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Abstract

(Korf, Reid, & Edelkamp 2001) introduced a formula to pre-
dict the number of nodes IDA* will expand given thestatic
distribution of heuristic values. Their formula proved to be
very accurate but it is only accurate under the following limi-
tations: (1) the heuristic must be consistent; (2) the prediction
is for a large random sample of start states (or for large thresh-
olds). In this paper we generalize thestatic distributionto a
conditional distributionof heuristic values. We then propose
a new formula for predicting the performance of IDA* that
works well for inconsistent heuristics (Zahaviet al. 2007)
and for any set of start states, not just a random sample. We
also show how the formula can be enhanced to work well for
single start states. Experimental results demonstrate the ac-
curacy of our method in all these situations.

Introduction
The goal of this research is to accurately predict the num-
ber of nodes IDA* (Korf 1985) will expand for a specific
start state (or set of start states) and a specific depth bound
and heuristic function. Our starting point is the formula de-
veloped in (Korf & Reid 1998; Korf, Reid, & Edelkamp
2001) to predict the number of nodes expanded by IDA*.
These papers, the formula they present, and the predictions
it makes, will all be referred to asKRE in this paper.

Traditionally, the standard method for comparing two
heuristic functions was to compare their average values
(Korf 1997; Korf & Felner 2002; Felneret al. 2004). A
heuristic with a higher average value was considered prefer-
able.KRE made a significant improvement on this by char-
acterizing the quality of a heuristic function by its static dis-
tribution of values. Using the static distribution they de-
veloped theKRE formula to predict the number of nodes
expanded by IDA* searching with a specific heuristic and
depth bound. Finally, they comparedKRE to the actual
number of nodes expanded by IDA* for all depths on several
benchmark search spaces and showed that it gave virtually
perfect predictions. This was a major advance in the analysis
of search algorithms and heuristics.

Despite its impressive results, theKRE formula has two
main shortcomings. The first is that it assumes that the
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given heuristic is consistent in addition to being admissible.1

The terminconsistencysounds negative but recent studies
have shown that inconsistent heuristics are easy to define
in many search applications and can produce impressive
substantial performance improvements (Felneret al. 2005;
Zahaviet al. 2007). Therefore, it is important to extend
KRE to be able to predict IDA*’s performance on inconsis-
tent heuristics because they are likely to become very impor-
tant for future applications.

The second shortcoming of theKRE formula is that its
predictions are accurate only when aggregated over a large
random sample of start states (or a single start state but with
large enough IDA* threshold). As will be shown below, it
can be very inaccurate on single start states and even on a
set of start states that were not chosen at random.

The contribution of this paper is twofold. First we extend
KRE’s idea of astatic distributionof heuristic values to a
conditional distribution, in which the probability of a spe-
cific heuristic value is not constant, as inKRE, but is condi-
tioned on certain properties of the search space. Such prop-
erties can be the heuristic of the neighbors, the operators that
are being applied, properties of the ancestors etc. Second,
we derive a formula,G KRE, based on the conditional distri-
bution, that predicts IDA*’s performance on any set of start
states (not necessarily random) whether the heuristic is con-
sistent or not. We also show an extension ofG KRE which
works well for a specific single start state. Experimental re-
sults confirm thatG KRE works well in all these scenarios.

The KRE formula
This section sketches the derivation of theKRE formula; for
full details see theKRE papers. We assume that all state
transitions cost 1, but this can easily be relaxed.

Let d be the givendepth boundandBFSd
s be the brute-

force search tree of depthd rooted at start states. Define
a noden at leveli of BFSd

s to befertile if h(n) ≤ d − i.
Noden being at leveli with a heuristic valueless than or
equal tod − i ensures thatf(n) = g(n) + h(n) ≤ d which
is the condition for expansion with an IDA* depth bound of

1A heuristich is “admissible” ifh(x) ≤ dist(x, goal) for all
statesx, wheredist(x, y) is the cost of the least-cost path fromx
to y. Heuristich is “consistent” if|h(x) − h(y)| ≤ dist(x, y) for
all statesx andy.
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d. Thus a fertile node will be expanded if it is generated.
The key insight inKRE is that if the given heuristic is
consistentthe number of nodes expanded by IDA* at level
i of BFSd

s is exactly the number of fertile nodes at leveli,
which can be calculated using the following equation:

Fertile(s, d, i) = N(s, i) · P (d − i)

whereN(s, i) is the number of nodes in leveli of BFSd
s

andP (v) is the percentage of states in the state space (not
nodes in the brute-force tree) that have a heuristic valueless
than or equal tov. Typically this distribution is computed
over the space of all possible states or, if that is impractical,
over a large random sample of states.2

In KRE, theN(s, i) term is written asN(i), i.e. without
the dependence on the start states. This is perfectly cor-
rect for state spaces, such as Rubik’s Cube, with a uniform
branching factorb, becauseN(s, i) in such cases is simply
bi. For state spaces with a non-uniformbut “regular” branch-
ing structure,N(i) was defined recursively inKRE in terms
of N(i − 1) in a way that is independent ofs. However,
the base case of the recursion,N(0), does depend ons so
their notationN(i) instead ofN(s, i) is reasonable but not
strictly correct. Thus, the total number of nodes expanded
by IDA* in searchingBFSd

s according toKRE is:

KRE =
d

X

i=0

N(i) · P (d − i) (1)

Limitations of the KRE formula
TheKRE formula has two main shortcomings and we now
examine each of them.

KRE fails for inconsistent heuristics

n
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Figure 1: Consistent versus inconsistent heuristics

TheKRE formula counts the number offertile nodes at
each level inBFSd

s . These nodes have thepotentialto be
expanded in the sense that IDA* will expand them if it gen-
erates them. With consistent heuristics, the heuristic value
of neighboring states never changes by more than the change
in the g-value (1 in this paper) as shown in the left side of
Figure 1, where the number inside a node is its heuristic
value. Thus, thef -value ismonotonically increasingalong
any given branch. Therefore, it is easy to prove that with
consistent heuristics all the ancestors of a fertile node are

2Strictly speakingKRE defined theequilibrium distribution
and used it forP (v). In most domains both distributions are iden-
tical, however. See theKRE papers for details.

also fertile (cf. theKRE paper) and consequently IDA* will
expand all and only the fertile nodes inBFSd

s . Hence, a for-
mula such asKRE that counts the number of fertile nodes in
BFSd

s can be used to predict the number of nodes IDA* will
expand when given a consistent heuristic.

For inconsistent heuristics this reasoning does not apply.
The heuristic values of neighboring states can change by
much more than the change ing and thef -value can dra-
matically increase or decrease along a path. Therefore, the
ancestors of a fertile node are not guaranteed to be fertile
themselves, with the consequence that a fertile node might
never be generated. For example, consider the search tree
in the right side of Figure 1. Assume that the start node is
R and that the depth bound is 5. There are 3 fertile nodes
at depth 2 (all with heuristic value 3). Consider the fertile
noden. The path to it is through nodea but nodea is in-
fertile and will be generated but not expanded. Therefore,
noden will never be generated, preventing IDA* from ex-
panding it. Since theKRE formula counts the number of
fertile nodes, it will count noden and thus overestimate the
number of expanded nodes when an inconsistent heuristic is
used.

The amount by whichKRE overestimates the number of
nodes expanded by IDA* with inconsistent heuristic can be
very large. To illustrate this, consider the state space for Ru-
bik’s Cube and a pattern database (PDB) heuristic (Culber-
son & Schaeffer 1998) defined by the locations of 6 of the
edge cubies. The regular method for looking up a heuristic
value in a PDB produces a consistent heuristic. (Zahaviet al.
2007) discussed two alternative PDB lookups that produce
inconsistent heuristics. The first is called thedual lookup. In
permutation spaces, for each states there exists a dual state
sd which has the same distance to the goal ass (Felneret al.
2005; Zahaviet al. 2006). When using PDBs, a dual lookup
is to look upsd in the PDB. This produces admissible but
inconsistent heuristic values. The second method,random
lookup, is to randomlyselect a heuristic from a number of
available heuristics. This will produce inconsistent heuris-
tics. Multiple PDB heuristic lookups arise in Rubik’s Cube
because it has 24 symmetries and each can be applied to any
state to create a new way to perform a PDB lookup for it.

Because all three lookups (regular, dual and random) con-
sult the same PDB they have the same static distribution of
heuristic values,P (v), and thereforeKRE will predict that
IDA* will expand the same number of nodes regardless of
whether a regular, dual or random lookup is done.

The “IDA*” columns of Table 1 show the number of
nodes IDA* expands when it performs either a regular, dual
or random lookup in the same 6-edge PDB for Rubik’s
Cube. The “KRE” column, based on the static distribu-
tion, shows theKRE prediction. Each row represents a
specific depth bound (d), and the numbers shown are av-
erages over1000 random initial states. TheKRE predic-
tion is within 8% of the actual number of nodes expanded
when IDA* uses the regular (consistent) PDB lookup (sec-
ond column) but it significantly overestimates the number of
nodes expanded when IDA* does dual or random (inconsis-
tent) lookups in the same PDB (sixth and eighth columns).
The other columns will be discussed below.
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Regular Lookup Dual Lookup Random Lookup Static
d IDA* KRE G KRE(1) G KRE(2) IDA* G KRE(2) IDA* G KRE(2) MaxInc
8 277 257 235 257 36 36 26 26 15
9 3,624 3,431 3,151 3,446 518 508 346 346 210
10 47,546 45,801 41,599 45,985 6,809 6,792 4,608 4,601 2,813
11 626,792 611,385 546,808 613,332 92,094 90,664 61,617 61,174 37,553
12 8,298,262 8,161,064 7,188,863 8,180,676 1,225,538 1,210,225 823,003 815,444 501,293
13 110,087,215 108,937,712 94,711,234 109,133,021 16,333,931 16,154,640 10,907,276 10,878,227 6,691,518

Table 1: Rubik’s Cube - regular, dual and random PDB lookups and their predictions

KRE fails for non-random set of start states
For a consistent heuristic, and for most inconsistent heuris-
tics too, the heuristic value of a state is highly correlated
with the heuristic value of neighboring states. Consequently,
the distribution of heuristic values in the search tree near the
start state will be highly correlated with the heuristic value
of the start state, and therefore will not be the same in search
trees with start states having different heuristic values.

The reason thatKRE is able to produce extremely accu-
rate predictions in its experiments using just one distribution
of heuristic values,P (v), for all levels and all start states is
that its experiments report average predictions and perfor-
mance over a large number of randomly drawn start states.
The heuristic values of a large random sample of states will
be distributed according toP (v), and, because the heuris-
tic values at successive levels are strongly correlated with
the values at previous levels, they too will be distributed ac-
cording toP (v). However, if the set of start states does not
have its heuristic values distributed according toP (v), KRE
should not be expected to make good predictions. For exam-
ple, a great deal of pruning is likely to occur near the top of
the search tree for a start state with a large heuristic value,
resulting in many fewer nodes expanded than for a start state
with a small heuristic value. YetKRE will make the same
prediction for both start states because it usesP (v) as the
distribution in both cases.3

h IDA* KRE G KRE(1) G KRE(2)
5 30,363,829 8,161,064 48,972,619 20,771,895
6 18,533,503 8,161,064 17,300,476 13,525,425
7 10,065,838 8,161,064 7,918,821 9,131,303
8 6,002,025 8,161,064 5,094,018 6,743,686

Table 2: Results with different start state heuristic.

Table 2 demonstrates this phenomenon on Rubik’s Cube
with regular PDB lookups for one depth bound (d = 12).
The “IDA*” column shows the average number of nodes ex-
panded for 1000 start states with the same heuristic value
h. KRE ignoresh and predicts that 8,161,064 nodes will be
expanded by IDA* for each start state. The row ford = 12
in Table 1 shows that this is an accurate prediction when
performance is averaged over a large random sample of start

3If the prediction is made for a sufficiently large IDA* threshold
the influence of the heuristic of the start state will vanish and the
heuristics will be again distributed according toP (v). Thus, with
large thresholds,KRE will again predict accurate heuristics.

states, but in Table 2 we see that it is too low for start states
with small heuristic values and too high for ones with large
heuristic values. The last two columns of Table 2 show that
the prediction of two variations of our new method (defined
below), which takes the heuristic value of the start state into
account, is much more accurate thanKRE.

Conditional static distribution
These two shortcomings ofKRE can both be overcome by
extending the static distribution of heuristic values it uses,
P (v), to be a conditional distribution,P (v|context), where
context represents properties of the search space that in-
fluence the distribution of heuristic values in a local neigh-
borhood. We usep(v|context) (lower casep) to denote the
probability that a state with heuristic valueequalto v will be
produced when a state satisfying the conditions specified by
context is expanded. We useP (v|context) (upper caseP )
to denote the probability that a state with heuristic valueless
than or equal tov will be produced when a state satisfying
the conditions specified bycontext is expanded. Obviously,
P (v|context) =

∑v

i=0
p(i|context).

The simplest conditional distribution isp(v|vp), the prob-
ability of a state with a heuristic valueequal to v being
produced when a state with valuevp is expanded. In spe-
cial circumstances,p(v|vp) can be determined exactly by
analysis of the state space and the heuristic, but in general
it must be approximated empirically by sampling the state
space. In our sampling method distributionp(v|vp) is rep-
resented by the entryp2[v][vp] in a two-dimensional matrix
p2[0..hmax][0..hmax], wherehmax is the maximum possi-
ble heuristic value. To build the matrix we first set all values
in the matrix to 0. We randomly generate a state and calcu-
late its heuristic valuevp. We then generate each child of
this state one at a time, calculate the child’s heuristic value,
v, and incrementp2[v][vp]. We repeat this process a large
number of times. Finally, we divide each entry in columnvp

by the sum of that column, so that entryp2[v][vp] represents
the percentage of children generated with valuev when a
state with valuevpis expanded.

Figure 2 shows the bottom right corner of two such ma-
trices for the 6-edges PDB of Rubik’s Cube. The left matrix
(a) showsp(v|vp) for the regular (consistent) lookup in this
PDB and the right matrix (b) showsp(v|vp) for the incon-
sistent heuristic created by the dual lookup in this PDB. The
matrix in (a) is tridiagonal because neighboring values can-
not differ by more than 1. For example, states with a heuris-
tic value of 8 can only have children with heuristics of 7, 8
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Figure 2: A portion of thep2 matrix for Rubik’s Cube

and 9; these occur with probabilities of 0.21, 0.70 and 0.09
respectively (see column8). By contrast, the matrix in (b) is
not tridiagonal. In column8, for example, we see that 6% of
the time states with heuristic value of 8 have children with
heuristic values of 6.

When IDA* expands a node, it eliminates some nodes be-
cause of operator pruning. Distributionp(v|vp) does not
take this into account. In order to do so it is necessary to
extend the context of the conditional probability to include
the heuristic value of the grandparent. We denote this by
p(v|vp,vgp) and call this a “2-step” model because it con-
ditions on information from two ancestors in contrast the
p(v|vp), which is a “1-step” model.p(v|vp,vgp) gives the
probability of a state with a heuristic value equal tov is be-
ing produced when expanding a state with heuristic valuevp

and whose parent’s heuristic value isvgp. It is estimated by
sampling in the same way as was done to estimatep(v|vp),
except that each sample generates a random state,gp, then
all its neighbors, and then all of their neighbors except those
eliminated by operator pruning.

The context of the conditional distribution can be ex-
tended in other ways as well. For the sliding tile puzzles,
KRE conditions the static distribution on the “type” of the
state being expanded, where the type indicates if the blank
is in a corner, edge, or interior location. In our experiments
with the sliding tile puzzle below, we extendp(v|vp,vgp)
with this type information:p(v, t|vp, tp,vgp, tgp) gives the
probability of a state with typet and heuristic value equal to
v being produced when a state is expanded whose heuristic
value and type arevp andtp, respectively, and whose par-
ent’s heuristic value and type arevgp andtgp, respectively.

A new prediction formula, G KRE
In this section we use the conditional distributions just de-
scribed to developG KRE, an alternative to theKRE for-
mula for predicting the number of nodes IDA* will expand
for a given heuristic, depth bound, and set of start states. For
simplicity, we assume there is no type system imposed on
the states; the development of the formula when there are
types is exactly analogous.

DefineNi(s, v) to be the number of nodes that IDA* will
generateat leveli with a heuristic valueexactly equalto v

whens is the start state. For depth boundd,
∑d−i

v=0
Ni(s, v)

is the number of nodes IDA* will expand at leveli (whether
the given heuristic is consistent or not), precisely the quan-
tity we wish to calculate. If the1-step conditional distribu-
tion p(v|vp) is being used,Ni(s, v) can be estimated recur-
sively as follows:

Ni(s, v) =

d−(i−1)
X

vp=0

Ni−1(s, vp) · b · p(v|vp) (2)

whereb is the brute-force branching factor.4 The reasoning
behind this equation is thatNi−1(s, vp)·b is the total number
of children IDA* generates via the nodes it expands at level
i − 1 with heuristic value equal tovp. This is multiplied
by p(v|vp) to get the expected number of children of these
nodes that have heuristic valuev. Nodes at leveli − 1 are
expanded if and only if their heuristic value isless than or
equal tod − (i − 1), hence the summation only includesvp

values in this range. By restrictingvp to beless than or equal
to d− (i− 1) in every recursive application of this formula,
we ensure (even for inconsistent heuristics) that a node is
only counted at leveli if all its ancestors are expanded by
IDA*. The base case of this recursion,N0(s, v), is 1 for
v = h(s) and0 for all other values ofv.5 The number of
nodes expanded by IDA* given start states, depth boundd,
and a particular heuristic can be predicted as follows:

G KRE =
d

X

i=0

d−i
X

v=0

Ni(s, v) (3)

If a set of start states is given instead of just one, the calcu-
lation is identical except that the base case of the recursion
(N(0)) is seeded using all the start states. That is, we incre-
mentN0(sj , v) for each start statesj with a heuristic ofv.
This cumulativeN0 is used as the base case and the rest is
just the same.

Between “informedness” and inconsistency

Traditionally, more informed heuristics (i.e. with higher
heuristic values) were considered preferable. (Zahaviet al.
2007) showed that there is more to consider with inconsis-
tent heuristics. They introduced thedegree of inconsistency
which intuitively, is the amount of correlation between the
heuristics of neighboring nodes. They showed that heuris-
tics with the same “informedness” (i.e., static distribution)
but with higher degree of inconsistency (less correlation)
will perform better as more pruning will occur. However
the relation between these two important properties of the
heuristic function (i.e. “informedness” and inconsistency)
remained open. An outcome of our new formula is that we
are now able to show that while inconsistency improves the
performance of IDA* there is a limit to this which can be
characterized by its “informedness”. By modifying formula
2 we can calculate a lower bound for the number of expand-
ing nodes as will be detailed below.

4In general,b can depend on the context used to define the con-
ditional distribution.

5With a 2-step model the base case would beN1(s, v), the num-
ber of children of the start state that have heuristic valuev.
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Degree of inconsistency
Intuitively, the maximal degree of inconsistency is achieved
when there is absolutely no correlation between the heuris-
tic values of any two states in the search space and they all
obey the static distributionp as any two random states. In
particular, values of two neighboring states with the highest
degree of inconsistency are completely independent. As a
consequence there is no correlation between any two states.
Therefore, for a given states, the probability of having a
heuristich does not depend on itscontext. Meaning that
for maximal inconsistency,p(v|context) = p(v).

On the other end of the scale are the consistent heuris-
tics where the heuristic values of two neighboring state are
constraint to be different by at most 1. Most inconsistent
heuristics are in between these two extreme cases.

Lower bound for the number of expanded nodes
While higher inconsistency results in better IDA* perfor-
mance (i.e. reduce the number of expanded nodes) (Zahavi
et al. 2007), there is a bound for the possible improvement.
This bound can be calculated while assuming highest degree
of inconsistency. In such case we can setp(v|vp) = p(v) in
equation 2 as shown in equations 4 and 5.

N
Lower
i (s, v) =

d−(i−1)
X

vp=0

N
Lower
i−1 (s, vp) · b · p(v) (4)

Notice that the lower bound can be generated from the
“informedness” (i.e. static distribution) without any need to
calculate theConditional static distribution.

G KRE
Lower =

d
X

i=0

d−i
X

v=0

N
Lower
i (s, v) (5)

The ”MaxInc” column in Table 1 presents the maximal
possible improvement by inconsistent heuristics when the
maximal degree of inconsistency is assumed. This can be
seen as a lower bound on the number of expanded nodes for
all possible heuristics with a given static distribution.

Upper bound for the number of expanded nodes

N
Upper

i (s, v) =

hmax
X

vp=0

N
Upper

i−1 (s, vp) · b · p(v|vp) (6)

Consider equation 2. If the heuristic is known to be con-
sistent the only values ofvp that need to be considered are
v − 1, v, andv + 1. By contrast, for inconsistent heuristics,
we must useexactlyvp ∈ [0 . . . d − (i − 1)]. If, for incon-
sistent heuristics we substitute this withvp ∈ [0 . . . hmax]
we will get the total number of all nodes with heuristicv at
leveli. This is shown in equation 6. Using this in the general
prediction equation we get:

G KRE
Upper =

d
X

i=0

d−i
X

v=0

N
upper
i (s, v) (7)

This counts the total number of fertile nodes, even ones
whose parents are not fertile. This can be seen as an up-
per bound for the number of expanded nodes. In fact, our
experiments showed that this version produced very similar
number of nodes compared to theKRE column in table 1
with inconsistent heuritics. They both calculate the number
of fertile nodes in the tree.

Experimental results – Rubik’s Cube
We compared the performance ofG KRE, to KRE,6 on Ru-
bik’s Cube with our 6-edges PDB on the regular, dual and
random heuristics on 1000 random start states.

The results are presented in Table 1.G KRE(1) and
G KRE(2) denote the 1-step and 2-step models, respectively.
For the regular (consistent) lookup (2nd column) the pre-
dictions ofKRE, G KRE(1) andG KRE(2) are all very ac-
curate. Here we see that, overall,G KRE(2) is more ac-
curate than bothG KRE(1) andKRE. As discussed above,
KRE produces the same prediction for all these heuristics
and is overestimating for the inconsistent heuristics. By con-
trastG KRE(2) predicts IDA*’s performance extremely ac-
curately for the inconsistent heuristics. The predictions of
G KRE(1) for the inconsistent heuristics are not shown but
are a little inferior toG KRE(2).

Table 2, presented above, and the related discussion, shed
light on the fact thatKRE may not make accurate predic-
tions when start states are not selected uniformly at random.
KRE will always predict a value of 8,161,064 even though
the value depends on the exact set of start states used. In that
table we can see that both versions ofG KRE significantly
outperformKRE on a particular given set of start states.

Experimental results - Sliding Tile puzzle
As in theKRE experiments, three state types are used, based
on whether the blank is in a corner, edge, or interior loca-
tion, exact recurrence equations are used forN(i, t) in the
type-dependent version of theKRE formula, and the heuris-
tic used was Manhattan Distance (MD). We used the 2-step
type-dependent version ofG KRE.

Prediction results ofKRE andG KRE for the 8- and 15-
puzzles are shown in Table 3. For the 8-puzzle the predic-
tions were made for depth 22 and each row corresponds to
the group ofall 8-puzzle states with the same heuristic value
h (shown in the first column). The second column gives
the number of states in each group. Clearly, as shown in
the “IDA*” column, states with higher initial heuristics ex-
panded a smaller number of nodes. This trend is not re-
flected in theKRE predictions sinceKRE does not takeh

6Our experiments on Rubik’s Cube and the sliding tile puzzle
differ from the experiments reported inKRE in the way we chose
the start states. InKRE, the same large randomly chosen set of start
states is used for every depth boundd and the search continues to
depthd for every start state, even if the goal is encountered for a
start state at a depth less thand. But, IDA* would not do this, it
would stop as soon as the goal was encountered. To mimic this, for
each value ofd we used states as a start state only if IDA* actually
performs an iteration with a depth bound ofd whens is the start
state.
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h #States IDA* KRE G KRE(2)
8-puzzle depth 22

12 11454 1499 1391 1809
14 19426 1042 1404 1051
16 18528 660 1419 544
18 10099 377 1447 246

15-puzzle depth 52
38 2999 16,226,330 428,883,700 21,505,426
40 3028 6,310,724 433,096,514 6,477,903
42 2454 2,137,488 438,475,079 1,749,231
44 1507 620,322 444,543,678 409,341

Table 3: Tile puzzles with a consistent heuristic (MD).

into account. ForKRE the only difference between the at-
tributes of different rows is the different type distribution (of
the blank’s location) among the given group. Thus, the pre-
dicted number of expanded nodes ofKRE is very similar
for all rows (around 1400). TheG KRE formula takes the
heuristic of the start state into account and was able to pre-
dict the number of expanded nodes much better thanKRE.
The bottom part of Table 3 show results for the 15 puzzle.
Similar tendencies are observed.

d IDA* KRE G KRE
26 328 6,570 251
27 562 12,475 432
28 818 19,516 619
29 1,432 37,425 1,075

Table 4: Inconsistent heuristic for the 8-puzzle.

Inconsistent heuristics for the tile puzzle Our next ex-
periment is for an inconsistent heuristic on the 8-puzzle. We
defined two PDBs, one based on the location of the blank
and tiles1–4, the other based on the location of the blank
and tiles5–8. To create an inconsistent heuristic, only one of
the PDBs was consulted by a regular lookup. The choice of
PDB was made systematically, not randomly, based on the
position of the blank. Thus, neighboring states were guar-
anteed to consult different PDBs. The results, presented in
Table 4, show thatG KRE’s predictions are reasonably accu-
rate, and very much more accurate thanKRE’s.

Single start states
We have seen thatG KRE works well when the base case for
the recursion (N(0)) is seeded by a set of start states, even
if the set is not chosen at random. However, the actual num-
ber of expanded nodes for a specificsingle start state can
deviate from the number predicted byG KRE for its context.
This is because there is no way to predict the heuristic of a
neighbor of asinglestate as it does not necessarily obey the
observed distribution. Consider a Rubik’s Cube state with
a heuristic value of 8.G KRE predicts that IDA* will ex-
pand 6,743,686 for such a state (with depth bound 12). In-
deed, Table 2 shows that on the average (over 1000 such
start states) 6,002,025 states are expanded. Examining all
these 1000 start states with a heuristic of 8 showed that the

actual number of expanded nodes ranged between 2,398,072
to 15,290,697 nodes.

In order to predict the number of expanded nodes for a
single start state we suggest the following enhancement to
G KRE. Assume that we want to predict the number of ex-
panded nodes with depth boundd for start states. First, we
perform a small initial IDA* search froms up to radiusr.
We then seed all the states at radiusr in the base caseN(0)
of theG KRE formula and compute the formula with depth
d − r. This will cause a larger set of nodes to be seeded at
level 0 of theG KRE formula and more accurate results will
be achieved.

h IDA* G KRE(r=2) G KRE(r=5) G KRE(r=6)
8 2,398,072 4,854,485 3,047,836 2,696,532
8 4,826,154 7,072,952 5,495,475 5,184,453
8 15,290,697 9,432,008 13,384,290 14,482,001

Table 5: Single state (d = 12).

Table 5 shows results for three specific Rubik’s Cube
states with a heuristic of 8 (of the regular 6-edges PDB
lookup) when the depth bound was set to 12. We chose
the states with the least, median and greatest number of ex-
panded nodes. The first column shows the actual number of
nodes IDA* expands for each state. The next columns show
the number of expanded nodes predicted by our enhanced
G KRE formula where the initial search was performed to
radiuses of 2, 5 and 6. Clearly, these initial searches give
much better predictions than the simpleG KRE which pre-
dicts 6,743,686 for all these states. With an initial search to
radius 6, the predictions were very accurate.
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Figure 3: Relative error for the 8-puzzle

The 8-puzzle We performed experiments with the en-
hancedG KRE formula on all the states of the 8-puzzle with
the (consistent) MD heuristic. We use the term “trial” to re-
fer to each pair of a single start state and a given depth bound
d. The trials included all possible values ofd and for each
d all start states for which IDA* would actually perform a
search with depth boundd. Predictions were made for each
trial separately, and the relative error,predicted/actual, for
the trial was calculated. The results are shown in Figure
3. There are four curves in the figure, forKRE, for G KRE,
and for the enhancedG KRE with radiuses of 5 and 10. The
x-axis is relative error. They-axis is the percentage of trials
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that the prediction had a relative error ofx or less. For exam-
ple, they-value of 20% for theKRE curve atx = 0.5 means
thatKRE underestimated by a factor of 2 or more on 20%
of the trials. The rightmost point of theKRE plot (x = 10,
y = 94%) indicates that on 6% of the trialsKRE’s predic-
tion was more than 10 times the actual number of nodes ex-
panded. By contrastG KRE has a much larger percentage
of highly accurate predictions, with over 99% of its predic-
tions within a factor of two of the actual number of nodes
expanded. The figure clearly shows the advantage of using
the enhancedG KRE with an initial search to a radius 10,
90% of the cases were within 10% of the correct number.

IDA* with BPMX
With an inconsistent heuristic, the heuristic value of a child
can be much larger than that of the parent. When generat-
ing such a child this large heuristic can be propagated to the
parent. For example a child heuristic value of 7 can be prop-
agated to the parent and the parent can use the value of 6
even if its own value was much smaller. This propagation
technique is called bidirectional pathmax (BPMX) (Felner
et al. 2005; Zahaviet al. 2007). It was shown to be very ef-
fective in pruning subtrees that would otherwise be explored
and the number of expanded nodes can be reduced by a fac-
tor of up to 18 in some cases.

Our prediction formulaG KRE can be generalized to han-
dle the BPMX method as well. Here we give a sketch of the
general idea. (Zahaviet al. 2007) showed that when apply-
ing BPMX to inconsistent heuristics thedynamic branching
factor (the average number of nodes that are actually gener-
ated) might be smaller than the brute-force branching factor.
Assume thatp is a fertile node that was just generated. When
BPMX is used, a childc (of p) will be generated only if its
preceding siblings and their subtrees will not prunep. We
will define pbx(c|context) to be the probability that a state
p will not be pruned by its firstc children or by the subtrees
below them. With this new definition we can extend equa-
tion 2 to:

Ni(s, v) =

d−(i−1)
X

vp=0

b
X

c=1

Ni−1(s, vp)·p(v|vp)·pbx(c−1|d, i−1, vp)

The exact development ofpbx(c|context) is complicated.
Due to lack of space we leave the detailed discussion for
another paper. We conducted experiments with this gener-
alized formula and the results show that we were able to
predict the amount of pruning rather accurately. We were
never wrong by more than 15% from the actual number of
expanded nodes.

Conclusions and future work
Historically, heuristics were characterized by their average
(a single value).KRE introduced the static distribution (a
vector of values) and presented their prediction formula. We
took this another step to the conditional distribution (at least
a 2-dimensional matrix of values) and presented theG KRE
prediction formula. It advancesKRE in that it works for any

set of start states as well as for inconsistent heuristics. We
have also shown how to use it to make a prediction for a
single start state.

Future work will address a number of issues. First, a
full treatment of BPMX should be given. The conditional
probability widens our abilities to characterize heuristics. A
deeper study of the attributes of a heuristic given its condi-
tional probability distribution is likely to advance our under-
standing of heuristics.
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