
 AI Planning Search Time and Space Reduction Technique
 for the Problem of Web Service Composition

Hossein Rahmani

Sharif University of Technology, Azadi Ave., Tehran, Iran,
 P.O.Box: 11365-9517, office No: 313

H_Rahmani@ce.sharif.edu

Abstract

One of challenging problems in the domain of web services
is the web service composition (i.e the task of composing
web services to create new services, capable of fulfilling a
need that no single service can satisfy). In real application,
there will be a lot of relevant web services for a simple goal,
so the search space for such a problem is huge. In this
research statement, we show how by extracting some prior
knowledge and using simple heuristics, search space and
search time can be reduced significantly.

 Proposed System
Due to large amount of the web services, adoption of the
best composed services in a reasonable response time is the
main goal of the proposed system. The proposed system is
based on the two simple ideas decreasing both search space
and search time. The first idea is detect the useful runtime
knowledge which can be processed offline and the second
idea is use of offline extracted knowledge for directing the
search result in reducing both search space and search
time.

Offline Extractable Knowledge
After inspecting several search methods which are used in
the web service composition problem, we discovered that
most parts of their response time are wasted in acquiring
some kind of information which is extractable in offline.
Use of past experience in most of them means learning, but
in our system we do not mean learning, we just propose to
keep the knowledge in easy retrievable structure like
matrixes so each process is done just once even if appears
several times in one problem or become visible in different
problems. As we discussed about Graph based methods,
during graph building phase, they spend large amount of
time finding relevant services for a given goal. Since we
want to avoid this time wasting state, our first data
structure is Literal Service Dependency Matrix (we called
it LSDM in short) which encodes the static relationship
among the literals and services. In the row “i” and column
“j” of the LSDM we put the web service name which takes
literal “i” as input and generate the literal “j” as output. If

we imagine Fig (1) as set of available web services, then
Table (1) contains its corresponding LSDM.

Fig 1. Simple set of web service.

Table 1. LSDM for web services shown in fig (1).

 a b c
a # S1 S3
b S2 #
c S2 S4 #

The other offline extractable knowledge which extremely
effects our search direction is Graph Plan Literal Matrix
which we called it GPLM in short. We use GraphPlan as
distance measure between the individual literals. In the row
of the “i” and column “j” of the GPLM we put distance
between literal "i" and literal "j".
In order to calculate the distance between literal "i" and
literal "j' we build the GraphPlan with the first layer
containing literal "i" and build the graph till the literal "j"
appears. Table (2) shows the distance between each
distinct literal of fig (1).

Table 2.GPLM for web services shown in fig (1).

 a b c
a 0 1 2
b 2 0 1
c 2 1 0

S1 b a

S2 a b

S2 c b

c

S4 b c

173

Search Direction Strategy
In this part of proposed system, first we introduce a simple
heuristic for directing the search process. Second, in order
to reduce both search space and time, we exploit the offline
extracted knowledge in our heuristic search. In our system
the main search algorithm is backward search. In each step
of backward search, there might be more than one relevant
service. Since a backward search may try lots of services
that can’t be reached from the initial state, deciding to
select which relevant service for satisfying the goal can
significantly reduce the search space. As inputs of relevant
chosen service will be added to the goal list, one simple
idea can be about how much criticality one service will add
to the problem. The Concept of criticality in the problem is
how far service's inputs from the init state are. We propose
simple general min-max-min heuristic search algorithm for
directing the backward search and reducing backtracking
count. As it shown in fig (2), imagine there are three
relevant services (i.e. S1, S2 and S3) for a given goal G.
web service S1 has two inputs (inp_11 and inp_12), web
service S2 has two inputs (inp_21 and inp_22) and web
service S3 has two inputs (inp_31 and inp_32). There are
three literals in init state (i.e. init1, init2 and init3). The
result of our proposed heuristic search is order of relevant
services for satisfying the given goal "G". After finding
relevant services of one given goal, we calculate the
distance of each input literal of services to the literals
appeared in init state (i.e. calculating distance between
inp_11 to all the init1, init2 and init3 literals). We can use
any kind of distance measure. Our chosen distance
measure will be described later. For each input we find the
minimum distance of it to the init state literals. For every
relevant service, we will find the most critical input literal.
In our heuristic search algorithm, we apply maximum to
the input minimum distance (i.e. take maximum between
inp_11 minimum distance and inp_12 minimum distance).
Then we order relevant services based on their most
critical input literal (i.e. the one which has maximum
minimum distance). In simpler words, we first apply the
relevant web service which it's most critical input literal
has minimum value. The algorithm is general since we can
use any kind of distance measure. One of the best
candidates for distance measure could be GraphPlan. Most
kind of graph building algorithm wastes large amount time
to build a graph in runtime. Due to large number of web
services in the web service composition problem, building
GraphPlan in runtime will be take so much time and is not
feasible for real application. By use of GPLM, we use
benefits of GraphPlan and not wasting any time for
building the graph in runtime. Since GraphPlan based
distance between each individual literal is determined in
offline and saved in the GPLM, heuristic distance

calculation does not make response time longer and has no
cost.

Fig 2. Min-Max-Min heuristic search algorithm.

Discussion

We applied AI Planning concepts to web service
composition problem. Web service composition problem is
different from the usual AI Planning problems since it is
kind of real and interactive problem. The user of system
provides problem description (i.e. init and goal literals) and
waiting for a system's response. Response time in
interactive system is so important. Experiments show that
in the problems which do not have solution; "heuristic
graph plan" is working so much better than the other
methods. By looking to fig (3) we can find out that,
although it seems the execution time difference between
our proposed framework and other algorithms is small, but
our proposed framework execution time is increasing
linearly in the size of the problem. The other methods
execution time increase near exponentially to the size of
the problem.

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5

solution Size

S
ea

rc
h

Ti
m

e
(m

knoblock algorithm
real GraphPlan
Heuristic Search

Fig 3. Search time of Algorithms based on solution size.

G

S1

Inp_11

Init1

S2

S3

Inp_12

Inp_21

Inp_22

Inp_31

Inp_32

Init2

Init3

M
I
N

M
A
X

M
A
X

M
A
X

M
I
N

M
I
N

174

