
Using Sampling to Dynamically Reconfigure Problem-Solvers

Santiago Franco, Mike Barley
The University of Auckland, Department of Computer Science

Private Bag 92019,Auckland, New Zealand
santiago.franco@gmail.com
mbar098@cs.auckland.ac.nz

Abstract
The time it takes a program to solve a particular problem
depends heavily upon the choice of problem solving
method, the data representation, heuristics etc. The specific
choices can have a dramatic impact on performance.
This research aims to produce a formula based on these
design decisions and problem characteristics which predicts
how long the problem will run until a solution is found.
As means to this end we are working on a prototype
problem solving method which dynamically adapts its
search configuration in order to speed up finding a solution.

Problem Description

The ultimate goal of this research is to design a problem
solver which can dynamically reconfigure itself to speed
up its problem solving. In order to achieve this objective
we need: (1) a formula that relates problem parameters and
design decisions to the CPU time that the configuration
will need in order to solve that problem; (2) a method for
deriving the parameter values from the problem; and (3) a
way of finding the set of design decision choices that
minimizes the problem-solving CPU time. The challenge
is to mathematically model the impact of the different
design choices of methods, data representations, and
heuristics upon the time taken solve a given problem.

In general, automatically generating such a formula
for an arbitrary family of problem solvers is beyond the
current state of the art. Therefore we have focused on one
such family of problem solvers, namely, heuristic search
problem solvers.

We have identified a number of design decisions and
problem parameters that affect the CPU time needed to
solve a problem, and have formulated a rudimentary
formula that relates these decisions and parameters to the
CPU time. We have devised a strategy for incrementally
acquiring approximations of the problem parameters
needed by the formula, and are in the process of
implementing a prototype that dynamically reconfigures
itself to reduce its expected CPU time to solve the
problem.

Note that we talk about � incrementally acquiring
approximations of the problem parameters� , this is because
not all the problem parameters can be acquired a priori.
Some of them will only be known with certainty after the
problem has been solved. However, for some we can
approximate their value as we attempt to solve the

problem. We will call the first type a priori, the second a
posteriori. Those parameters gathered while solving the
problem we call sampled parameters.

Our formula calculates the total CPU time by
multiplying the expected number of search nodes by the
expected time cost of creating a search node. Roughly,
the expected number of search nodes is the � average� node
branching factor raised to the minimum solution length
depth.

Unfortunately, the values for these problem
parameters cannot be determined by simply examining the
statement of the problem. In particular, we seldom know
the minimum solution path length for arbitrary problems.

One problem in predicting how long the search will take
using a specific Heuristic Search configuration is that one
needs to predict how many nodes the informed search
method (using that heuristic) will explore in searching for a
solution (as well as the cost of exploring a node). The size
of the search space will usually be exponential with respect
to the length of the solution found. Since we normally do
not know the length of the solution before we solve the
problem, we can not predict how many nodes will be
explored a priori.

Knowing the exact length of the solution is not
necessary if the Heuristic Space is expanded in stages ,
e.g., IDA*. We can then use statistics gathered on the
previous iterations to predict next iteration performance.
For iterative search different heuristics can be the best
choice for different iterations of the same problem.

Summarizing: Heuristic Search performance is a
function of heuristic selection, problem instance, search
method and current iteration.

In order to reconfigure the Heuristic Search
implementation for the next iteration we need to calculate
which of the available configurations minimize the time
formula. We gather sampled parameters which are used to
predict performance on the exponentially bigger next
iteration. Sampled parameters prediction quality depends
on how frequently they are sampled. There is a trade off
between prediction quality and computational effort.

Related Research

Most of related research has been centered on estimating
the size of search spaces expanded by Heuristic Search.
Most of existing literature concentrates on studying either
different search implementations with the same candidate

171

mailto:Santiago.Franco@gmail.com

heuristics, e.g. IDA* vs A*, or heuristic selection given a
search configuration. For both cases the size of the search
space expanded tends to be the deciding factor on which
search method is fastest as other variants are the same.

Holte(Holte,2005) compares hierarchical abstract
IDA*,in which heuristics are calculated on demand, vs
disjoint pattern databases(Korf,2002), on which the whole
abstract space is searched and stored before solving any
problem instance. Holte notes that comparative heuristic
performance depends on how many instances with the
same goal are to be solved and how his abstract search
method is configured (how many abstract levels are
cached). Furthermore the performance of his Heuristic
Search configuration is dependent as well on the problem
instance being solved.

Our Approach

The objective of this research is to automate choosing
which heuristic search configuration will be the fastest for
the current problem for the next iteration. The novelty on
our approach is to dynamically adapt the Heuristic Search
configuration to minimize search time until a solution is
found.

Every time we perform an iteration and the solution is
not found the solving method starts an introspective phase.
For the next iteration we need to decide what is the
preferred Heuristic Search configuration and which
sampled parameters need to be updated.

While it would be desirable to predict the performance
of each possible Heuristic Search configuration the time
costs associated can be too large. We choose which
information we gather following the principle:

Information has value to the extent that it is likely to
cause a change of plan, and to the extent that the new
plan will be significantly better than the previous plan
(Russell,1995).
For example we might consider whether to add

duplicate checking or inverse operator checking to the
Heuristic Search configuration for next iteration.
Duplicate check is more expensive than inverse operator
checking but its pruning potential is much bigger if the
search space is big enough. As we have formulas for
predicting the search space size, we can alter the current
preferred search configuration from inverse operator
checking to duplicate checking.

An advantage of iterative search on exponential search
spaces is that the cost of gathering updated values of
sampled parameters will be exponentially cheaper than
acquiring them on the next iteration.

The introspective phase needs to keep predictions on
each possible search configurations. Each sampled
parameter has an associated accuracy. As the number of
iterations increases, the sampled parameters may loose
accuracy. This, in turn, may affect our ability to determine
which configuration is best. When this happens, we need
to update the values of the sampled parameters.

Following is a brief description of some of the
parameters used in predicting future performance.

The formula above predicts the time(tn) it takes to
perform the next IDA* iteration using sampled parameters.

• Nexp is the number of nodes expanded on the search.
Every node expanded has been tested for whether it
should be expanded.

• Ncull are those nodes whose expansion is delayed till a
future iteration because their F value is bigger than the
current iteration depth bound.

• Np will never be expanded because of search control
rules like cyclic paths, inverse operator, duplicate check,
etc.
There are several models predicting the search space

size. In general they try to map the Heuristic Search Space
to a Uniform Search Tree with an effective branching
factor,depth or simply a constant growth rate once the
search space is big enough(Korf,2001). There are different
formulas using this parameters which allow us to estimate
the nodes expanded, culled and pruned for next iteration.
Keeping tabs on these is quite inexpensive.

• th: depends on the cost of the heuristic. For closed
formulas like Manhattan the cost is constant. For
abstraction based heuristics the time cost is as complex
as any other planning search and is a function of abstract
search method, abstract space complexity and
how/whether the results are cached.

• tp: test is constant as long as an efficient hashing function
can be built. Otherwise, the cost is linearly dependent of
the size of the pruning database to check against.
Normally a hashing function can be build for any state
of a domain. We are considering full duplicate
checking, cyclic path detection and inverse operator
checking as pruning functions.

• tg:goal evaluation is in most cases constant for the
domain and can be precomputed for all problem
instances.

• texp: node expansion costs are usually constant and can be
precomputed for most domains.

References

 Holte,R., Grajkowski,J. and Tanner,B. 2005.
Hierarchical Heuristic Search Revisited.SARA, LNAI
3607, pp. 121� 133.

Korf, R., Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134, pp. 9� 22

Korf R., Reid, M. & Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artificial
Intelligence 129: pp. 199-218.

Russell, S., Norvig, P. 1995. Artificial Intelligence: A
Modern Approach, Prentice Hall Series in Artificial
Intelligence. Englewood Cliffs, New Jersey.

tn=Nexp n∗tpn−1th n−1tgn−1t expn−1

Nculln∗tpn−1th n−1Np n∗tp

172

