is infeasi-

ble and it is referred to as Type I infeasibility.
The following lemma defines Type II Infeasibility assum-

ing that (Cmax
i (h), Rmin

i (h)) exists for each abstract space
Ai (i = {1...k}).
Lemma 1: Given k additive abstractions, ∀i, j ∈ {1...k},
Rmin

j (h) ≤
∑

i6=j C
max
i (h). If

∑
Cmax

i (h) < h, then h is
infeasible.

14-4-4 denotes a set of three abstractions in which the subset of
atoms for each abstractions are {(at – k1) : 1 ≤ k1 ≤ 4}, {(at –
k2) : 5 ≤ k2 ≤ 8}, and {(at – k3) : 9 ≤ k3 ≤ 12}, respectively

Edge Cost Average Heuristic Nodes Time
Def. No. Solution

hmax 1,607,139 0.372
d2 11.039 hadd 43,244 0.010

hadd−check 28,671 0.006
hmax 1,392,756 0.324

d3 11.019 hadd 43,294 0.010
hadd−check 27,746 0.006
hmax 1,287,521 0.301

d4 11.027 hadd 44,676 0.010
hadd−check 27,139 0.006
hmax 1,234,990 0.285

d5 11.025 hadd 42,193 0.009
hadd−check 24,957 0.005
hmax 1,261,257 0.293

d6 11.032 hadd 44,665 0.010
hadd−check 26,870 0.006
hmax 1,371,601 0.317

d7 11.036 hadd 44,582 0.010
hadd−check 27,300 0.006
hmax 1,325,913 0.308

d8 11.085 hadd 48,583 0.011
hadd−check 26,947 0.006
hmax 1,422,619 0.331

d9 11.175 hadd 67,715 0.015
hadd−check 32,484 0.007
hmax 1,773,078 0.414

d10 11.425 hadd 176,284 0.040
hadd−check 49,785 0.011
hmax 6,674,119 1.588

d11 19.873 hadd 24,903 0.006
hadd−check 15,459 0.003

Table 3: Experimental results on the 12-pancake puzzle. If
hadd is infeasible, hadd−check=hadd+1.

Proof: Suppose for a contradiction that h is not in-
feasible, i.e., h is a solution cost. ∀i, j ∈ {1...k},
Rmin

j (h) ≤
∑

i6=j C
max
i (h) =⇒ h = Cmax

j (h) +
Rmin

j (h) ≤
∑
Cmax

i (h). It contradicts with the condition
that

∑
Cmax

i (h) < h. Therefore, h is infeasible.

Table 4 presents an example to detect Type I and Type II
infeasibility for hmax that is the maximum of three standard
abstractions (Abs1, Abs2 and Abs3). In this example, at
least in one abstract space there exist no pair of (Ci, Ri)
such that Ci + Ri = 5, 7 or 9. So the heuristic values 5,
7 and 9 are infeasible (Type I infeasibility). In the last row
of Table 4,

∑
Cmax

i (11) = 3 + 4 + 2 < 11. By Lemma
1 this intance cannot be solved by the cost of 11, i.e., 11 is
detected to be infeasible (Type II infeasibility).

Experimental Results
The condition that ∀i, j ∈ {1...k}, Rmin

j (h) ≤∑
i6=j C

max
i (h) is satisfied in the sliding tile puzzle. The

138



h value Cmax
i (h), Rmin

i (h) Abs1 Abs2 Abs3
5 (Cmax

i (5), Rmin
i (5)) (2,3)

7 (Cmax
i (7), Rmin

i (7)) (3,4) (2,5)
9 (Cmax

i (9), Rmin
i (9)) (2,7)

11 (Cmax
i (11), Rmin

i (11)) (3,8) (4,7) (2,9)

Table 4: An example to show infeasible heuristic values for
hmax. Empty entry indicates that there exists no pair of
(Ci, Ri) in the abstract space such that h = Ci +Ri.

key idea is that in the abstract space it always takes more
steps to put all distinguished tiles to their goal locations than
that of locating them as “don’t care” tiles which are indistin-
guishable from each other.

Distinguished Infeasible value
Abs Tiles Type I Type II Total
Abs1 1,3,5,7
Abs2 2,4,6,8 3,812 1,760 5,572
Abs3 1,2,3,4
Abs4 5,6,7,8 2,284 1,764 4,048
Abs5 1,2,3,4,5
Abs6 6,7,8 1,695 813 2,508
Abs7 1,3,5
Abs8 2,4,7 3,185 202 3,387
Abs9 6,8
Abs10 1,2,3
Abs11 4,5,6 2,535 191 2,726
Abs12 7,8

Table 5: The number of infeasible values detected in
standard abstractions for all solvable instances (9!/2 =
181, 440) of the 8-puzzle.

A large number of infeasible values detected for hmax of
the eight puzzle is shown in Table 5. The Abs column shows
the set of abstractions used to generate heuristics. The Dis-
tinguished Tiles column indicates different tile partitionings
for the abstractions. The Infeasible value column shows the
number of infeasible values of two types detected over all
solvable instances of the eight puzzle.

The results show that there is a large portion of infea-
sible hmax generated from some abstractions. Due to the
well-known parity of the puzzle, detecting infeasibility and
adding 2 to the infeasible hmax will speed up the search.
However there is a space penalty for this improvement, be-
cause Rmin(h) values must be stored in memory and it is
not clear if storing Rmin(h) is the best way to use this ex-
tra memory. This experiment just shows that infeasibility
checking is one way to use extra memory to speed up search
for some problems.

Conclusions and Future Work
Our research and future work on detecting infeasibility are
summarized as follows.

Given additional memory, the new technique to iden-
tify infeasibility can be a comptetive choice to enhance the

search performance. For future work, it would be interesting
to compare it with other effective memory-based techniques.

We use STRIPS planning model for the problem repre-
sentation to imply the extension of location-based cost def-
inition to the area of Planning. Empirical results show that
the technique of identifying infeasibility can also be effec-
tive for problems with non-uniform edge costs. But some-
times this effectiveness is closely based on the effectiveness
of the additive abstractions. We will investigate how this
limitation can be overcome by detecting and improving in-
feasibility more efficiently.

Our theory and experiments shed some light on the ques-
tion of how to detect infeasibility of hmax. Numerous pos-
sibilities for improving the approach remain to explore. For
example, it would be of interest to investigate how to best
integrate structure properties into the presented scheme to
identify infeasibility more efficiently, and to analyze what
impact this would have on the quality of heuristics and the
performance of heuristic search.

Generally, we safely add one to an infeasible heuristic
value for problems with unit edge cost. But this improve-
ment seems weak when most of the edges cost more than
one. It is necessary to explore the method to increase more
without lossing the admissibility of the infeasible heuristic
values. One way is to introduce the second minimum pri-
mary cost for the improvement. But there is a space penalty
because we need to store more primary costs in memory and
it is not clear if it is the best way to use this extra memory.

Acknowledgments
Special thanks to Dr. Joseph Culberson and Dr. Robert
Holte, for their motivation, encouragement and useful dis-
cussions on this research.

References
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein,
C. 2001. Introduction to Algorithms. Cambridge, Mas-
sachusetts: The MIT Press.
Culberson, J. C., and Schaeffer, J. 1994. Efficiently search-
ing the 15-puzzle. Technical Report TR94-08, Department
of Computing Science, University of Alberta.
Felner, A.; Korf, E.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research 22:279–318.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134:9–22.
Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27(1):97–109.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Fel-
ner, A. 2008. A general theory of additive state space
abstraction. Journal of Artificial Intelligence Research (to
appear).
Yang, F.; Culberson, J.; and Holte, R. C. 2007. Using
infeasibility to improve abstraction-based heuristics. Proc.
SARA-2007, LNAI 4612:413–414.

139




