
Combining Breadth-First and Depth-First Strategies in Searching for Treewidth

Rong Zhou
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

rzhou@parc.com

Eric A. Hansen
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

Breadth-first and depth-first search are basic search strate-
gies upon which many other search algorithms are built. In
this paper, we describe an approach to integrating these two
strategies in a single algorithm that combines the complemen-
tary strengths of both. We report preliminary computationl
results using the treewidth problem as an example.

Introduction
Breadth-first and depth-first search are basic search strate-
gies upon which many other search algorithms are built.
Given the very different way in which they order node
expansions, it is not obvious that they can be combined
in the same search algorithm. In this paper, we describe
an approach to integrating these two strategies in a sin-
gle algorithm that combines the complementary strengths of
both. To illustrate the benefits of this approach, we use the
treewidth problem as an example.

The treewidth of a graph (also known as the induced
treewidth) is a measure of how similar the graph is to a tree,
which has a treewidth of 1. A completely connected graph
is least similar to a tree, and has a treewidth ofn− 1, where
n is the number of vertices in the graph. Most graphs have
a treewidth that is somewhere in between 1 and the number
of vertices minus 1.

There is a close relationship between treewidth and vertex
elimination orders. Eliminating a vertex of a graph is defined
as follows: an edge is added to every pair of neighbors of the
vertex that are not adjacent, and all the edges incident to the
vertex are removed along with the vertex itself. A vertex
elimination order specifies an order in which to eliminate all
the vertices of a graph, one after another. For each elimina-
tion order, the maximum degree (i.e., the number of neigh-
bors) of any vertex when it is eliminated from the graph is
defined as the width of the elimination order. The treewidth
of a graph is defined as the minimum width over all possible
elimination orders, and an optimal elimination order is any
order whose width is the same as the treewidth.

Many algorithms for exact inference in Bayesian net-
works are guided by a vertex elimination order, including
Bucket Elimination (Dechter 1999), Junction-tree elimina-
tion (Lauritzen & Spiegelhalter 1988), and Recursive Con-
ditioning (Darwiche 2001). In fact, the complexity of all of

these algorithms is exponential in the treewidth of the graph
induced by the network. For these algorithms, use of a sub-
optimal elimination order leads to inefficiency, and improv-
ing an elimination order by even small amount can result
in large computational savings. Solving the treewidth prob-
lem exactly, and finding an optimal elimination order, allows
these algorithms to run as efficiently as possible.

Previous work
Finding the exact treewidth of a general graph is an
NP-complete problem (Arnborg, Corneil, & Proskurowski
1987). One approach to finding the exact treewidth is depth-
first branch-and-bound search in the space of vertex elimi-
nation orders (Gogate & Dechter 2004). However, Dow and
Korf (2007) recently showed that best-first search can dra-
matically outperform depth-first branch-and-bound search
by avoiding repeated generation of duplicate search nodes.

In the search space of the treewidth problem, each node
corresponds to anintermediate graphthat results from elim-
inating a set of vertices from the original graph. Figure 1
shows the treewidth search space for a graph of4 vertices.
Each oval represents a search node that is identified by the
set of vertices eliminated so far from the original graph. A
path from the start node (which has an empty set of elimi-
nated vertices) to the goal node (which has all vertices elim-
inated) corresponds to an elimination order, and there is a
one-to-one mapping from the set of elimination orders to
the set of paths from the start to the goal node. Although
there aren! different elimination orders for a graph ofn ver-
tices, there are only2n distinct search nodes. This is be-
cause different ways of eliminating the same set of vertices
always arrive at the same intermediate graph (Bodlaenderet
al. 2006), and there is only one distinct intermediate graph
for each combination (as opposed to permutation) of the ver-
tices. Depth-first branch-and-bound search treats the search
space as a tree withn! distinct states instead of a graph with
only2n states. The faster performance of best-first treewidth
search reflects the difference in size between a search tree
and a search graph (Dow & Korf 2007).

Unfortunately, the scalability of best-first (treewidth)
search is limited by its memory requirements, which tend
to grow exponentially with the search depth. To improve
scalability, Dow and Korf use a memory-efficient version of
best-first search calledbreadth-first heuristic search(Zhou

162



& Hansen 2006), which, likefrontier search(Korf et al.
2005), only stores the search frontier in memory and uses
a divide-and-conquer approach to reconstruct the solution
path after the goal is reached. In fact, they use a variant
of breadth-first heuristic search, calledSweepA*(Zhou &
Hansen 2003), that exploits the fact that the search graph for
the treewidth problem is a partially ordered graph. Apar-
tially ordered graphis a directed graph with a layered struc-
ture, such that a node in one layer can only have successors
in the same layer or later layers. This allows layers to be
removed from memory after all their nodes are expanded.
SweepA* expands all the nodes in one layer before consid-
ering any nodes in the next layer, and uses an admissible
heuristic and an upper bound to prune the search space.

Besides exploiting the layered structure of the search
graph using SweepA*, there is another important way in
which the search algorithm of Dow and Korf limits use of
memory. Because the size of an intermediate graph can vary
from several hundred bytes to a few megabytes, storing an
intermediate graph at each search node is impractical for all
but the smallest problems. Instead, Dow and Korf store with
each search node only the set of vertices that have been elim-
inated so far. Each time a node is expanded, its correspond-
ing intermediate graph is generated on-the-fly by eliminating
from the original graph those vertices stored with the node.
While this approach is space-efficient, it incurs the overhead
of intermediate graph generation every time a node is ex-
panded. For large graphs, this overhead is considerable. In
the rest of this paper, we describe a technique that eliminates
much of this overhead.

Meta search space
To reduce the time overhead of intermediate graph genera-
tion, we describe a search algorithm that does not generate
the intermediate graph from the original graph at the root
node of the search space. Instead, it generates it from the
intermediate graph of a close neighbor of the node that is be-
ing expanded. The advantage is that the intermediate graph
of a close neighbor is already very similar, and so there is
much less overhead in transforming it into a new interme-
diate graph. The simplest way to find the node’s closest
neighbor is by computing shortest paths from a node to all
of its neighbors and picking the closest one. But at first,
this does not seem to work for the treewidth problem, since
its state space is a partially ordered graph in which the dis-
tance between any pair of nodes at the same depth is infinite.
For example, suppose there are two nodes that correspond to
the intermediate graphs that result from eliminating vertices
{1, 2, 3} and{1, 2, 4} from the original graph, respectively.
From Figure 1, one can see that there is no legal path be-
tween these two nodes, because once a vertex is eliminated,
it cannot be “uneliminated.”

Our idea is to measure the distance between a pair of
nodes in ameta search space, instead of the original search
space. A meta search space has exactly the same set of states
as the original search space, but is augmented with a set of
meta actions that can transform one node into another in
ways not allowed in the original search space. For exam-
ple, a meta action for the treewidth problem can be an action

Figure 1:The search space of treewidth for a graph of 4 vertices.
Each oval represents a search node identified by the set of vertices
eliminated so far. The start node corresponds to the original graph
with an empty set of eliminated vertices and the goal node is the
one with all the vertices eliminated.

that “uneliminates” a vertex by reversing the changes made
to a graph when the vertex was eliminated. For the treewidth
problem augmented with the “uneliminate” meta action, its
search graph is an undirected version of the graph shown in
Figure 1. In this new graph, called a meta search graph, ac-
tions (i.e., edges) can go back and forth between a pair of
adjacent nodes, and this allows us to generate the interme-
diate graph of a node from another node at the same depth.
As we will see, this is very useful for breadth-first heuris-
tic search (Zhou & Hansen 2006), which expands nodes in
order of their depth in the search space.

Since a node is uniquely identified by the set of vertices
eliminated, we use the same lower-case letter (e.g.,n, u,
andv) to denote both a node and a set of eliminated ver-
tices in the rest of this paper. To implement the “unelim-
inate” meta action, each edge of the meta search graph is
labeled by a tuple〈u, v, ∆E+, ∆E−〉, whereu (v) is the
set of vertices eliminated so far at the source (destination)
node of the edge, and∆E+ (∆E−) is the set of edges
added to (deleted from) the graph when the vertex in the
singleton setv \ u is eliminated. LetGn = 〈Vn, En〉 be
the intermediate graph associated with noden. The task
of adding a previously-eliminated vertex back to the graph
can be expressed formally as: givenGv = 〈Vv, Ev〉 and
e = 〈u, v, ∆E+, ∆E−〉, how to computeGu = 〈Vu, Eu〉?
Since all the changes are recorded with the edgee, one can
reconstructGu = 〈Vu, Eu〉 as follows,

Vu = Vv ∪ v \ u (1)

Eu = Ev ∪ ∆E− \ ∆E+ (2)

That is, by adding (deleting) the edges that have been previ-
ously deleted (added) to the graph, the “uneliminate” meta
action can undo the effects of an elimination action in the
original search space.

In general, adding meta actions can turn directed search
graphs into undirected graphs such that the effects of any ac-
tion in the original search space can be “undone.” This guar-
antees that any changes made to the current state (e.g., the
intermediate graph) is reversible, creating a graph with the

163



Figure 2: Example binary decision tree with search nodes for
treewidth as leaves. For simplicity, non-leaf nodes are not shown.

following appealing property: forany two states reachable
from the start state, there isalwaysa path that maps one into
the other. This property allows a search algorithm to gener-
ate the state representation of a node fromany stored node,
because if actions all have deterministic effects, then a state
s′ is uniquely identified by another states plus a path froms
to s′. If it takes less space to represent a path betweens and
s′, then this approach to state encoding can save memory,
although at the cost of some computational overhead.

For the treewidth problem, this means the intermediate
graph of a node can be generated from any node instead
of only from the node’s direct ancestors such as the start
node. Thus, one only needs to maintain a single intermedi-
ate graph, which can be modified to become the intermedi-
ate graph for any node in the search space. An interesting
question is how to minimize the overhead of generating the
intermediate graph from one node to another. The answer
depends on the search strategy, because ultimately our goal
is to minimize the overhead of expanding not just a single
node but a set of nodes.

Decision-tree representation of frontier nodes
The solution we propose is to use an ordered decision tree
to store the set of frontier nodes at the current depth of
breadth-first heuristic search as the leaves of the decision
tree. Unlike explicit-state search methods, this approach can
be viewed as a variant of symbolic search in which the state-
representation similarities among a set of nodes are retained
in the decision tree and exploited by the search algorithm.

A decision tree is defined as a rooted tree in which every
non-leaf node is a decision node that performs a test on a
variable, the value of which is then used to determine recur-
sively the next decision node until a leaf node is reached. A
decision tree is commonly used to represent a discrete func-
tion over a set of variables. For the treewidth problem, these
are Boolean variables, one for each vertex. A Boolean vari-
able has the value of true if its corresponding vertex has been
eliminated. Thus, we only need to focus on binary decision
trees here, even though multi-valued decision trees would be
needed for the general case.

To make operations on decision trees more efficient, an
ordering constraint is usually enforced that requires the or-
der in which variables are tested be the same on any path

from the root to a leaf node. The resulting data structure
is called an ordered binary decision tree, and an example is
shown in Figure 2. In this example, variables are tested in
increasing order of vertex number: 1, 2, 3, then 4. A solid
(dashed) edge represents a truth (false) assignment to the
variable being tested at the source node of the edge. A leaf
node corresponds to a complete assignment to all the vari-
ables, and there is a one-to-one mapping from the set of leaf
nodes shown in Figure 2 to the set of search nodes shown in
Figure 1. From now on, we call a decision trees that stores
the frontier nodes of a search graph in this way afrontier
decision tree.

To support meta actions, each edge of the frontier decision
tree stores “undo” information as needed by Equations (1)
and (2). Note that for an undirected search space, there is no
need to store such information.

Space overhead We use a frontier decision tree in order to
reduce the time overhead for regenerating the intermediate
graph from the root node. But this must be weighed against
the space overhead for storing the decision tree. We make a
few comments here about how to minimize the space over-
head, and discuss this important question further near the
end of the paper.

An important way to save space in a frontier decision tree
is to find a good ordering of the variables, which affects the
number of decision nodes needed to represent a set of fron-
tier nodes. While finding an optimal ordering is a hard com-
binatorial optimization problem in itself, good orders can
often be found quickly by using simple heuristics. We tried
three variable-ordering heuristics, the details of which are
described in the computational results section.

The amount of memory needed to store a frontier deci-
sion tree depends not only on how many frontier nodes are
stored, but also on the number of non-leaf decision nodes.
To improve memory efficiency, we would like to remove a
decision node if it does not lead to any frontier node. To
allow pruning of useless decision nodes, we store a leaf-
node counter at each decision node in the tree. Each time
a leaf node is deleted, all of its ancestor decision nodes de-
crease their leaf-node counters by one, and a decision node
is deleted as soon as its leaf-node counter reaches zero. With
this pruning rule in place, it is easy to prove that the asymp-
totic space complexity of a frontier decision tree isO(V N),
whereV is the number of vertices in the original graph and
N is the number of frontier nodes stored in the decision tree.
This result holds even in the worst case in which no two leaf
nodes share the same sub-path in the frontier decision tree.
Given that the space complexity of an explicit-state (as op-
posed to symbolic) representation is alsoO(V N), it follows
that our decision-tree representation of frontier nodes does
not increase the asymptotic space complexity of the search
algorithm. But because it stores additional information such
as common prefixes in the tree, it can increase the space
complexity of the search by a constant factor. We discuss
this potential space overhead and techniques for reducing it
later in the paper. For now, we focus on using this frontier
decision tree to improve the time complexity of search.

164



Depth-first search in frontier decision tree
The purpose of using an ordered binary decision tree to store
the set of frontier nodes is twofold. First, it reveals the
similarities among the frontier nodes, because nodes with
the same prefix (according to the test ordering) share the
same ancestor node in the decision tree. For example, be-
cause nodes{1, 2, 3} and{1, 2, 3, 4} share the same prefix
{1, 2, 3}, they have the same parent node in the decision tree.
On the other hand, because nodes{∅} and{1, 2, 3, 4} have
nothing in common, their common ancestor is only the root
node. Second, the tree topology guarantees there is a unique
path from the root to a leaf node. This facilitates the use of a
tree-search algorithm such as depth-first search to determine
the order in which frontier nodes are expanded.

It is well-known that depth-first search has excellent
memory-reference locality. This is particularly well suited
for decision trees, since a depth-first search of a decision
tree always visits nodes with the same prefix before visit-
ing nodes with different prefixes, and thelonger the pre-
fix that is shared by two nodes, thecloserthey will be vis-
ited in depth-first search. For the treewidth problem, this
means that if two nodes have similar intermediate graphs,
they will be expanded close to each other, and the more simi-
lar their intermediate graphs, the closer together they will be
expanded. To minimize the intermediate-graph generation
overhead for the entire set of frontier nodes at the current
search depth, we use depth-first traversal of the decision tree,
which visits all leaf nodes of the decision tree. Thus, our
treewidth algorithm adopts a hybrid search strategy that uses
depth-first traversal in a symbolic (e.g., decision-tree) rep-
resentation of the (meta) search graph to determine the or-
der of node expansions for the current depth of breadth-first
heuristic search (or nodes with the same minimumf -cost
in the case of A*). The depth-first search aspect essentially
serves as a tie-breaking strategy in breadth-first (or best-first)
search to improve its memory-reference locality; in the case
of treewidth computation, it also reduces the overhead of
generating the intermediate graphs.

Example Figure 3 shows an example how depth-first
search can reduce the intermediate-graph generation over-
head in breadth-first heuristic search for treewidth. Suppose
the three leaves shown in the figure are the frontier nodes
of breadth-first heuristic search, and the intermediate graph
has already been generated for node{1, 3, 4}. Depth-first
search will visit node{1, 2, 4} next, and then node{1, 2, 3}.
A sequence of dark (solid and dashed) arrows represents the
order in which actions are taken to “migrate” the intermedi-
ate graph from node{1, 3, 4} to node{1, 2, 4} and then to
node{1, 2, 3}. A solid dark arrow moving towards the leaf
(root) represents an action that eliminates (uneliminates) a
vertex. Dashed arrows represent no-op actions that simply
move an intermediate graph around in the decision tree with-
out changing its content. The action sequence shown in Fig-
ure 3 starts with a meta action (shown as a dark, upward ar-
row from node{1, 3, 4}) that “uneliminates” vertex 4 from
the intermediate graphG{1,3,4} in order to generateG{1,3}.
Then vertex 3 is “uneliminated” to generateG{1}. Next, ver-

Figure 3:Depth-first search in a binary decision tree can be used
to order node expansions in breadth-first treewidth computation.

tex 2 is eliminated from the intermediate graph to generate
G{1,2}, and then vertex 4 is eliminated to arrive atG{1,2,4}.
To migrate from node{1, 2, 4} to node{1, 2, 3}, vertex 4 is
“uneliminated” and then vertex 3 is eliminated to generate
the intermediate graphG{1,2,3}. Because an “uneliminate”
meta action does not need to check for connectivity between
all possible pairs of a vertex’s neighbors, it is usually much
cheaper than eliminating a vertex. Thus, we only count the
number of times an elimination action is performed as over-
head. In this example, there are altogether 3 elimination ac-
tions. For comparison, generating the intermediate graphs
for nodes{1, 2, 3} and{1, 2, 4} from the root node would
require 6 elimination actions (3 for node{1, 2, 3} and 3 for
node{1, 2, 4}), which is (almost) twice as expensive.

Note that the benefit of our approach increases as the
search frontier moves further away from the root node. For
example, if the three leaf nodes in Figure 3 are a hun-
dred elimination steps away from the root node, then it will
take about 200 elimination actions to regenerate the inter-
mediate graphs for nodes{1, 2, 4} and {1, 2, 3}; whereas
it still takes the same number of elimination actions (3)
with our approach, no matter how deep these nodes are, as
long as the intermediate graph has just been generated for
a node ({1, 3, 4} in this example) that is close by. More-
over, the overhead of elimination actions can differ signifi-
cantly depending on the size and topology of the intermedi-
ate graph. Because intermediate graphs have fewer vertices
as the search goes deeper, elimination actions tend to be-
come cheaper as frontier nodes move further away from the
root. In other words, the overhead of the 3 elimination ac-
tions needed in our approach is probably cheaper than1.5%
(i.e., 3/200) of the overhead incurred by generating the in-
termediate graphs from the root, if the overhead differences
in elimination actions are accounted for.

Computational results
Both random graphs and benchmark graphs were used in
our experiments. Given the number of verticesV , a random
graph is generated by selecting a fixed number of edgesE
uniformly from the set ofV (V − 1)/2 possible edges. In
our experiments, we usedV = 35 andE = 140 to generate

165



DFBnB BFHS
Tw Exp Sec Exp Sec
15 15,100,721 2,815.7 535,991 37.2
14 17,775,261 2,970.8 340,206 24.3
14 7,470,073 1,160.4 175,678 17.0
15 4,650,125 882.7 341,395 20.5
15 7,057,634 1,302.7 330,548 17.6

Table 1: Comparison of the QuickBB treewidth solver
based on depth-first branch-and-bound (DFBnB), and a
treewidth solver based on breadth-first heuristic search
(BFHS). Columns show treewidth (Tw), number of node ex-
pansions (Exp) and running time in CPU seconds (Sec).

100 random graphs, which correspond to the most difficult
set of random graphs used in (Dow & Korf 2007). All ex-
periments were run on a machine with two Intel 2.66 GHz
Xeon dual-core processors with 8 GB of RAM, although the
search algorithm never used more than 1 GB of RAM and
no multi-threading parallelization was used.

Recall the order in which decision variables are tested can
affect the size of an ordered decision tree. We tested three
variable-ordering heuristics: (a) the random ordering heuris-
tic, (b) the minimum-degree-vertex-first heuristic, which
orders the variables in increasing degrees of their corre-
sponding vertices, and (c) the maximum-degree-vertex-first
heuristic, which does the opposite. Our experiments indi-
cate that the random ordering and minimum-degree-vertex-
first heuristics store on average40% and135% more deci-
sion nodes than the maximum-degree-vertex-first heuristic
in solving the set of 100 random graphs, respectively. Thus,
the maximum-degree-vertex-first heuristic was used to pro-
duce all the experimental results reported next.

Next we studied two different strategies for caching the
“undo” information at the edges of the frontier decision tree.
Thecache-until-removalstrategy stores “undo” information
for every edge of the decision tree until the edge is removed
due to the pruning of some decision node. Thecache-until-
backtrackstrategy stores “undo” information until the depth-
first traversal of the decision tree backtracks from the edge
to the source decision node of that edge. In other words,
it only stores “undo” information along the current “stack”
of the depth-first traversal. Thus, the maximum number of
edges for which “undo” information is stored cannot exceed
the depth of the decision tree, which is bounded by the num-
ber of vertices in the original graph. Because the memory
requirements depend on the complexity of the “undo” infor-
mation measured in terms of the size of∆E+ and∆E−,
our implementation keeps track of the maximum number of
edges included in all such∆E sets, which reflects accurately
the total amount of memory used for storing “undo” infor-
mation over the entire decision tree. With the cache-until-
removal strategy, the average peak number of∆E edges
cached is 7,253,520 edges. This number decreased to about
405 edges when the cache-until-backtrackstrategy was used,
reducing the number of∆E edges by a factor of over 17,900
times! Surprisingly, this has little effect on the average run-
ning time of the algorithm; using the cache-until-backtrack
strategy increased the average running time by less than

Start node Neighbor
Tw Exp Sec Exp Sec Sec ratio
15 535,991 37.2 517,157 25.0 149%
14 340,206 24.3 322,498 15.7 155%
14 175,678 17.0 160,038 9.0 189%
15 341,395 20.5 334,150 14.2 144%
15 330,548 17.6 327,360 13.3 132%
16 4,776,876 433.8 4,677,177 230.8 188%
16 3,944,331 431.1 3,826,379 211.8 204%
16 3,767,825 396.4 3,629,411 193.9 204%
17 6,324,117 682.3 6,232,333 342.5 199%
16 4,520,092 404.0 4,431,308 215.8 187%

Table 2: Comparison of treewidth solvers based on breadth-
first heuristic search with different approaches to generating
the intermediate graphs. The column labeled ”Start node”
corresponds to the approach of generating the intermedi-
ate graph by eliminating vertices from the original graph;
the column labeled ”Neighbor” corresponds to the approach
of modifying the intermediate graph of a neighboring node.
The horizontal line separates the 5 easiest instances from the
5 hardest ones in a set of 100 random graphs.

1.7%, which is hardly noticeable. We also compared the
treewidth solution and the number of node expansions of the
two caching strategies for all 100 instances to make sure the
results are correct. Results in the rest of this section were
obtained by using the cache-until-backtrack strategy only.

We used breadth-first heuristic search as the underlying
search algorithm, which needs an upper bound to prune
nodes with anf -cost greater than or equal to the up-
per bound. While an upper bound for treewidth can be
quickly computed by using the minimum fill-in (min-fill)
heuristic, in our experiments we used divide-and-conquer
beam search (Zhou & Hansen 2004a) that can usually find
tighter upper bounds. A beam-search variant of breadth-first
heuristic search, divide-and-conquer beam search (DCBS)
limits the maximum size of a layer in the breadth-first
search graph. When memory is full (or reaches a predeter-
mined bound), DCBS recovers memory by pruning the least-
promising nodes (i.e, the nodes with the highestf -cost) from
the Open list before it continues the search.

Using a memory bound of 64 nodes, DCBS finds the ex-
act treewidth for 97 out of the 100 random graphs. For
the remaining three graphs, its solutions are very close to
the exact treewidth. When averaged over all 100 graphs,
the solution found by DCBS is within 0.2% of optimality.
Since our current implementation does not perform divide-
and-conquer solution reconstruction, a process that can po-
tentially improve the solution quality by solving multiple
subproblems of the original treewidth problem, the solution
quality found by a full-fledged implementation of DCBS can
be better. However, even with our current implementation,
we were able to find better solutions than QuickBB (Gogate
& Dechter 2004) on several benchmark graphs, including
a network in the Bayesian Network Repository calledpigs
with 441 vertices and 806 edges for which DCBS found a
treewidth of 9, improving on the best solution found so far
for this problem.

166



Graph Ub Lb Tw Stored Exp Sec
queen55 18 12 18 961 1,294 0.1
david 13 10 13 483 2,009 0.4
queen66 25 15 25 11,995 13,353 1.6
miles500 22 21 22 2 2 2.3
inithx.i.1 56 55 56 209 370 30.8
queen77 35 18 35 597,237 935,392 149.6
myciel5 19 14 19 678,540 3,418,309 192.3

Table 3: Performance of breadth-first heuristic search on
benchmark graphs. Depth-first traversal in a frontier deci-
sion tree is used to reduce the overhead in generating the
intermediate graphs. Columns show the upper bound found
by divide-and-conquer beam search (Ub), the heuristic value
for the start node (Lb), the treewidth (Tw), the peak number
of frontier nodes stored (Stored), the number of node expan-
sions (Exp), and running time in CPU seconds (Sec).

Next we compared QuickBB, a treewidth solver based
on depth-first branch-and-bound (DFBnB) search, and our
implementation of breadth-first heuristic treewidth (Dow &
Korf 2007), a solver based on breadth-first heuristic search
(BFHS). The 5 instances shown in Table 1 are the ones both
DFBnB and BFHS can solve among the same 100 random
graphs we tested before. These five instances are among the
easiest in this test set, and DFBnB cannot solve the other 95
instances. BFHS solved all 100 instances and spent about
154 seconds per instance (for comparison, the average time
is only 23.3 seconds for BFHS in Table 1). Even for the
5 easiest instances, BFHS ran about76.7 times faster than
DFBnB on average. These are basically the results obtained
by (Dow & Korf 2007) (possibly enhanced by the tighter
upper bounds found by DCBS), and we will use them as a
baseline to show the advantage of our hybrid algorithm.

The BFHS results shown in Table 1 are based on the naive
way of generating the intermediate graph from the original
graph, which can be further improved. Table 2 shows the
comparison of two different approaches to generating the
intermediate graphs, one by eliminating vertices from the
original graph and the other by modifying the intermediate
graph of a neighboring node. Both approaches use BFHS
as their underlying search algorithm. Note that the ratio
by which the second approach improves on the first one
increases with the hardness of the instance. For example,
the average speedup ratio for the 5 easiest instances (shown
above the horizontal line) is 1.5; for the 5 hardest instances
(shown below the horizontal line), it is 2.0. For reference,
the average speedup ratio is about 1.75 for all 100 instances.
The reason our hybrid algorithm performs increasingly bet-
ter on hard instances is that the more nodes are expanded,
the easier it is to find a neighbor whose intermediate graph
closely resembles the one to be generated next.

It is worth pointing out that the admissible heuristic for
treewidth, which computes the maximum degree of a min-
degree vertex encountered in a series of edge contractions
(see (Gogate & Dechter 2004) for details), is expensive
to compute. Thus, the speedup ratios (measured as CPU-
second ratios) shown in Table 2 are diluted by the time it
takes to compute the heuristic, which is the same no matter

Graph QBB QBB07 BFHT07

queen55 1.5 2.8 1.8
david 3.2 5.1 3.5
queen66 46 101.8 8
miles500 fault 149.7 mem
inithx.i.1 42.7 39.4 514.2
queen77 > 5 hrs > 5 hrs 1872.9
myciel5 fault 6699.6 1071.3

Table 4: Performance comparison of existing treewidth
solvers on benchmark graphs. Columns show the run-
ning time in CPU seconds for (i) QuickBB on our machine
(QBB), (ii) QuickBB as previously reported by Dow & Korf
(2007) (QBB07), and (iii) breadth-first heuristic treewidth as
previously published by Dow & Korf (2007) (BFHT07). Re-
sults under columns labeled QBB07 and BFHT07 were ob-
tained on the same machine. The string “mem” indicates the
corresponding solver required more than 800 megabytes of
memory, and “fault” indicates the solver terminated prema-
turely before finding an optimal solution on our machine.

how intermediate graphs are generated. When excluding the
time it takes to compute the heuristic, the average speedup
ratio increases from 1.75 to 2 on the random graphs.

Table 3 shows the performance of our hybrid algorithm on
benchmark graphs for DIMACS graph coloring instances.
Compared to published results (Dow & Korf 2007; Gogate
& Dechter 2004) shown in Table 4, Table 3 shows improve-
ment over the state of the art. The running time shown in
Table 3 includes the CPU seconds for computing the upper
bound using DCBS.

We haven’t mentioned yet the additional space overhead
of the decision-tree representation of frontier nodes. In our
experiments, it increased the memory requirements of the
treewidth search algorithm by a factor of up to ten times
compared to the strategy of regenerating the intermediate
graph from the root node. Although this is still much better
than storing a copy of the intermediate graph in each node,
it is a serious drawback compared to the approach of always
regenerating the intermediate graph from the root node, es-
pecially since memory is a limiting factor for graph search.
The reduction in search time we achieved may not be worth
this much of an increase in memory overhead. However we
believe there are many opportunities for substantially reduc-
ing the space overhead of the frontier decision tree, and we
plan to explore these in future work.

Conclusion and future work
We have presented a novel combination of breadth-first and
depth-first search that allows a single search algorithm to
possess the complementary strengths of both. While our
paper focuses on the treewidth problem, many of the ideas
have the potential to be applied to other search problems,
especially graph-search problems with large encoding sizes,
for which memory-reference locality is the key to achiev-
ing good performance. Possibilities include model check-
ing (Clarke, Grumberg, & Peled 2000), where a large data
structure that represents the current state is typically stored

167



with each search node, and constraint-based planning and
scheduling (Ruml, Do, & Fromherz 2005), where a sim-
ple temporal network is stored with each search node. As
long as the similarities among different search nodes can be
captured in a form that allows depth-first search to exploit
the state-representation locality in node expansions, the ap-
proach we have described could be effective.

However, it is very important to find ways to further re-
duce the space overhead of the frontier decision tree. A
promising approach is to use structured duplicate detec-
tion (Zhou & Hansen 2004b). The idea is for the decision
tree to only store the small fraction of the frontier nodes that
have the sameduplicate-detection scopeas the node being
expanded; the rest of the frontier nodes can be stored much
more compactly using a bit-vector representation. In this ap-
proach, the frontier decision tree would be built incremen-
tally and only used to encode those frontier nodes that are
on or near the decision-tree path currently being explored
by the depth-first search. Just as the peak number of∆E
edges stored can be reduced by over four orders of magni-
tude by only storing those edges that are on the stack of the
depth-first search, it seems promising to adopt this similar
approach to reducing the peak number of internal decision
nodes stored in the frontier decision tree.

Finally, our experiments show that the memory overhead
of the frontier decision tree tends to decrease with problem
size, while the time savings increases. Thus the potential
benefit of our approach increases with problem size. More-
over, if we use an external-memorysearch algorithm to solve
very large treewidth problems, it is likely to be more im-
portant to save time than to save memory. More work is
needed to fully evaluate the potential of this approach and
the space/time tradeoff it offers.

References
Arnborg, S.; Corneil, D. G.; and Proskurowski, A. 1987.
Complexity of finding embeddings in a k-tree.SIAM Jour-
nal on Algebraic and Discrete Methods8(2):277–284.
Bodlaender, H. L.; Fromin, F. V.; Koster, A.; Kratsch,
D.; and Thilikos, D. M. 2006. On exact algortithms for
treewidth. InProceedings of the 14th European Sympo-
sium on Algorithms (ESA-06), 672–683.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2000.
Model Checking. The MIT Press.
Darwiche, A. 2001. Recursive conditioning.Artificial
Intelligence126(1-2):5–41.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning.Artificial Intelligence113(1-2):41–85.
Dow, P. A., and Korf, R. 2007. Best-first search for
treewidth. InProceedings of the 22ndt National Confer-
ence on Artificial Intelligence (AAAI-07), 1146–1151.
Gogate, V., and Dechter, R. 2004. A complete anytime
algorithm for treewidth. InProceedings of the 20th Con-
ference in Uncertainty in Artificial Intelligence (UAI-04),
201–208.
Korf, R.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search.Journal of the ACM52(5):715–748.

Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Local
computations with probabilities on graphical structures and
their application to expert systems.Journal of Royal Statis-
tics Society, Series B50(2):157–224.
Ruml, W.; Do, M. B.; and Fromherz, M. 2005. On-line
planning and scheduling for high-speed manufacturing. In
Proceedings of the 15th International Conference on Auto-
mated Planning and Scheduling, 30–39.
Zhou, R., and Hansen, E. 2003. Sweep A*: Space-efficient
heuristic search in partially ordered graphs. InProc. of
15th IEEE International Conf. on Tools with Artificial In-
telligence, 427–434.
Zhou, R., and Hansen, E. 2004a. Breadth-first heuristic
search. InProceedings of the 14th International Confer-
ence on Automated Planning and Scheduling, 92–100.
Zhou, R., and Hansen, E. 2004b. Structured duplicate de-
tection in external-memory graph search. InProceedings
of the 19th National Conference on Artificial Intelligence
(AAAI-04), 683–688.
Zhou, R., and Hansen, E. 2006. Breadth-first heuristic
search.Artificial Intelligence170(4-5):385–408.

168




