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Abstract
The time it takes a program to solve a particular problem 
depends  heavily  upon  the  choice  of  problem  solving 
method, the data representation, heuristics etc.  The specific 
choices can have a dramatic impact on performance.
This  research  aims  to  produce  a  formula  based  on  these 
design decisions and problem characteristics which predicts 
how long the problem will run until a solution is found.
As  means  to  this  end  we  are  working  on  a  prototype 
problem  solving  method  which  dynamically  adapts  its 
search configuration in order to speed up finding a solution.

Problem Description

The ultimate goal of this research is to design a problem 
solver which can dynamically reconfigure itself to speed 
up its problem solving.  In order to achieve this objective 
we need: (1) a formula that relates problem parameters and 
design  decisions  to  the  CPU time that  the  configuration 
will need in order to solve that problem; (2) a method for 
deriving the parameter values from the problem; and (3) a 
way  of  finding  the  set  of  design  decision  choices  that 
minimizes the problem-solving CPU time.  The challenge 
is  to  mathematically  model  the  impact  of  the  different 
design  choices  of  methods,  data  representations,  and 
heuristics upon the time taken solve a given problem.  

In  general,  automatically  generating such a  formula 
for an arbitrary family of problem solvers is beyond the 
current state of the art.  Therefore we have focused on one 
such family of problem solvers,  namely,  heuristic  search 
problem solvers.  

We have identified a number of design decisions and 
problem parameters  that  affect  the  CPU time needed  to 
solve  a  problem,  and  have  formulated  a  rudimentary 
formula that relates these decisions and parameters to the 
CPU time.  We have devised a strategy for incrementally 
acquiring  approximations  of  the  problem  parameters 
needed  by  the  formula,  and  are  in  the  process  of 
implementing  a  prototype  that  dynamically  reconfigures 
itself  to  reduce  its  expected  CPU  time  to  solve  the 
problem.

Note  that  we  talk  about  � incrementally  acquiring 
approximations of the problem parameters� , this is because 
not all  the problem parameters can be acquired a priori. 
Some of them will only be known with certainty after the 
problem  has  been  solved.   However,  for  some  we  can 
approximate  their  value  as  we  attempt  to  solve  the 

problem.  We will call the first type a priori, the second a 
posteriori.   Those parameters gathered while solving the 
problem we call sampled parameters.

Our  formula  calculates  the  total  CPU  time  by 
multiplying the expected number of search nodes by the 
expected time cost of creating a search node.   Roughly, 
the expected number of search nodes is the � average�  node 
branching  factor  raised  to  the  minimum solution  length 
depth.

Unfortunately,  the  values  for  these  problem 
parameters cannot be determined by simply examining the 
statement of the problem.  In particular, we seldom know 
the minimum solution path length for arbitrary problems.

One problem in predicting how long the search will take 
using a specific Heuristic Search configuration is that one 
needs  to  predict  how  many  nodes  the  informed  search 
method (using that heuristic) will explore in searching for a 
solution (as well as the cost of exploring a node). The size 
of the search space will usually be exponential with respect 
to the length of the solution found. Since we normally do 
not know the length of the solution before we solve the 
problem,  we  can  not  predict  how  many  nodes  will  be 
explored a priori.

Knowing  the  exact  length  of  the  solution  is  not 
necessary if  the  Heuristic  Space is  expanded in  stages  , 
e.g.,  IDA*.   We can  then  use  statistics  gathered on  the 
previous iterations to predict  next iteration performance. 
For  iterative  search  different  heuristics  can  be  the  best 
choice for different iterations of the same problem.

Summarizing:  Heuristic  Search  performance  is  a 
function  of  heuristic  selection,  problem instance,  search 
method and current iteration.

In  order  to  reconfigure  the  Heuristic  Search 
implementation for the next iteration we need to calculate 
which  of  the available configurations  minimize the  time 
formula.  We gather sampled parameters which are used to 
predict  performance  on  the  exponentially  bigger  next 
iteration.  Sampled parameters prediction quality depends 
on how frequently they are sampled.   There is a trade off 
between prediction quality and computational effort.   

Related Research

Most of related research has been centered on estimating 
the  size of  search  spaces  expanded by Heuristic  Search. 
Most of existing literature concentrates on studying either 
different search implementations with the same candidate 
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heuristics, e.g. IDA* vs A*, or heuristic selection given a 
search configuration.  For both cases the size of the search 
space expanded tends to be the deciding factor on which 
search method is fastest as other variants are the same.

Holte(Holte,2005)  compares   hierarchical  abstract 
IDA*,in  which  heuristics  are  calculated  on  demand,  vs 
disjoint pattern databases(Korf,2002), on which the whole 
abstract  space is  searched and stored before solving any 
problem instance.  Holte  notes  that  comparative  heuristic 
performance  depends  on  how  many  instances  with  the 
same goal  are to  be  solved and how his  abstract  search 
method  is  configured  (how  many  abstract  levels  are 
cached).   Furthermore  the  performance  of  his  Heuristic 
Search configuration is dependent as well on the problem 
instance being solved.

Our Approach 

The  objective  of  this  research  is  to  automate  choosing 
which heuristic search configuration will be the fastest for 
the current problem for the next iteration.  The novelty on 
our approach is to dynamically adapt the Heuristic Search 
configuration to minimize search time until a solution is 
found.

Every time we perform an iteration and the solution is 
not found the solving method starts an introspective phase. 
For  the  next  iteration  we  need  to  decide  what  is  the 
preferred  Heuristic  Search  configuration  and  which 
sampled parameters need to be updated.

While it would be desirable to predict the performance 
of  each possible Heuristic  Search configuration the time 
costs  associated  can  be  too  large.   We  choose  which 
information we gather following the principle: 

Information has value to the extent that it is likely to 
cause a change of plan, and to the extent that the new 
plan will be significantly better than the previous plan 
(Russell,1995).
For  example  we  might  consider  whether  to  add 

duplicate  checking  or  inverse  operator  checking  to  the 
Heuristic  Search  configuration  for  next  iteration. 
Duplicate check is  more expensive than inverse operator 
checking but  its  pruning potential  is  much bigger  if  the 
search  space  is  big enough.   As  we  have  formulas  for 
predicting the search space size, we can alter the current 
preferred  search  configuration  from  inverse  operator 
checking to duplicate checking.

An advantage of iterative search on exponential search 
spaces  is  that  the  cost  of  gathering  updated  values  of 
sampled  parameters  will  be  exponentially  cheaper  than 
acquiring them on the next iteration.

The  introspective  phase  needs  to  keep  predictions  on 
each  possible  search  configurations.   Each  sampled 
parameter has an associated accuracy.  As the number of 
iterations  increases,  the   sampled  parameters  may  loose 
accuracy.  This, in turn, may affect our ability to determine 
which configuration is best.  When this happens, we need 
to update the values of the sampled parameters.

Following  is  a  brief  description  of  some  of  the 
parameters used in predicting future performance.

The  formula  above  predicts  the  time(tn)  it  takes  to 
perform the next IDA* iteration using sampled parameters.

•  Nexp  is   the  number  of  nodes  expanded  on   the   search. 
Every   node   expanded   has   been   tested   for   whether   it 
should be expanded.

•  Ncull  are those nodes whose expansion is delayed till  a 
future iteration because their F value is bigger than the 
current iteration depth bound.  

•  Np  will   never  be   expanded  because  of   search  control 
rules like cyclic paths, inverse operator, duplicate check, 
etc.
There  are  several  models  predicting  the  search  space 

size.  In general they try to map the Heuristic Search Space 
to  a  Uniform  Search  Tree  with  an  effective  branching 
factor,depth  or  simply  a  constant  growth  rate  once  the 
search space is big enough(Korf,2001).  There are different 
formulas using this parameters which allow us to estimate 
the nodes expanded, culled and pruned for next iteration. 
Keeping tabs on these is quite inexpensive.

•  th:  depends   on   the   cost   of   the   heuristic.     For   closed 
formulas   like   Manhattan   the   cost   is   constant.     For 
abstraction based heuristics the time cost is as complex 
as any other planning search and is a function of abstract 
search   method,   abstract   space   complexity   and 
how/whether the results are cached.     

• tp: test is constant as long as an efficient hashing function 
can be built.  Otherwise, the cost is linearly dependent of 
the  size  of  the  pruning  database  to  check  against. 
Normally a hashing function can be build for any state 
of  a  domain.   We  are  considering  full  duplicate 
checking,  cyclic  path  detection  and  inverse  operator 
checking as pruning functions. 

• tg:goal  evaluation  is  in  most  cases  constant  for  the 
domain  and  can  be  precomputed  for  all  problem 
instances.

• texp: node expansion costs are usually constant and can be 
precomputed for most domains.
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